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Abstract

:

Fiber quality and yield improvement are crucial for cotton domestication and breeding. With the transformation in spinning techniques and multiplicity needs, the development of cotton fiber quality and yield is of great importance. A genetic map of 5178 Single Nucleotide Polymorphism (SNP) markers were generated using 277 F2:3 population, from an intra-specific cross between two upland cotton accessions, CCRI35 a high fiber quality as female and Nan Dan Ba Di Da Hua (NH), with good yield properties as male parent. The map spanned 4768.098 cM with an average distance of 0.92 cM. A total of 110 Quantitative Traits Loci (QTLs) were identified for 11 traits, but only 30 QTLs were consistent in at least two environments. The highest percentage of phenotypic variance explained by a single QTL was 15.45%. Two major cluster regions were found, cluster 1 (chromosome17-D03) and cluster 2 (chromosome26-D12). Five candidate genes were identified in the two QTL cluster regions. Based on GO functional annotation, all the genes were highly correlated with fiber development, with functions such as protein kinase and phosphorylation. The five genes were associated with various fiber traits as follows: Gh_D03G0889 linked to qFM-D03_cb, Gh_D12G0093, Gh_D12G0410, Gh_D12G0435 associated with qFS-D12_cb and Gh_D12G0969 linked to qFY-D12_cb. Further structural annotation and fine mapping is needed to determine the specific role played by the five identified genes in fiber quality and yield related pathway.
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1. Introduction


Cotton is one of the most important natural fibers and oil crops in the world. Its annual global market value was estimated to be $630.6 billion in 2011 [1]. Cotton fiber is the primary raw material in the textile industry [2]. The advancements in techniques and diversified methods of spinning have made cotton fiber quality and related yield traits of paramount significance in breeding and production of cotton [3]. Fiber quality is determined by a number of factors such as fiber strength, fiber length, fiber micronaire and fiber color, while yield is mainly determined by lint quantity [4]. However, lint yield and fiber quality have been found to be negatively correlated [5,6], which has long been a critical issue in cotton breeding [7]. Recently, Shang et al. [8] identified 20 QTLs for fiber quality-related traits, however, four QTLs were validated. Moreover, five fiber quality traits were linked to 59 QTLs in an earlier report across five environments [9]. So far, few numbers of QTLs have been employed in marker-assisted selection (MAS) which is one of the enhanced breeding methods [10]. In all the identified and documented QTLs related to fiber and yield traits, most of them have been localized in a wide range of genomic regions and are often not stable across a wide genetic backgrounds [11]. Therefore, a dense interspecific map was generated, which included 2316 loci on the 26 cotton chromosomes in order to reduce and enhance accuracy in mapping [12]. However, these maps developed from interspecific hybridization have limited use in breeding due to limitation in controlling defective genes [2,5].



To overcome the inefficiency of maps developed from interspecific hybridization, it is therefore imperative to generate molecular maps based on an intraspecific population due to their ability to reduce the wide genome gap [2]. The employment of molecular marker techniques in cotton breeding through MAS and more advanced approaches such as genomic selection (GS) [13] would help break the bottleneck and, in turn, development of genetically advantaged genotypes. A small part of a DNA can be archived by reducing the complexity of the genome by restriction enzymes, such as genotyping-by-sequencing (GBS), the reduced-representation libraries (RRLs), restriction-site-associated DNA sequencing (RAD-seq) and next generation sequencing (NGS) [14].



The next-generation sequencing (NGS) of crop plant genomes have transformed the field of plant breeding. In the recent past, a lot of data generated has facilitated the discovery and use of large scale of single nucleotide polymorphisms (SNPs) in different genomes [15,16]. One of which was, genotype by sequencing (GBS), which holds the potential to narrow down the genotyping gap between references of large interest and mapping or breeding populations of local or specific interest [17]. GBS protocol techniques with their sample multiplicity have kept molecular research costs low while their output has diverse applications in many research areas, ranging from gene discovery to genomic-assisted breeding [18]. The ability of generating large amounts of unbiased markers in an inexpensive methods, has enabled GBS to become a more attractive approach to genotype and to construct high-resolution genetic maps, genomic selection and facilitated QTL mapping [19].



Mapping of QTLs has become an important technique to facilitate quantitative trait research and has been largely used in agricultural crops to map a number of beneficial agronomic traits including fiber quality and related yield traits.



In this investigation, a genetic map of 5178 SNP markers was generated using a 277 F2:3 intraspecific population developed from two tetraploid upland cotton accessions, mainly cultivated in China. CCRI35 with good fiber quality as female parent and Nan Dan Ba Di Da Hua (NH) known for high yield fiber as male parent. The map generated was employed to analyze QTLs related to fiber quality and yield related traits using QTL cartographer [20]. The aim of this study was to identify QTLs related to fiber quality, yield component traits, localize their position within the cotton genome and to identify the genes tightly linked to those QTLs. Findings of this research could provide valuable insights for breeders to develop cultivars with both traits, yield and quality fiber and enhance selection in cotton breeding.




2. Results


2.1. Phenotypic Variation between the Two Parents


In the determination of phenotypic variation of the 11 measured traits, Boll weight (BW), lint percentage (LP), fiber reflectance (FR), fiber yellowness (FY), spinning consistency index (SCI), and mature index (MI) were not used in analysis of the phenotypic variation between the parental lines due to the huge missing data throughout the phenotyping periods. The five traits used were fiber length (FL), fiber uniformity (FU), fiber strength (FS), fiber micronaire (FM) and fiber elongation (FE). FL, FU and FS showed significant differences between the parental lines. All traits were higher in CCRI35 than NH with exemption of FE which was higher in NH. In addition, no significant difference was noted between the two parental lines for fiber micronaire (FM) and fiber elongation (FE), Figure 1. However, there was a wide range of phenotypic variation among the F2:3 population, with respect to all the measured traits; BW, LP, FL, FU, FM, FS, FE, FR, FY, SCI and MI. Across the three environments, 2014, 2015 and 2016 all the traits showed normal segregation with normalized distribution patterns (Figure 2).




2.2. Correlation Analysis


To determine the correlations among different traits, a Pearson’s correlation coefficient on yield-related and fiber quality trait was done using “Performance Analytics” package with Chart correlation function in R software version 3.4.2 [21]. Significant and positive correlations were noted between: BW with FL, FU, FM, FS, FE, FR, and MI; LP with FM and MI;FL with FU, FS, FE, FR, and SCI; FU with FS, FE, and SCI; FM with MI; FS with FE and SCI; FE with SCI and finally FR with SCI. Negative correlations were observed between: LP with FR and SCI; FL with FM; FM with FR and SCI; FY with SCI and finally SCI with MI (Figure 3). However, no significant correlation was noted between the other traits.




2.3. ANOVA, Broad Sense Heritability and Phenotypic Analysis of Fiber Quality for the Two Parents and the F2:3 Population


The ANOVA result revealed significant differences between the genotypes, environment and their interactions for all the traits (Table 1).



