Supplementary data

Evolution from natural β-carboline alkoloids to obtain 1,2,4,9-tetrahydro-3-thia-9-aza-fluorene derivatives as potent Fungicidal agents against *Rhizoctonia solani*

Junmin Xi,¹ Zhijun Zhang,¹ Qi Zhu, Guohua Zhong^{*}

1. General

Compounds 1, 3, 5, 7 and 8 were purchased from BePharm Co., Ltd. (Shanghai, China). Compounds 6 and 10 were prepared according to the procedure reported previously.^{1,2} All other reagents and solvents used in the study were analytical grade and obtained from commercial sources.

2. Chemistry

2.1 Synthesis of 2,3,4,5-tetrahydro-1*H***-pyrido[4,3-***b***]indole (9). The mixture of phenylhydrazine hydrochloride (10 mmol) and 1-carbethoxy-4-piperidone (7.66 g, 10 mmol) in absolute EtOH (10 mL) was stirred for 3 h under reflux. The intermediate 40** was filtered and recrystallized from 95% EtOH. To the solution of the intermediate **40** (g, 3.82 mmol) in 15 mL ethanol was added an aqueous solution of KOH (4.28 g,76.4 mmol, in 5 mL water) and the reaction was refluxed for 24 h and concentrated in vacuo. The residual mixture was extracted with DCM. The combined DCM layer was sequentially washed with water and brine, dried, filtered, and concentrated under

reduced pressure to give a brown residue which was purified by silica gel column chromatography (DCM: methanol 25:1) to give **9** as a yellow solid. Yield: 89%; ¹H-NMR (400 MHz, CDCl₃) δ : 7.46 (d, J = 7.3 Hz, 1H, 6-H), 7.31 (d, J = 8.0 Hz, 1H, 9-H), 7.19-7.10 (m, 2H, 7, 8-H), 4.08 (s, 2H, 1-CH₂-), 3.24 (t, J = 5.8 Hz, 2H, 3-CH₂-), 2.78 (t, J = 5.6 Hz, 2H, 4-CH₂-); anal. calcd for C₁₁H₁₂N₂: C, 76.71; H, 7.02; N, 16.27; found: C, 76.59; H, 7.03; N, 16.17.

2.2 General procedure for the synthesis of compounds 11 and 14-28. To a solution of phenyl hydrazine hydrochloride (10 mmol) and tetrahydrothiopyran-4-one (10 mmol) in methanol (40 mL) was added $Bi(NO_3)_3 \cdot 5H_2O$ (970 mg, 2 mmol), and the reaction mixture was stirred for 2 h under reflux, and then poured into water (100 mL). After filtration, the crude product was extracted with ethyl acetate, washed with saturated sodium bicarbonate, dried and concentrated, which was purified by flash chromatography on silica gel with a mixture eluent of petroleum ether and ethyl acetate to give the desired compounds 11 and 14-28.

1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (11), light yellow solid, yield: 82%; ¹H NMR (600 MHz, CDCl₃) δ: 7.79 (s, 1H, 5-NH), 7.45 (d, *J* = 7.8 Hz, 1H, 6-H), 7.30 (d, *J* = 8.0 Hz, 1H, 9-H), 7.15 (t, *J* = 7.5 Hz, 1H, 8-H), 7.10 (t, *J* = 7.4 Hz, 1H, 7-H), 3.87 (s, 2H, 1-CH₂-), 3.02 (s, 4H, 3, 4-CH₂-); anal. calcd for C₁₁H₁₁NS: C, 69.80; H, 5.86; N, 7.40; found: C, 69.61; H, 5.87; N, 7.22.

6-methyl-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (14), light yellow solid, yield: 86%; ¹H NMR (600 MHz, CDCl₃) δ: 7.69 (s, 1H, 5-NH), 7.23 (s, 1H, 9-H), 7.18 (d, *J* = 8.2 Hz, 1H, 6-H), 6.97 (d, *J* = 8.1 Hz, 1H, 7-H), 3.84 (s, 2H, 1-CH₂-),

3.00 (s, 4H, 3, 4-CH₂-), 2.44 (s, 3H, 8-CH₃); anal. calcd for C₁₂H₁₃NS: C, 70.89; H, 6.45; N, 6.89; found: C, 70.73; H, 6.44; N, 6.72.

6-fluoro-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (15), light yellow solid, yield: 89%; ¹H NMR (600 MHz, CDCl₃) δ: 7.79 (s, 1H, 5-NH), 7.19 (dd, *J* = 8.7, 4.3 Hz, 1H, 9-H), 7.09 (dd, *J* = 9.4, 2.3 Hz, 1H, 6-H), 6.88 (td, *J* = 9.1, 2.4 Hz, 1H, 7-H), 3.81 (s, 2H, 1-CH₂-), 3.01 (s, 4H, 3, 4-CH₂-); anal. calcd for C₁₁H₁₀FNS: C, 63.74; H, 4.86; N, 6.76; found: C, 63.58; H, 4.86; N, 6.59.

6-chloro-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (16), light yellow solid, yield: 92%; ¹H NMR (600 MHz, CDCl₃) δ : 7.82 (s, 1H, 5-NH), 7.41 (d, J = 1.7 Hz, 1H, 9-H), 7.19 (d, J = 8.5 Hz, 1H, 6-H), 7.09 (dd, J = 8.5, 1.9 Hz, 1H, 7-H), 3.80 (s, 2H, 1-CH₂-), 3.01 (s, 4H, 3, 4-CH₂-); anal. calcd for C₁₁H₁₀CINS: C, 59.09; H, 4.51; N, 6.26; found: C, 58.87; H, 4.53; N, 6.09.

6-bromo-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (17), light yellow solid, yield: 72%; ¹H NMR (600 MHz, CDCl₃) δ: 7.85 (s, 1H, 5-NH), 7.56 (d, *J* = 1.5 Hz, 1H, 9-H), 7.22 (dd, *J* = 8.5, 1.8 Hz, 1H, 6-H), 7.15 (d, *J* = 8.5 Hz, 1H, 7-H), 3.80 (s, 2H, 1-CH₂-), 3.00 (s, 4H, 3, 4-CH₂-); anal. calcd for C₁₁H₁₀BrNS: C, 49.27; H, 3.76; N, 5.22; found: C, 49.14; H, 3.77; N, 5.06.

6-trifluoromethyl-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (18), light yellow solid, yield: 38%; ¹H NMR (600 MHz, CDCl₃) δ: 8.03 (s, 1H, 5-NH), 7.73 (s, 1H, 9-H), 7.39 (d, *J* = 8.4 Hz, 1H, 6-H), 7.35 (d, *J* = 8.5 Hz, 1H, 7-H), 3.87 (s, 2H, 1-CH₂-), 3.07-3.02 (m, 4H, 3, 4-CH₂-); anal. calcd for C₁₂H₁₀F₃NS: C, 56.02; H, 3.92; N, 5.44; found: C, 55.91; H, 3.91; N, 5.26.

6-nitro-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (19), light yellow solid, yield: 32%;¹H NMR (600 MHz, CDCl₃) δ: 8.43 (d, *J* = 1.9 Hz, 1H, 6-H), 8.25 (s, 1H, 9-H), 7.32 (d, *J* = 8.9 Hz, 1H, 7-H), 3.88 (s, 2H, 1-CH₂-), 3.07-3.02 (m, 4H, 3, 4-CH₂-); anal. calcd for C₁₁H₁₀N₂O₂S: C, 56.39; H, 4.30; N, 11.96; found: C, 56.27; H, 4.31; N, 11.83.

6-trifluoromethoxy-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (20), light yellow solid, yield: 85%; ¹H NMR (600 MHz, CDCl₃) δ : 7.93 (s, 1H, 5-NH), 7.31 (s, 1H, 9-H), 7.28 (d, J = 3.1 Hz, 1H, 6-H), 7.04 (d, J = 8.6 Hz, 1H, 7-H), 3.85 (s, 2H, 1-CH₂-), 3.04 (s, 4H, 3, 4-CH₂-); anal. calcd for C₁₂H₁₀F₃NOS: C, 52.74; H, 3.69; N, 5.13; found: C, 52.57; H, 3.70; N, 5.02.

6-methoxy-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (21), light yellow solid, yield: 87%; ¹H NMR (600 MHz, CDCl₃) δ: 7.69 (s, 1H, 5-NH), 7.18 (d, *J* = 8.7 Hz, 1H, 9-H), 6.90 (d, *J* = 2.2 Hz, 1H, 6-H), 6.80 (dd, *J* = 8.7, 2.4 Hz, 1H, 7-H), 3.85 (s, 3H, 8-OCH₃), 3.83 (s, 2H, 1-CH₂-), 3.00 (s, 4H, 3, 4-CH₂-); anal. calcd for C₁₂H₁₃NOS: C, 65.72; H, 5.97; N, 6.39; found: C, 65.54; H, 5.93; N, 6.27.