The broad sense heritability was much higher for the fiber quality traits as opposed to yield-related traits. The highest broad sense heritability was observed with fiber micronaire (FM), with 92.4% while the lowest broad sense heritability was observed in fiber elongation (FE) with 61.8%.




2.4. GBS Genotyping, SNP Detection and Annotation


The genotypic data for the entire population was developed by use of the genotyping by sequencing (GBS) technique. Fifteen (15) individuals of each of the parents were sequenced and mapped on to the reference genome, which we obtained from the cotton research institute (available online: http://mascotton.njau.edu.cn). We obtained a total of 20,542,731 and 20,244,825 reads for CCRI35 and NH, respectively. An average of 80,372 and 112,128 SNPs were eventually identified for the female parent (CCRI35) and the male parent (NH), respectively, with an enzyme digestion efficiency of 99%. In genotyping the F2:3 population, the enzyme efficiency was slightly lower compared to its efficiency in the parents, with efficiency of 98.9%. The overall mapped reads for the population and the two parents were 1,507,193,217, with an average of 4,909,424.16 mapped reads per individual which correspond to nearly 180.889 Gb of clean bases. The clean reads obtained were equivalent to 80.42-fold haploid genome coverage of raw paired-end Illumina reads by sequencing whole genome shotgun (WGS) libraries of homozygous cv. “TM-1” compared to Li et al. [22] in their study which generated a total of 445.7 Gb of clean reads translating to about 181-fold haploid genome coverage of raw paired-end Illumina reads by sequencing whole genome shotgun (WGS) libraries of homozygous cv. “TM-1” with fragment lengths ranging from 250 bp to 40 kb. The average GC content of the sequences was 38.25%, with a Q20 score of 94.66%. The parental lines were genotypes such as AC and AA, in which the female parent CCRI35 was heterozygous while the male parent (NH) was homozygous. The total resulting SNPs markers were 103,381 markers which were used to carry out further analysis. We assessed the distribution of the alleles across the F2:3 population, and those markers which had a coverage threshold of 75% were filtered out, eventually, 34,090 markers were used. Markers with significant distortion (p < 0.001) were filtered and 6405 markers were retained with the purpose of determining bin markers.




2.5. Construction of the Linkage Maps


In the construction of the linkage groups, we used 6405 markers (Table S1) and phenotypic data of the F2:3 population developed from an intra-specific cross of two tetraploid upland cottons were utilized for developing the intra-specific linkage map. A total of 5178 GBS markers were used for mapping the F2:3 population, all the distorted markers were filtered out, the linkage groups were generated by the use of Join Map 4.0 [23]. Twenty six (26) LGs were generated from 5178 markers (Figure 4A and Figure S1, Table 2 and Table S2). Markers in linkage groups were ordered, rippled, and re-ordered according to pairwise recombination fractions, LOD scores (Logarithm of Odds) and linkage group length (Figure 4B). The 26 LGs were designated as A01 to A13 for At sub-genome and D01 to D13 for Dt sub-genome. The map generated had a map distance of 4768.098 cM, higher than the most current upland cotton linkage map with a map distance of 4450 cM [24]. The average distance between adjacent markers was 0.92 cM, the marker distances were narrowed in the map generated compared to earlier maps with 1.7 cM between adjacent markers [24]. The At sub-genome spanned 2611.43 cM, with a total of 3313 markers in the 13 linkage groups, with an average distance of 0.79 cM, while in Dt sub-genome, thirteen linkage groups comprised of 1865 markers spanning a distance of 2156.67 cM, with an average of 1.156 cM. The maximum gap between adjacent loci was 26.598 cM and 30.082 cM in At and Dt respectively, affirming the genome lengths between At and Dt [24] (Table 2). Chromosomes; A02, D02, A01, A05, A03, D01 and A10 exhibited higher marker loci with higher recombination frequency compared to the rest of the chromosomes such as D06 and D13 (Figure 4A,B). The chromosome with the highest marker loci was chromosome A02, 705 loci with map distance of 346.314 cM and an average distance of 0.49 cM, while the lowest marker loci was detected in chromosome D06 with only 16 markers, and a total length of 79.084 cM (Figure 4B).




2.6. Identification of Consistent and Clustering QTLs for Yield Related and Fiber Quality Traits


Thirty (30) QTLs were consistent among all the 110 QTLs identified for 11 traits in at least two environments (Table 3 and Figure S1). The 30 consistent QTLs were located on 16 chromosomes; A02 (2), A03 (1), A05 (2), A09 (3), A10 (2), A12 (1), D01 (1), D02 (1), D03 (4), D04 (1), D05 (2), D08 (2), D10 (2), D11 (1), D12 (4), and D13 (1). The distribution of the QTLs within the identified chromosomes, exhibited multiple position as illustrated in Figure S1 and Table S2 and Table 3. Of the 30 detected QTLs, 11 were localized on At sub-genome while the remaining 19 were mapped on the Dt sub-genome. The contributions of the parents toward the QTLs: 19 QTLs were linked to the good fiber quality parent (CCRI35) while only 11 QTLs were contributed by the high yield fiber parent (NH). Only16 chromosomes out of 26 were found to harbor consistent QTLs for ten traits except MI (Mature Index) for yield-related and fiber quality (Table S2 and Table 3).



Four types of gene actions were revealed by the genetic effects of which one gene exhibited dominant effects (De), four partial dominances (PD), 20 over dominances (OD) and five additive effects (Ae). OD was observed for most of the traits in response to yield-related and fiber quality traits.



The highest percentage of phenotypic variance explained by a single QTL was 15.45%. The highest percentage of phenotypic variance was noted in lint percentage (LP), with a range of 10.03–15.46%. The distribution of the QTLs within the identified chromosomes, exhibited multiple positions in some chromosomes; A02, A03, A09, A10, D01, D03, D05, D08, D12, and D13 as illustrated in Table S2 and Table 3 and Figure S1. Moreover, a total of two important clusters with more than three traits per region, with high broad sense heritability and high percentage of phenotypic variation were identified as D03 (c17) and D12 (c26), which we designated as cluster 1 and cluster 2, respectively (Table 3, Figure 5 and Figure 6).




2.7. The Gene Ontology Enrichment Analysis Based on QTL Clusters


Based on phenotype variation and QTL frequency, Dt-sub genome of the whole tetraploid chromosomes, harbored the highest number of stable QTLs with the highest level of phenotypic variation. In lieu of this, chromosome 17 (D03) and chromosome 26 (D12) had two clusters with four QTLS in each. Within the two cluster regions, we were able to mine the putative genes which could be having a role in fiber and yield-related traits. In cluster 1 (Chr17, D03), 136 genes were obtained, in which 14 were found to be highly expressed based on the RNA sequence while in cluster 2 (Chr26, D12), a total of 1280 genes were mined, out of which 153 were highly expressed at various stages of fiber development, 5 DPA, 10 DPA, 20 DPA and 25 DPA.