6-benzoxy-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (22), light yellow solid, yield: 82%; ¹H NMR (600 MHz, CDCl₃) δ: 7.68 (s, 1H, 5-NH), 7.48 (d, *J* = 7.5 Hz, 2H, Ar-H), 7.39 (t, *J* = 7.6 Hz, 2H, Ar-H), 7.32 (t, *J* = 7.3 Hz, 1H, Ar-H), 7.19 (d, *J* = 8.7 Hz, 1H, 9-H), 6.99 (d, *J* = 2.1 Hz, 1H, 6-H), 6.88 (dd, *J* = 8.7, 2.3 Hz, 1H, 7-H), 5.10 (s, 2H, Ph<u>CH</u>₂O-), 3.82 (s, 2H, 1-CH₂-), 3.00 (s, 4H, 3, 4-CH₂-); anal. calcd for C₁₈H₁₇NOS: C, 73.19; H, 5.80; N, 4.74; found: C, 73.04; H, 5.79; N, 4.68.

(23), yellow solid, yield: 63%; ¹H NMR (600 MHz, CDCl₃) δ: 7.89 (s, 1H, 5-NH),
7.46 (s, 1H, 9H), 7.30 (d, J = 8.3 Hz, 1H, 6-H), 7.17 (d, J = 8.1 Hz, 1H, 7-H), 4.36 (s, 2H, -<u>CH₂</u>-NHSO₂-), 3.86 (s, 2H, 1-CH₂-), 3.04-3.00 (m, 4H, 3, 4-CH₂-), 2.70 (d, J = 5.2 Hz, 3H, <u>CH₃SO₂-); anal. calcd for C₁₃H₁₆N₂O₂S₂: C, 52.68; H, 5.44; N, 9.45; found: C, 52.54; H, 5.45; N, 9.31.
</u>

Ethyl 1,2,4,9-tetrahydro-3-thia-9-aza-fluorene-6-carboxylate (24), yellow solid, yield: 52%; ¹H NMR (600 MHz, CDCl₃) δ : 8.22 (s, 1H, 9-H), 8.02 (s, 1H, 5-NH), 7.88 (dd, J = 8.5, 1.5 Hz, 1H, 6-H), 7.31-7.27 (m, 1H, 7-H), 4.40 (q, J = 7.1 Hz, 2H, CH₃<u>CH</u>₂O-), 3.89 (s, 2H, 4-CH₂-), 3.03 (s, 4H, 3, 4-CH₂-), 1.42 (t, J = 7.1 Hz, 3H, <u>CH</u>₃CH₂O-); anal. calcd for C14H15NO₂S: C, 64.34; H, 5.79; N, 5.36; found: C, 64.19; H, 5.80; N, 5.27.

5-trifluoromethyl-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (25), yellow solid, yield: 43%; ¹H NMR (600 MHz, CDCl₃) δ: 8.10 (s, 1H, 5-H), 7.48 (d, *J* = 8.1 Hz, 1H, 8-H), 7.44 (d, *J* = 7.6 Hz, 1H, 6-H), 7.18 (t, *J* = 7.8 Hz, 1H, 7-H), 3.97 (s, 2H, 1-CH₂-), 3.11 (t, *J* = 5.8 Hz, 2H, 3-CH₂-), 2.99 (t, *J* = 5.9 Hz, 2H, 4-CH₂-); anal. calcd for C₁₂H₁₀F₃NS: C, 56.02; H, 3.92; N, 5.44; found: C, 55.89; H, 3.92; N, 5.28.

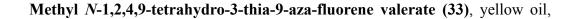
7-trifluoromethyl-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (26), yellow solid, yield: 37%; ¹H NMR (600 MHz, CDCl₃) δ : 8.02 (s, 1H, 5-NH), 7.57 (s, 1H, 6-H), 7.52 (d, J = 8.2 Hz, 1H, 9-H), 7.34 (d, J = 7.7 Hz, 1H, 7-H), 3.87 (s, 2H, 1-CH₂-), 3.09-3.05 (m, 2H, 3-CH₂-), 3.05-3.01 (m, 2H, 4-CH₂-); anal. calcd for C₁₂H₁₀F₃NS: C, 56.02; H, 3.92; N, 5.44; found: C, 55.91; H, 3.91; N, 5.26.

yield: 56%; ¹H NMR (600 MHz, CDCl₃) δ : 8.19 (s, 1H, 5-NH), 7.62 (d, J = 7.9 Hz, 1H, 7-H), 7.40 (d, J = 7.5 Hz, 1H, 9-H), 7.16 (t, J = 7.7 Hz, 1H, 8-H), 3.86 (s, 2H, 1-CH₂-), 3.09-3.05 (m, 2H, 3-CH₂-), 3.05-3.02 (m, 2H, 4-CH₂-); anal. calcd for C₁₂H₁₀F₃NS: C, 56.02; H, 3.92; N, 5.44; found: C, 55.94; H, 3.93; N, 5.22.

5,7-di-trifluoromethyl-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (28), yellow solid, yield: 35%; ¹H NMR (600 MHz, CDCl₃) δ: 7.37 (s, 1H, 8-H), 7.29 (s, 1H, 6-H), 2.90-2.85 (m, 2H, 1-CH₂-), 2.83-2.80 (m, 2H, 3-CH₂-), 2.78-2.74 (m, 2H, 4-CH₂-); anal. calcd for C₁₃H₉F₆NS: C, 48.00; H, 2.79; N, 4.31; found: C, 47.92; H, 2.80; N, 4.25.

2.3 Synthesis of 1,2,4,9-tetrahydro-3-thia-9-aza-fluorene-3-oxide (12). To a solution of 11 (378 mg, 2 mmol) in THF (20 mL) was added BF₃.Et₂O (1.13 g, 8 mmol) at -20 °C under N₂. *m*-Chloroperbenzoic acid was then added (345 mg, 2 mmol) at -20 °C and the mixture was stirred at -20 °C for 2 h, poured into NaHCO₃ (30 mL) and subsequently extracted with ethyl acetate (30 mL). The combined organic phase was washed with water, dried and filtrated to obtain the crude sulfoxide 12, which was purified by flash chromatography. Yield: 73%; ¹H NMR (600 MHz, CDCl₃) δ : 7.99 (s, 1H, 5-NH), 7.45 (d, *J* = 7.8 Hz, 1H, 6-H), 7.31 (d, *J* = 8.1 Hz, 1H, 9-H), 7.19 (t, *J* = 7.6 Hz, 1H, 8-H), 7.13 (t, *J* = 7.5 Hz, 1H, 7-H), 4.27 (d, *J* = 15.0 Hz, 1H, 1-CH₂-), 3.40 (tt, *J* = 13.9, 7.1 Hz, 2H, 3-CH₂-), 3.19-3.11 (m, 2H, 4-CH₂-); anal. calcd for C₁₁H₁₁NOS: C, 64.36; H, 5.40; N, 6.82; found: C, 64.23; H, 5.40; N, 6.68.

solution of **11** (378 mg, 2 mmol) in 20 mL THF was added *m*-chloroperbenzoic acid in THF (5 mmol) at 0 °C. The mixture was stirred at room temperature for 2 h. After concentration, the residue was dissolved in ethyl acetate (30 mL). The solution was washed with Na₂SO₃, water and brine. After filtration and concentration, the residue was purified by flash chromatography to obtain sulfone **13** as a light yellow solid. Yield: 58%; ¹H NMR (600 MHz, CDCl₃) δ : 7.99 (s, 1H, 5-NH), 7.39 (d, *J* = 7.8 Hz, 1H, 6-H), 7.33 (d, *J* = 8.1 Hz, 1H, 9-H), 7.24-7.20 (m, 1H, 8-H), 7.15 (dd, *J* = 11.0, 4.0 Hz, 1H, 7-H), 4.39 (s, 2H, 1-CH₂-), 3.43 (t, *J* = 5.9 Hz, 2H, 3-CH₂-), 3.36 (t, *J* = 6.1 Hz, 2H, 4-CH₂-); anal. calcd for C₁₁H₁₁NO₂S: C, 59.71; H, 5.01; N, 6.33; found: C, 59.54; H, 4.99; N, 6.21..