Moreover, in order to identify the set of the most robust candidate genes for yield-related traits and fiber quality; we mainly focused on the 153 highly expressed genes as obtained from “TM-1”_RNA-seq data (available online: http://mascotton.njau.edu.cn). Out of 153 highly expressed genes, five showed high level of expression across the various stages of fiber development, and therefore, the five genes could be the potential candidate genes with greater roles in the regulation of various fiber traits Table S3. Furthermore, all the five genes were localized in different positions of the genome: one gene (Gh_D03G0889) was located in cluster 1 (D03 (Chr 17)) within the marker mk12119_D03 (30,535,745 bp) to marker mk12123_D03 (30,566,883 bp), the trait localized in this region was fiber micronaire (FM); while the other three genes: Gh_D12G0093, Gh_D12G0410, and Gh_D12G0435 were localized in cluster 2 (D12 (c26)) within the marker mk19853 (101,319 bp) to marker mk17913_D12 (13,479,261 bp), the trait localized in the genome region was fiber strength (FS). Finally, the fifth gene, Gh_D12G0969 was also mapped in cluster 2 (D12 (Chr 26)), from marker mk1009 (18,989 bp) to marker mk17992_D12 (37,732,030 bp), the trait localized in that area was fiber yellowness (FY). Based on the expression profile and GO functional annotation, these five genes were therefore found to be the most robust and possibly the putative candidate genes for fiber quality and yield related traits (Table S3, Figure 7 and Figure 8).



Based on GO enrichment analysis, the five highly up regulated genes were as follows: Gh_D03G0889 was mainly involved in molecular function and biological processes, such as, up regulation of translational elongation (GO: 0003746), poly-A RNA binding (GO: 0003723), ribosome receptor activity (GO: 0043022), hypusine anabolism (GO: 0008612), translation elongation factor (GO: 0003746), regulation of translation elongation (GO: 0045901) and regulation of translation termination (GO: 0045905). The second gene, Gh_D12G0093 was involved only in molecular function, protein amino acid binding (GO: 0005515). The third gene, Gh_D12G0410 was involved in all the GO functional annotation, in biological process, it was mainly involved in translation elongation (GO: 0006414), molecular function, it was mainly involved in translation elongation factor activity (GO: 0003746) and protein binding (GO: 0005515) while in cellular component, it was found to be involved in eukaryotic translation elongation factor 1 complex (GO: 0005853). The fourth gene, Gh_D12G0435, had no functional annotation, however it was found to function in nucleoside diphosphate kinase activity and the last gene, Gh_D12G0969, functions both in biological process and molecular function, nucleoside diphosphate kinase activity (GO: 0004550), nucleoside diphosphate phosphorylation (GO: 0006165), GTP biosynthetic process (GO: 0006183), UTP biosynthetic process (GO: 0006228), CTP biosynthetic process (GO: 0006241) and ATP binding (GO: 0005524). In relation to gene action analysis, the five putative and robust genes with direct role in fiber development in cotton were all contributed by the female parent, CCRI35, known for its superior fiber quality (Table S3 and Figure 7 and Figure 8). The five genes had similar sequences based on phylogenetic tree analysis; the same was affirmed by their expression profile and all from Dt-sub genome. High quality fiber attributes are highly linked to the D-genome of the diploid cotton such as G. barbadense, and being tetraploid cotton originated from the polyploidization of the A and D genomes of the diploid cotton.





3. Discussion


The determination of stable QTLs for superior agronomical traits and the construction of a high-resolution map are crucial for MAS. Several intra-specific genetic maps have been generated and used for QTL detection related to fiber and yield components [2]. Even though these maps have been used, they are limited in scope and accuracy due to huge marker intervals and narrow genome coverage. The greatest impediment in the construction of a high-resolution map in intraspecific crosses is due to low rate of polymorphism within G. hirsutum and the presence of fixed homozygous genetic blocks [11,25]. Therefore, there is a need to find additional markers to fill in the gaps in the genetic map [11]. In this current research, a genetic map consisting of 5178 SNP markers obtained through the GBS technique was developed using a 277 F2:3 population derived from an intra-specific cross. In addition, the contrasting difference between the two parental lines used in this investigation could be explained based on inherent genetic characteristics. The male parent is known for superior agronomic traits such as early flowering and the ability to generate a high percentage of fruits with large size, while the female parent is known for superior fiber traits. Fiber length (FL), fiber uniformity (FU), fiber micronaire (FM), and fiber strength (FS) showed significant differences between the two parental lines. These traits were attributed to CCRI35, except FE which was linked to NH. There was no significant difference noted between the two parents for FE and FM. This result confirmed the good quality fiber trait of the female parent, CCRI35, compared to the male, NH.



In addition, there was a wide range of phenotypic variation among the F2:3 population, with respects to the following measured traits: BW, LP, FL, FU, FM, FS, FE, FR, FY, SCI, and MI. In the three environments, all traits exhibited normal segregation patterns, with equal distribution. The low absolute values for skewness and kurtosis showed that these traits had normal distribution. In addition, in the F2:3 population, the maximum phenotypic data values in all the variables were much higher than in CCRI35, the parent known for superior fiber traits, fiber length (FL), fiber uniformity (FU), fiber micronaire (FM), fiber strength (FS), and fiber elongation (FE). This finding showed that all traits were transgressively segregated in the F2:3 population. Previous research reported that transgression was the difference observed between the mapping parents of upland cotton [11,26,27,28].



Furthermore, positive correlations were noted between the following traits: boll weight (BW) with fiber length (FL), fiber uniformity (FU), fiber micronaire (FM), fiber strength (FS), fiber elongation (FE), fiber reflectance (FR), and mature index (MI); lint percentage (LP) with FM, FL with FU, FS, FE, and spinning consistency index (SCI); FU with FS, FE, and SCI; FM with MI; FS with FE, and SCI; FE with SCI and finally FR with SCI. However negative correlations were observed in the following traits: LP with FR, and SCI; FL with FM; FM with FR, and SCI; finally, SCI with MI. This result is consistent with those from Jamshed et al. [11] which showed that positive correlations were observed between: fiber elongation (FE), fiber length (FL), fiber strength (FS), and fiber uniformity (FU), with a significance level of 0.01. Moreover, FL and FS were both negatively correlated with fiber micronaire (FM). In this study, the correlations between FM with and FS were found to be negative but were not significant, which does not agree with previous findings. This deviation could be attributed to the population background used in this study.



It is known that broad sense heritability with high percentage is more useful and very easy to manipulate in MAS. Therefore, the extent of transmission of traits from the parents to the descendants or offspring was determined by level of heritability, hence traits with high broad sense heritability could be easier to manipulate [29]. The broad sense heritability was high for LP (82.65%), FM (91.68%), FR ((86.08%), FY (88.89%), SCI (87.47%), and moderate for BW (68.92%), FL (61.66%), FU (76.42%), FS (76.54%), FE (60.58%), and MI (76.61%). The lowest broad sense heritability was noted for fiber elongation (FE), 60.58%. Similar findings were observed with Jamshed et al. (2016) who found that fiber elongation had the lowest broad sense heritability (27%), whereas other fiber traits were higher, ranging from 80% (FU) to 93% (FL) [11,28].