2.5 General procedure for the synthesis of compounds 29-35. To a solution of **11** (189 mg, 1 mmol) in DMF (10 mL) were added sodium hydride (44 mg, 1.1 mmol) at 0 °C. After stirred at 0 °C for 30 min, various alkyl halides or acyl chloride (1.1 mmol) was added and the reaction mixture were stirred at room temperature for 2 h. Then the reaction mixture was diluted with water and extracted with ethyl acetate (3×15 mL). The extracts were combined, washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The residue was then purified by flash chromatography on silica gel with a mixture eluent of petroleum ether and ethyl acetate to give the desired compound **29-35**.

N-methyl-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (29), white solid, yield: 90%; ¹H NMR (600 MHz, CDCl₃) δ: 7.47 (d, *J* = 7.8 Hz, 1H, 9-H), 7.29 (d, *J* = 8.2 Hz, 1H, 6-H), 7.19 (dd, *J* = 11.2, 4.0 Hz, 1H, 8-H), 7.10 (t, *J* = 7.4 Hz, 1H, 7-H), 3.89 (s, 2H, 1-CH₂-), 3.63 (s, 3H, N-CH₃), 3.06 (t, *J* = 5.6 Hz, 2H, 3-CH₂-), 3.00 (t, *J* = 5.4 Hz, 2H, 4-CH₂-); anal. calcd for C₁₂H₁₃NS: C, 70.89; H, 6.45; N, 6.89; found: C, 70.72; H, 6.45; N, 6.77.

N-ethoxycarbonyl-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (30), white solid, yield: 85%; ¹H NMR (600 MHz, CDCl₃) δ : 8.12 (d, J = 8.2 Hz, 1H, 9-H), 7.40 (d, J = 7.6 Hz, 1H, 6-H), 7.28 (dd, J = 11.3, 4.1 Hz, 1H, 8-H), 7.24 (d, J = 7.2 Hz, 1H, 7-H), 4.49 (q, J = 7.1 Hz, 2H, CH₃<u>CH</u>₂O-), 3.79 (s, 2H, 1-CH₂-), 3.32 (t, J = 5.8 Hz, 2H, 3-CH₂-), 2.99 (t, J = 5.9 Hz, 2H, 4-CH₂-), 1.49 (t, J = 7.1 Hz, 3H, <u>CH</u>₃CH₂O-); anal. calcd for C14H15NO₂S: C, 64.34; H, 5.79; N, 5.36; found: C, 64.18; H, 5.81; N, 5.27.

Methyl *N***-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene acetate (31)**, white solid, yield: 77%; ¹H NMR (600 MHz, CDCl₃) δ : 7.48 (d, J = 7.8 Hz, 1H, 9-H), 7.22-7.17 (m, 2H, 6-H, 8-H), 7.13 (t, J = 7.9 Hz, 1H, 7-H), 4.77 (s, 2H, -<u>CH</u>₂CO-), 3.89 (s, 2H, 1-CH₂-), 3.74 (s, 3H, COOCH₃), 3.05 (t, J = 5.8 Hz, 2H, 3-CH₂-), 2.94 (t, J = 5.7 Hz, 2H, 4-CH₂-); anal. calcd for C14H15NO₂S: C, 64.34; H, 5.79; N, 5.36; found: C, 64.19; H, 5.80; N, 5.27.

Ethyl *N*-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene acetate (32), white solid, yield: 81%; ¹H NMR (600 MHz, CDCl₃) δ : 7.47 (d, J = 7.8 Hz, 1H, 9-H), 7.22-7.17 (m, 2H, 6-H, 8-H), 7.12 (t, J = 7.2 Hz, 1H, 7-H), 4.74 (s, 2H, -<u>CH</u>₂CO-), 4.20 (q, J =7.1 Hz, 2H, CH₃<u>CH</u>₂O-), 3.89 (s, 2H, 1-CH₂-), 3.05 (t, J = 5.8 Hz, 2H, 3-CH₂-), 2.94 (t, J = 5.7 Hz, 2H, 4-CH₂-), 1.26 (t, J = 7.1 Hz, 3H, <u>CH</u>₃CH₂O-); anal. calcd for C₁₅H₁₇NO₂S: C, 65.43; H, 6.22; N, 5.09; found: C, 65.27; H, 6.21; N, 4.97.