A total map distance of 4768.098 cM was generated, higher than the most current linkage map with a map distance of the 4450 cM of cotton genome [24]. This is the densest intra-specific map developed in upland cotton. This map could be helpful for further studies in MAS, especially in fine mapping. The average distance of the adjacent markers was 0.92 cM. At sub-genome spanned 2611.43 cM, and consisted of 3313 markers with 13 LGs. The average marker distance in At sub-genome was 0.79 cM with a maximum gap of 26.598 cM of the adjacent markers. In Dt sub-genome, 13 LGs were assigned which comprised of 1865 markers spanning 2156.67 cM, with an average of 1.156 cM. The maximum gap was 30.082 cM between adjacent loci. Due to the nature of upland cotton genome, mapping QTLs not only for fiber as in this research but for other agronomic traits has been difficult. This is because of the narrow genetic background, which resulted in low diversity of alleles with a significant role in fiber quality traits between two given varieties [30]. Therefore, only few QTLs could be mapped based on two parent crossing populations, which has been verified by previous reports [3,6,31,32,33,34,35,36,37,38,39]. In this current study, a total of 110 QTLs were identified for 11 traits, but only 30 QTLs were consistent in at least two environments. The 30 consistent QTLs were located on 16 chromosomes; A02, A03, A05, A09, A10, A12, D01, D02, D03, D04, D05, D08, D10, D11, D12, and D13 with 2, 1, 2, 3, 2, 1, 1, 1, 4, 1, 2, 2, 2, 1, 4, and 1 QTL respectively. Of the 30 detected QTLs, 11 were located on At sub-genome while the remaining 19 were located on the Dt sub-genome. This finding is consistent with previous reports in which 58 QTLs were found on the At sub-genome, whereas 107 QTLs were localized on the Dt sub-genome [11]. Fifty-eight QTLs were located on the At sub-genome (Chr01–Chr13), and 73 QTLs on the Dt sub-genome [25]. These QTLs explained from 2.03 to 16.85% of phenotypic variation, with an average of 6.26% explained in all five fiber quality traits [40].



Most of the QTLs distributed in the cotton genome revealed the complexity of the cotton genome and arduousness of QTL mapping in cotton. Therefore, comparing our QTLs with other QTLs mapped from previous studies could be of great help in determining the reliability of the QTLs detected [41]. Up to now, 4268 QTLs from 140 publications of cotton have been documented in the collected Cotton QTL Database (available online: http://www2.cottonqtldb.org:8081/index). In this study, the GBS-SNP markers are unique and thus lack common identity with the SSR-based markers. However, five QTL clusters in this investigation were found to have a common bearing to those documented by Said et al. [42], which have been known as one of the strongest references in QTL mapping in recent years. The five QTL clusters were: cluster A07 was identical to c7-cluster-Gh × Gb-4:55–79 cM; cluster A08 had an approximate position of 4.81–110.81 cM, which was similar to c8-cluster-Gh-2:21–31 cM; cluster D01, had an approximate position of 2.21–139.31 cM, similar to c15-cluster-Gh-3:49–68 cM; cluster D02, had an approximate position of 0.01–206.11 cM, similar to c14-cluster-Gh-2:76–91 cM and lastly cluster D08, had an approximate position of 100.71–208.61 cM, nearby to c24-cluster-Gh-2:41–62 cM. The high correlation of the QTLs detected in this study to the previous finding, provides the opportunity for the utilization of these QTLs in MAS to improve the fiber quality of Upland cotton.



Gene Ontology enrichment analysis revealed five genes with very high expression and were linked to three fiber quality traits, FM, FS, and FY. Interestingly, the five genes took their alleles from the parental line known for superior fiber quality CCRI35. This result supported our study. Our findings provide an opportunity in the improvement for fiber quality especially fiber color (FY: fiber yellowness). Cotton fiber development occurs through various stages, namely fiber initiation, elongation, secondary cell wall formation and maturation [43]. Cotton fiber development is controlled by a multi-complex of genes interactions rather than a single gene effect [44,45]. GhD12G0969 was mainly found to have a functional role in phosphorylation; phosphorylation is a process mediated by protein kinases to activate critical cellular pathways such as metabolism, cell division and cell differentiation during initiation stages in cotton fiber development [46]. In addition, Gh_D12G0435 was found to be involved in kinase activity; protein kinase activity plays an important role in signal transduction through the phosphorylation process during cotton fiber development [47]. Therefore, the five highly up regulated genes could possibly be the key genes with major functional roles in fiber development and in turn superior quality as evident in the CCRI35, female parent.




4. Materials and Methods


4.1. Plant Materials, Growth Conditions and Trait Data Collection


The accessions used in this research were, Nan Dan Ba Di Da Hua in Chinese annotation, but for simplicity, we abbreviated the name as (NH), the male parent; it has moderate fiber quality traits but high yielding in fiber [48,49]. The female parent was Zhong35, also with the Chinese name, was then abbreviated as CCRI35; it is known for high fiber quality traits but with moderate yield [9]. The parental lines and 277 F2:3 population were evaluated for fiber quality traits and yield components in Anyang research station (36°100′ N, 114°350′ E), Henan province, Yellow River. The field experiment was carried out during summer periods in three consecutive years, 2014, 2015 and 2016. The experimental layout adopted, was complete randomized block design (CRBD) with three replicates. The plot sizes were 5 m long with row spacing of 0.75 m. Fiber quality and yield component traits were collected following the laid down scheme as described by [41]. Fully opened bolls in each sampled plant were collected within the middle region of the plant, 25 bolls were collected from each line for fiber quality and yielded component determination. The balls were ginned for the determination of lint percentage (LP), fiber length (FL), fiber uniformity (FU), fiber micronaire (FM), fiber elongation (FE), fiber strength (FS), fiber reflectance (FR), fiber yellowness [50], spanning consistency index (SCI) and mature index (MI) by the HVI 900 fiber testing system, which was done in our cotton fiber quality testing unit, cotton research institute, Anyang, China. The test conditions were set with temperature at 20 °C and relative humidity of 65%.




4.2. Sample Collection, Library Preparation, Sequencing and SNP Genotyping


4.2.1. DNA Extraction, Quantification and Quality Determination


Fresh leaf samples were obtained from each line, together with the two parents and immediately frozen in liquid nitrogen then stored under −80 °C before DNA extraction. DNA of the F2:3 populations of 277 individuals and 10 samples for individual parents was extracted by the CTAB method as described by Paterson et al. [51]. Each sample was then crushed separately in liquid nitrogen to fine powder, then immediately added to CTAB solution. In every 100 mg ground tissues, we added 500 µL of CTAB Buffer. The samples were then shaken for 15 min then centrifuged. The centrifuged mixture was then put in a water bath at 60 °C for 30 min. Then, samples were centrifuged for 5 min at 12,000 revolutions per minute (rpm) for 5 min. After centrifuging, the supernatant transferred to a new tube. Then, 5 µL of RNase solution was added to digest RNA and then incubated for 20 min at 32 °C. Equal amount in volume of chloroform/isoamyl alcohol (24:1) was added then shaken for 5 s before centrifuging the samples for 1 min to separate the phases. We pippeted the aqueous upper phase to a new tube; the method was then redone until the upper phase was clear. The upper clear phase was then pipetted into a new tube. DNA samples were later precipitated by adding 70% by volume of ice-cold isopropanol and incubated for 15 min at −20 °C. The condensed DNA samples were then centrifuged at 12,000 rpm for 10 min. The supernatant was then decanted and subsequently washed with 500 µL ice cold 70% ethanol twice then absolute alcohol. DNAs were later dissolved in 20 µL TE buffer (10 mM Tris, pH 8, 1 mM EDTA) [52]. The degradation and contamination of DNA was checked through 1% agarose gels. The purity of DNA was determined by using a Nano Photometer® spectrophotometer (IMPLEN, Westlake Village, CA, USA). The ratio of absorbance at 260 and 280 nm was used to assess the purity of DNA. The DNA samples with the ratio of ~1.8 were then qualified as pure [53]. The concentration of DNA was done by using Qubit® DNA Assay Kit in Qubit® 2.0 Fluorimeter (Life Technologies, Carlsbad, CA, USA). The Qubit® dsDNA HS (High Sensitivity) Assay Kits make DNA quantitation easy and accurate. The kits contain concentrated assay reagent, dilution buffer, and prediluted DNA standards. The reagents were mixed with the buffer solution, and then added 1–20 μL of each DNA samples.



The concentrations were read using the Qubit® Fluorometer (Life Technologies, Carlsbad, CA, USA); only the DNA samples with concentration range of 10 pg/µL to 100 ng/µL were finally used (available online: https://tools.thermofisher.com/content/sfs/manuals/Qubit_dsDNA_HS_Assay_UG.pdf).




4.2.2. GBS Library Preparation, Sequencing and SNP Genotyping


GBS is a low cost and an efficient method of large-scale genotyping, which is based on high-throughput sequencing but with a reduced-representation library (RRL). The following were step by step processes in GBS technique; firstly, we carried out a GBS pre-design experiment to test the accuracy of the GBS protocol and quality of the output data. The enzymes and sizes of restriction fragments were examined by using training data. Three basic criteria were followed: (a) the suitability of the number of tags to the project needs; (b) the homogenous distribution of the enzymatic tags throughout the examined sequences; (c) elimination of redundant tags (repeated tags must be avoided). This was to ensure the effectiveness and accuracy of data obtained from GBS reads; 50 bp was the selection criterion to ensure sequence depth uniformity.



Secondly, we constructed the GBS library using the pre-designed scheme. The genomic DNA of the F2:3 population were incubated at 37 °C with MseI Restriction Enzyme obtained from New England BioLabs (Ipswich, MA, USA), NEB, T4 DNA ligase and ATP. MseI Y adapter N containing barcode. Restriction-ligation reactions were activated at 65 °C, followed by digestion for additional restriction enzyme NlaIII at a temperature of 37 °C. The samples were then purified by using Agencourt AMPure XP (Beckman, Brea, CA, USA). Then carried out polymerization chain reaction (PCR) using the purified samples, Phusion Master Mix universal primer and index primer were used to add index, complete i5 and i7 sequence. The Agencourt AMPure XP (Beckman) was used to purify the PCR products, which were pooled then ran through 2% agarose gels. Fragments with 375–400 bp (with indexes and adaptors) in size were obtained by using a Gel Extraction Kit (Qiagen, Hilden, Germany). The isolated fragment products were then purified using Agencourt AMPure XP (Beckman), and finally diluted for sequencing.



GBS analysis was strictly carried out as outlined by Elshire et al. (2011) [54]; integrating 3 of 96-well plates across 288 barcodes for library preparation and sequencing. For SNP calling, the raw sequence data for the 277 F2:3 population together with the F1generation was processed through the TASSEL 3.0 Genotype By Sequencing (GBS) pipeline [55] using the Gossypium_hirsutum_v1.1.fa as the reference genome [56] which was obtained from Cotton research institute (available online: http://mascotton.njau.edu.cn/info/1054/1118.htm), for alignment and the Burrows–Wheeler Aligner (BWA) mem [57] with default parameters. The output consisted of variant call format (VCF) file version 4.1 [58] including single nucleotide polymorphisms (SNPs) present in at least 40% of the progeny and with a minor allele frequency (MAF) 0.1. Subsequently, the data in variant call format (VCF) was filtered using VCF tools version.1.12a [58] and TASSEL [59] versions 3.0 and 4.0. A total of 93,384 single nucleotide polymorphisms (SNPs) were identified in 277 F2:3 population by TASSEL 3.0, then a custom filtering process was applied for alignment. The filtering was based on maintaining sites with a minimum read depth of 6% and 75% completeness by site across progeny and by progeny across sites. Results were obtained as a TASSEL hapmap file.



Finally, using a custom perl script marker heterozygous in the F1generations and with a co-dominant segregation ratio of 1:2:1 among the F2:3 population were identified using a chi-squared (χ2) goodness-of-fit test at α ≤ 0.01. These were reconverted and imported in JoinMap® 4.1 for linkage group generation. A total of 26 LGs were obtained, each linkage group was assigned to its corresponding chromosome by using BLASTN-search (available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi), for the marker sequence.





4.3. Data Analysis and Linkage Map Construction


Analysis of variance (ANOVA) was performed by using field phenotype data of the three consecutive seasons 2014, 2015, 2016, and the combine analysis (cb). A mixed procedure was used; the genotypes and the environments were fixed as factors in order to detect the heritability [60]. Post hoc test (Turkey’s) to compare means was done [60]. The broad-sense heritability percentage, Hb (%), was calculated for each trait using the formula described by [61].


H = σ2G/σ2G + (σ2e/r)











With σ2G is the genotypic variance; σ2e: phenotypic variance and r: replication.



Most of the data were analyzed using R software version 3.4.2 (R Foundation for Statistical Computing, Vienna, Austria) [21]. Markers were ordered, rippled, and re-ordered according to pairwise recombination fractions, LOD scores and linkage group length [62]. Linkage group analyses were conducted using Join Map 4.0 [23] with a recombination frequency of 0.40 and a logarithm of odds (LOD) score of 2.5 for the F2:3 population. The Kosambi mapping function was employed in the conversion of the recombination frequencies to map distances. Each data point represented the mean of three replications. Fiber quality and yield-related traits such as boll weight (BW), lint percentage (LP), fiber length (FL), fiber uniformity (FU), fiber micronaire (FM), fiber strength (FS), fiber elongation (FE), fiber reflectance (FR), fiber yellowness (FY), spinning consistency index (SCI) and mature index (MI) were used to conduct QTL analysis. The quantitative trait loci (QTLs) were detected using composite interval mapping (CIM) [63] by WinQTL Cartographer version 2.5 [20]. In the CIM mapping method, version 6, forward–reverse regression method with 1 cM walking speed, a probability into and out of the model of p = 0.01 and window size set at 10 cM. The LOD [64] threshold value was determined by 1000 permutation tests for all traits and was used to declare the significant QTLs with a significance level of p = 0.05. In addition, QTLs with LOD threshold of 2.5 in more than one environment were considered as common QTLs based on the explanation by Lander and Kruglyak [65].