yield: 73%; ¹H NMR (600 MHz, CDCl₃) δ: 7.46 (d, *J* = 7.8 Hz, 1H, 9-H), 7.27 (d, *J* = 8.2 Hz, 1H, 6-H), 7.17 (t, *J* = 7.2 Hz, 1H, 8-H), 7.09 (t, *J* = 7.3 Hz, 1H, 7-H), 4.04 (t, *J* = 7.3 Hz, 2H, 5-N<u>CH₂</u>-), 3.88 (s, 2H, 1-CH₂-), 3.66 (s, 3H, COOCH₃), 3.05 (t, *J* = 5.5 Hz, 2H, 3-CH₂-), 2.99 (t, *J* = 5.2 Hz, 2H, 4-CH₂-), 2.32 (t, *J* = 7.2 Hz, 2H, -<u>CH₂</u>COO-), 1.77 (m, 2H, CH₂), 1.70-1.65 (m, 2H, CH₂); anal. calcd for C₁₇H₂₁NO₂S: C, 67.29; H, 6.98; N, 4.62; found: C, 67.07; H, 6.99; N, 4.53.

N-benzyl-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene valerate (34), yellow oil, yield: 71%; ¹H NMR (600 MHz, CDCl₃) δ : 7.51 (d, J = 7.6 Hz, 1H, 9-H), 7.37 (dt, J = 26.3, 7.5 Hz, 1H, Ar-H), 7.29-7.22 (m, 3H, 6-H, Ar-H), 7.15 (t, J = 7.1 Hz, 1H, 8-H), 7.12 (t, J = 7.1 Hz, 1H, 7-H), 6.98 (d, J = 7.3 Hz, 2H, Ar-H), 5.28 (s, 2H, Ph<u>CH</u>₂-), 3.93 (s, 2H, 1-CH₂-), 3.01 (t, J = 5.8 Hz, 2H, 3-CH₂-), 2.91 (t, J = 5.7 Hz, 2H, 4-CH₂-); anal. calcd for C₁₈H₁₇NS: C, 77.38; H, 6.13; N, 5.01; found: C, 77.23; H, 6.14; N, 4.93.

N-[(1,2,4,9-tetrahydro-3-thia-9-aza-fluorene)methyl]phenyl-β-methoxy

methacrylate (35), yellow solid, yield: 82%; ¹H NMR (600 MHz, CDCl₃) δ: 7.65 (s, 1H, 9-H), 7.50 (dd, J = 5.8, 2.8 Hz, 1H, Ar-H), 7.25-7.21 (m, 2H, Ar-H), 7.16 (d, J = 7.2 Hz, 2H, Ar-H), 7.12-7.09 (m, 3H, Ar-H), 6.45 (d, J = 7.7 Hz, 1H, =<u>CH</u>O-), 5.12 (s, 2H, CH₂), 3.92 (s, 2H, 1-CH₂-), 3.91 (s, 3H, COO<u>CH₃</u>), 3.77 (s, 3H, =CHO<u>CH₃</u>), 2.97 (t, J = 5.8 Hz, 2H, 3-CH₂-), 2.82 (t, J = 5.7 Hz, 2H, 4-CH₂-); anal. calcd for C₂₃H₂₃NO₃S: C, 70.20; H, 5.89; N, 3.56; found: C, 70.07; H, 5.90; N, 3.42.

2.6 Synthesis of *N*-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene carbohydrazide (36).To a solution of compound 11 (378 mg, 2 mmol) in ethanol (10 mL) was added 2 mL

hydrazine hydrate and the mixture was heated under reflux for 6 h. The reaction mixture was then cooled and filtrated to give compound 36 as a light yellow solid, yield: 81%; ¹H NMR (600 MHz, CDCl₃) δ : 7.50 (d, J = 7.7 Hz, 1H, 9-H), 7.22 (t, J = 8.3 Hz, 2H, 6-H, 8-H), 7.18 (t, J = 7.1 Hz, 1H, 7-H), 6.50 (s, 1H, NH), 4.76 (s, 2H, -<u>CH</u>₂CO-), 3.87 (s, 2H, 1-CH₂-), 3.78 (d, J = 3.7 Hz, 2H, NH₂), 3.05 (t, J = 5.7 Hz, 2H, 3-CH₂-), 2.91 (t, J = 5.5 Hz, 2H, 4-CH₂-); anal. calcd for C₁₃H₁₅N₃OS: C, 59.74; H, 5.79; N, 16.08; found: C,59.63; H, 5.78; N, 15.93.