QTL nomenclature was done based on the description by Liang et al. [2]. The proportion of observed phenotypic variance explained by each QTL was estimated by the coefficient of determination R2 (%) as a percentage. The additive and dominance effects from QTL cartographer results were used to calculate genetic effects (|d/a|). The results were used to classify the QTL as additive effect (Ae) (0–0.20), partial dominant (PD) (0.21–0.80), dominant effect (De) (0.81–1.20) and over dominant (OD) >1.20 according to Stuber et al. (1987) [66]. The graphic presentation of the linkage group and QTLs marked were created by R software version 3.4.2 [21] and Map Chart 2.2 [67], respectively




4.4. Gene Mining and Expression Analysis


In this study, only segments of linkage groups associated with significantly detected QTLs were presented. The detected consistent QTLs were used to identify the crucial candidate genes for fiber yield and fiber quality-related traits. The genes identified were searched through the available resources [68] (available online: https://cottonfgd.org). The physical position of the GBS-SNP markers flanking major QTLs for fiber quality and yield-related traits were used to find the gene located in each QTL region. The function of the identified genes was determined through gene annotation. Furthermore, the expression profile of the candidate genes was analyzed by mapping it in the “TM-1”_RNA-seq transcriptome data of cotton (available online: https://cottonfgd.org). The expression values for each gene mined were used to generate the heat map using R-software script [21].




4.5. The Gene Ontology Enrichment Analysis BaseD on QTL Clusters


In order to determine the functions of the identified genes, we carried out gene ontology enrichment analysis through online software, Blast2GO (available online: https://www.blast2go.com/). Gene ontology describes the genes in three functional annotations, namely cellular component (CC, biological process (BP) and molecular functions (MF); three functions provide information on the possible roles played by the genes in the plant; of interest were the genes responsible or fiber qualities and yield-related traits. The choice of genes used for GO analysis was based on the genes mined from the two clusters, cluster 1 (D03) and 2 (D12), which had high percentage of phenotypic variation (PV) and heritability (Hb).





5. Conclusions


A genetic linkage map comprising of 5178 SNP markers, obtained by the GBS genotyping method, was generated using a 277 F2:3 population derived from an intra-specific cross of two tetraploid upland cotton. The map constructed in this study is the highest dense genetic map ever developed from an intra-specific population of the tetraploid upland cotton. The average distance of 0.92 cM was observed between adjacent markers. A total of 110 QTLs were obtained for 11 traits, however, only 30 QTLs were consistent in more than one environment. In addition, we identified 1709 genes that were found in the two main hot spot regions, named as cluster 1 and 2, with four QTLs in each. Out of the 1709 genes, 153 genes exhibited higher expression levels while the rest showed lower expression levels in all stages of fiber development. We further identified five key genes: Gh_D03G0889, Gh_D12G0093, Gh_D12G0969, Gh_D12G0410, and Gh_D12G0435 to be the candidate genes involved in fiber development. This research provides the very first foundation in which future molecular work can be done, such as cloning of the identified genes and/or saturation of the genes to boost the current elite cultivated cotton cultivars.
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Figure 1. Phenotypic analysis of the two parents for fiber quality and yield-related traits; (A) Fiber Length (mm); (B) Fiber Uniformity (%); (C) Fiber Micronaire (Unit), (D) Fiber Strength (cN/tex); (E) Fiber Elongation (%).CCRI35: female parent, NH: male parent. 
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Figure 2. Frequency distribution of the 11 traits for fiber quality traits in F2:3, (A) Boll Weight (g); (B) Lint Percentage (%); (C) Fiber Length (mm); (D) Fiber Uniformity (%); (E) Fiber Micronaire (Unit); (F) Fiber Strength (cN/tex); (G) Fiber Elongation (%); (H) Fiber Reflectance; (I) Fiber Yellowness; (J) Spinning Consistency Index; (K) Mature Index. 
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Figure 3. Pearson’s correlation of the 11 traits for the F2:3 in three environments. *, **, ***: significant levels of 0.5, 0.01 and 0.001 respectively. BW: Boll weight; LP: lint percentage; FL: fiber length; FU: fiber uniformity; FM: fiber micronaire; FS: fiber strength; FE: fiber elongation; FR: fiber reflectance; FY: fiber yellowness; SCI: spinning consistency index; MI: mature index. For the units, see in Figure 1 and Figure 2. 
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Figure 4. (A) Genetic linkage map constructed using the F2:3 Population; (B) Plot of estimated recombination fractions of all markers used in the F2:3 population. X and Y axis are the markers and Z is the linkage groups (LGs). 
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Figure 5. Clustered QTLs identified in D03 (c17) of yield-related and fiber quality traits. Bars and lines on the right-hand side of the linkage groups show the QTL likelihood intervals. Map distances in centiMorgan (cM) are indicated on the left-hand side of the linkage groups. For trait meanings, see Figure 1 or Figure 2, *** asterisk means the QTL is consistent. 
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Figure 6. Clustered QTLs identified in D12 (c26) of yield-related and fiber quality traits. Bars and lines on the right-hand side of the linkage groups show the QTL likelihood intervals. Map distances in centiMorgan (cM) are indicated on the left-hand side of the linkage groups. For trait meanings, see Figure 1 or Figure 2, *** asterisk means the QTL is consistent. 
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Figure 7. (A) Candidate genes involved in yield and/or fiber quality traits in this study; (B) phylogenetic tree analysis of the five involved genes in yield related and fiber quality traits of upland cotton. 
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Figure 8. The five genes with highest expression in different stages of fiber development. x axis: QTLs for fiber Quality; CCRI35: good fiber quality parental line; y axis: fiber DPA (Log10(FPKM)); FM: fiber micronaire (%); FS: fiber strength (cN/tex); FY: fiber yellowness; Gh_D03 or Gh_D12 are genes identified with high expression and involved in fiber development; cb: combine analysis; 0 <Ae (additive effect) <0.20; OD (over dominance) > 1.20; (A–D) are respectively fiber expression at 5, 10, 20 and 25 DPA. For trait meanings, see Figure 1 or Figure 2. 
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Table 1. ANOVA, broad sense heritability and phenotypic analysis of fiber quality and yield related traits for the two parents and the F2:3 population.
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Trait

	
Source

	
DF

	
SS

	
MS

	
F

	
Pr > F

	
Hb (%)

	
P1

	
P2

	
P1 − P2

	
F2:3




	
Mean

	
SD

	
Max

	
Min

	
Skew

	
Kurt






	
BW

	
e

	
3

	
327.4

	
109.1

	
1.9 × 1010

	
<0.0001

	
67.5

	
-

	
-

	

	
4.77

	
0.73

	
7.9

	
1.8

	
−0.16

	
0.94




	
g

	
276

	
728.6

	
2.6

	
4.59 × 1008

	
<0.0001




	
g*e

	
828

	
710.5

	
0.9

	
1.49 × 1008

	
<0.0001




	
LP

	
e

	
3

	
1856.7

	
619

	
9.5 × 1010

	
<0.0001

	
82.1

	
-

	
-

	

	
35.97

	
3.71

	
54

	
16.08

	
0.09

	
1.2




	
g

	
276

	
28,244

	
102.3

	
1.57 × 1010

	
<0.0001




	
g*e

	
828

	
15,200.7

	
18.4

	
2.82 × 1009

	
<0.0001




	
FL

	
e

	
3

	
1561.4

	
521

	
9.23 × 1024

	
<0.0001

	
63.6

	
24.12

	
21.12

	
3

	
26.46

	
1.2

	
32.2

	
21.55

	
0.94

	
0.55




	
g

	
276

	
1530.1

	
5.5

	
9.83 × 1022

	
<0.0001




	
g*e

	
828

	
1670.7

	
2

	
3.58 × 1022

	
<0.0001




	
FU

	
e

	
3

	
1200.6

	
400

	
9 × 1023

	
<0.0001

	
77.1

	
87.23

	
80.6

	
6.63

	
85.14

	
1.69

	
89.3

	
77.8

	
−0.75

	
0.12




	
g

	
276

	
4844.2

	
17.6

	
3.95 × 1022

	
<0.0001




	
g*e

	
828

	
3321.3

	
4

	
9.02 × 1021

	
<0.0001




	
FM

	
e

	
3

	
12.700

	
4

	
2.19 × 1025

	
<0.0001

	
92.4

	
5.61

	
5.32

	
0.29

	
4.57

	
0.72

	
6.75

	
2.2

	
−0.19

	
−0.15




	
g

	
276

	
1406.5

	
5.1

	
2.63 × 1025

	
<0.0001




	
g*e

	
828

	
320.3

	
0.4

	
1.99 × 1024

	
<0.0001




	
FS

	
e

	
3

	
2038.7

	
680

	
3.37 × 1025

	
<0.0001

	
76.8

	
28.97

	
25.18

	
3.79

	
26.19

	
2.27

	
36.5

	
21

	
0.76

	
0.75




	
g

	
276

	
8851.8

	
32.1

	
1.59 × 1024

	
<0.0001




	
g*e

	
828

	
6155.4

	
7.4

	
3.69 × 1023

	
<0.0001




	
FE

	
e

	
3

	
10.800

	
4

	
2.15 × 1024

	
<0.0001

	
61.8

	
6.83

	
6.87

	
−0.04

	
6.51

	
0.3

	
8.1

	
4.5

	
−1.02

	
0.02




	
g

	
276

	
137.1

	
0.5

	
2.96 × 1023

	
<0.0001




	
g*e

	
828

	
157.5

	
0.2

	
1.13 × 1023

	
<0.0001




	
FR

	
e

	
3

	
335.500

	
112

	
5.58 × 1022

	
<0.0001

	
84.8

	
-

	
-

	

	
63.23

	
2.27

	
73.6

	
58.7

	
0.9

	
1.22




	
g

	
276

	
11,577.9

	
41.9

	
2.09 × 1022

	
<0.0001




	
g*e

	
828

	
5282.3

	
6.4

	
3.18 × 1021

	
<0.0001




	
FY

	
e

	
3

	
38.2

	
12.7

	
8.03 × 1023

	
<0.0001

	
86.3

	
-

	
-

	

	
7.83

	
0.61

	
9.6

	
5.5

	
−0.32

	
1.19




	
g

	
276

	
845.6

	
3.1

	
1.93 × 1023

	
<0.0001




	
g*e

	
828

	
348

	
0.4

	
2.65 × 1022

	
<0.0001




	
SCI

	
e

	
3

	
24,493.6

	
8164.5

	
1.39 × 1025

	
<0.0001

	
86.6

	
-

	
-

	

	
122.26

	
11.57

	
167

	
82

	
0.09

	
0.97




	
g

	
276

	
299,967

	
1086.8

	
1.85 × 1024

	
<0.0001




	
g*e

	
828

	
120,302.4

	
145.3

	
2.48 × 1023

	
<0.0001




	
MI

	
e

	
3

	
0.5

	
0.2

	
6.73 × 1025

	
<0.0001

	
66.7

	
-

	
-

	

	
0.81

	
0.02

	
0.87

	
0.75

	
−0.19

	
−0.79




	
g

	
276

	
0.7

	
0

	
1.18 × 1024

	
<0.0001




	
g*e

	
828

	
0.5

	
0

	
2.77 × 1023

	
<0.0001








P1 = CCRI35: parental female with good fiber quality traits; P2 = NH: good yield fiber; DF: degree of freedom; SS: sum square; MS: mean square; F: F value; Hb (%): Broad sense heritability percentage; SD: Standard deviation; Min: Minimum; Max: Maximum; Skew: Skewness; Kurt: Kurtosis, (<0.0001): means significant at level p < 0.001.
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Table 2. Genomic distributions of SNPs markers.
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	Group
	Marker Number
	Map Length (cM)
	Av Distance (cM)
	Max Gap (cM)
	<10 cM
	>10 cM
	Ratio