2.7 Synthesis of *N*-(3,4,5-trimethoxybenzylidene)-1,2,4,9-tetrahydro-3-thia-9-azafluorene carbohydrazide (37). To a solution of 36 (261 mg, 1 mmol) in absolute ethanol (10 mL) was added dropwise 3,4,5-trimethoxybenzaldehyde (196 mg, 1 mmol) and acetic acid (1 mL), and the reaction mixture was then refluxed for 6 h. After cooled to room temperature, the mixture was filtrated to obtain compound 37 as light yellow solid, yield: 94%; ¹H NMR (600 MHz, CDCl₃) δ : 9.14 (s, 1H, NH), 7.49 (d, *J* = 7.7 Hz, 1H, 9-H), 7.30 (t, *J* = 8.8 Hz, 1H, 6-H), 7.22 (t, *J* = 7.4 Hz, 1H, 8-H), 7.14 (dt, *J* = 32.3, 7.5 Hz, 2H, 7-H), 6.91 (s, 2H, Ar-H), 6.86 (s, 1H, -CH=NN-), 5.27 (s, 2H, CH₂), 4.87 (s, 2H, 1-CH₂-), 3.95 (s, 6H, 3',5'-OCH₃), 3.85 (s, 3H, 4'-OCH₃)), 3.10-3.04 (m, 2H, 3-CH₂-), 3.00 (dd, *J* = 11.9, 5.5 Hz, 2H, 4-CH₂-) ; anal. calcd for C₂₃H₂₅N₃O₄S: C, 62.85; H, 5.73; N, 9.56; found: C, 62.72; H, 5.74; N, 9.43.

2.8 Synthesis of *N***-(2-thioxo-1,3,4-oxadiazol-5-yl)-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (38).** To a solution of **36** (261 mg, 1 mmol) in 10 mL absolute ethanol were added carbon disulfide (0.3 mL, 5 mmol) and potassium hydroxide (84 mg, 1.5 mmol) and the mixture was then heated under reflux for 48 h. After concentration, the residue

was diluted with water and acidified with 2N HCl solution. The product **38** was obtained by filtration and recrystallization from methanol. Yield: 73%; ¹H NMR (600 MHz, CDCl₃) δ : 7.48 (d, *J* = 7.7 Hz, 1H, 9-H), 7.34 (d, *J* = 8.1 Hz, 1H, 6-H), 7.23 (d, *J* = 7.7 Hz, 1H, 8-H), 7.16 (t, *J* = 7.3 Hz, 1H, 7-H), 5.21 (s, 2H, CH₂), 3.86 (s, 2H, 1-CH₂-), 3.08 (d, *J* = 3.3 Hz, 4H, 3, 4-CH₂-); anal. calcd for C₁₄H₁₃N₃OS₂: C, 55.42; H, 4.32; N, 13.85; found: C,55.27; H, 4.33; N, 13.73.

2.9 Synthesis of *N*-(**2-chlorobenzoyl)-1,2,4,9-tetrahydro-3-thia-9-aza-fluorene (39)**. The compound **39** was synthesized with **11** and 2-chlorobenzoyl chloride using a similar procedure as for compound **29**. Yield: 88%; ¹H NMR (600 MHz, CDCl₃) *δ*: 7.54-7.47 (m, 4H, Ar-H, 9-H), 7.44-7.39 (m, 2H, Ar-H, 6-H), 7.26-7.22 (m, 1H, 8-H), 7.15-7.11 (m, 1H, 7-H), 3.82 (s, 2H, 1-CH₂-), 2.89 (t, *J* = 6.1 Hz, 4H, 3, 4-CH₂-); anal. calcd for C₁₈H₁₄ClNOS: C, 65.95; H, 4.30; N, 4.27; found: C,65.77; H, 4.31; N, 4.20.

REFERENCES

- Su, H.; Wang, W.; Bao, L.; Wang, S.; Cao, X. Synthesis and evaluation of essential oil-derived β-methoxyacrylate derivatives as high potential fungicides. *Molecules* 2017, 22, 763, doi:10.3390/molecules22050763.
- Siddalingamurthy, E.; Mahadevan, K.M.; Masagalli, J.N.; Harishkumar, H.N. Mild, efficient Fischer indole synthesis using 2,4,6-trichloro-1,3,5-triazine (TCT). *Tetrahedron Lett.* 2013, 54, 5591-5596, doi:10.1016/j.tetlet.2013.07.157.