	A01(c1)
	448
	146.704
	0.33
	8.505
	447
	0
	1



	A02(c2)
	705
	346.314
	0.49
	17.848
	699
	5
	0.99



	A03(c3)
	323
	213.937
	0.66
	17.145
	319
	3
	0.99



	A04(c4)
	106
	203.891
	1.92
	26.598
	99
	6
	0.93



	A05(c5)
	378
	385.092
	1.02
	21.198
	365
	12
	0.97



	A06(c6)
	58
	73.063
	1.26
	15.032
	54
	3
	0.93



	A07(c7)
	279
	205.892
	0.74
	11.622
	276
	2
	0.99



	A08(c8)
	69
	112.137
	1.63
	18.894
	65
	3
	0.94



	A09(c9)
	98
	138.501
	1.41
	19.234
	95
	2
	0.97



	A10(c10)
	292
	202.134
	0.69
	10.551
	287
	4
	0.98



	A11(c11)
	51
	70.548
	1.38
	23.241
	49
	1
	0.96



	A12(c12)
	244
	309.608
	1.27
	19.593
	236
	7
	0.97



	A13(c13)
	262
	203.61
	0.78
	17.425
	256
	5
	0.98



	Subtotal At
	3313
	2611.43
	0.79
	26.598
	3247
	53
	0.98



	D01(c15)
	319
	144.092
	0.45
	6.351
	318
	0
	1



	D02(c14)
	454
	313.268
	0.69
	14.541
	450
	3
	0.99



	D03(c17)
	133
	170.555
	1.28
	14.993
	131
	1
	0.98



	D04(c22)
	114
	136.228
	1.19
	20.275
	110
	3
	0.96



	D05(c19)
	153
	218.788
	1.43
	27.062
	148
	4
	0.97



	D06(c25)
	16
	79.084
	4.94
	22.389
	12
	3
	0.75



	D07(c16)
	169
	235.366
	1.39
	26.041
	161
	7
	0.95



	D08(c24)
	118
	226.688
	1.92
	20.878
	109
	8
	0.92



	D09(c23)
	40
	136.744
	3.42
	14.48
	33
	6
	0.83



	D10(c20)
	80
	129.051
	1.61
	20.539
	76
	3
	0.95



	D11(c21)
	98
	89.782
	0.92
	27.564
	95
	2
	0.97



	D12(c26)
	143
	194.735
	1.36
	30.082
	135
	7
	0.94



	D13(c18)
	28
	82.286
	2.94
	20.917
	25
	2
	0.89



	Subtotal Dt
	1865
	2156.67
	1.156
	30.082
	1803
	49
	0.97



	TOTAL (At + Dt)
	5178
	4768.1
	0.92
	30.082
	5050
	102
	0.98







Ratio: number of markers less than (<) 10 cM divided by total number of markers within chromosome. Av: Average; Max: Maximum.
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Table 3. Consistent QTLs for fiber quality and yield related traits identified in this study.
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Trait

	
QTL

	
Chr

	
Start Marker

	
End Marker

	
Start Marker (bp)

	
End Marker (bp)

	
Start Marker (cM)

	
End Marker (cM)

	
Position (cM)

	
LOD

	
Ae

	
De

	
|d/a|

	
GA

	
R2 (%)

	
DPE






	
FS

	
qFS-A02_15

	
A02

	
mk1761_A02

	
mk1778_A02

	
80,488,799

	
81,766,125

	
0

	
17.848

	
5.01

	
3.761129

	
−0.0052

	
1.5095

	
290.28846

	
OD

	
0.5295

	
NH




	
qFS-A02_cb

	
A02

	
mk1761_A02

	
mk1778_A02

	
80,488,799

	
81,766,125

	
0

	
17.848

	
7.01

	
2.903366

	
0.0292

	
0.5368

	
18.383562

	
OD

	
0.0421

	
CCRI35




	
qFS-A02_cb

	
A02

	
mk1020_A02

	
mk1022_A02

	
827,449

	
909,242

	
337.304

	
346.314

	
337.11

	
5.507058

	
0.2417

	
0.1944

	
0.8043029

	
A

	
5.6762

	
CCRI35




	
SCI

	
qSCI-A02_15

	
A02

	
mk1761_A02

	
mk1778_A02

	
80,488,799

	
8,176,6125

	
0

	
17.848

	
1.01

	
3.268187

	
−0.7383

	
9.0221

	
12.2201

	
OD

	
1.2775

	
NH




	
qSCI-A02_cb

	
A02

	
mk1761_A02

	
mk1778_A02

	
80,488,799

	
81,766,125

	
0

	
17.848

	
1.01

	
2.740499

	
−0.4142

	
5.1274

	
12.379044

	
OD

	
0.9695

	
NH




	
qSCI-A02_cb

	
A02

	
mk1018_A02

	
mk1019_A02

	
822,030

	
827,340

	
334.259

	
337.053

	
336.31

	
3.27253

	
0.9943

	
4.7528

	
4.7800463

	
OD

	
0.277

	
CCRI35




	
FL

	
qFL-A03_14

	
A03

	
mk1922_A03

	
mk1927_A03

	
1,863,137

	
1,863,215

	
194.163

	
194.228

	
194.21

	
2.54506

	
0.1746

	
0.5337

	
3.056701

	
OD

	
0.4959

	
CCRI35




	
qFL-A03_15

	
A03

	
mk1989_A03

	
mk2007_A03

	
2,881,061

	
2,936,448

	
168.853

	
169.141

	
168.91

	
2.599349

	
0.276

	
0.1484

	
0.5376812

	
PD

	
3.0929

	
CCRI35




	
qFL-A03_cb

	
A03

	
mk11099

	
mk2084_A03

	
31,386

	
666,6259

	
94.16

	
102.466

	
102.21

	
3.565689

	
0.148

	
0.3166

	
2.1391892

	
OD

	
1.445

	
CCRI35




	
qFL-A03_cb

	
A03

	
mk2085_A03

	
mk2087_A03

	
6,666,473

	
6,736,164

	
130.379

	
130.946

	
130.41

	
2.723127

	
0.1219

	
0.2515

	
2.0631665

	
OD

	
1.3067

	
CCRI35




	
FM

	
qFM-A05_15

	
A05

	
mk2943_A05

	
mk2952_A05

	
21,550,988

	
23,173,778

	
195.463

	
206.855

	
197.51

	
2.927253

	
0.1377

	
−0.2204

	
1.600581

	
OD

	
4.6742

	
CCRI35




	
qFM-A05_cb

	
A05

	
mk2943_A05

	
mk2952_A05

	
21,550,988

	
23,173,778

	
195.463

	
206.855

	
197.51

	
3.040174

	
0.0684

	
−0.0932

	
1.3625731

	
OD

	
5.0485

	
CCRI35




	
LP

	
qLP-A05_14

	
A05

	
mk2943_A05

	
mk2952_A05

	
21,550,988

	
23,173,778

	
195.463

	
206.855

	
195.51

	
4.76873

	
0.9516

	
−0.8514

	
0.8947037

	
D

	
11.2688

	
CCRI35




	
qLP-A05_cb

	
A05

	
mk2943_A05

	
mk2952_A05

	
21,550,988

	
23,173,778

	
195.463

	
206.855

	
195.51

	
2.673181

	
0.4032

	
−1.1877

	
2.9456845

	
OD

	
3.4428

	
CCRI35




	
BW

	
qBW-A09_15

	
A09

	
mk6774_A09

	
mk6775_A09

	
60,948,395

	
62,054,979

	
7.252

	
15.619

	
15.61

	
2.599349

	
0.1034

	
0.335

	
3.2398453

	
OD

	
0.2668

	
CCRI35




	
qBW-A09_15

	
A09

	
mk6764_A09

	
mk6772_A09

	
59,295,756

	
59,503,467

	
25.198

	
26.005

	
25.21

	
2.744843

	
0.0794

	
0.3894

	
4.9042821

	
OD

	
0.0173

	
CCRI35




	
qBW-A09_cb

	
A09

	
mk6764_A09

	
mk6772_A09

	
59,295,756

	
59,503,467

	
25.198

	
26.005

	
25.21

	
2.831705

	
0.004

	
0.2838

	
70.95

	
OD

	
0.6913

	
CCRI35




	
FU

	
qFU-A09_16

	
A09

	
mk6410_A09

	
mk6462_A09

	
4,242,475

	
7,339,105

	
115.638

	
134.872

	
117.71

	
2.62975

	
−0.0221

	
0.6762

	
30.597285

	
OD

	
0.1419

	
NH




	
qFU-A09_cb

	
A09

	
mk8762

	
mk6732_A09

	
13,222

	
55,126,525

	
35.486

	
44.202

	
40.51

	
2.586319

	
−0.0343

	
0.6945

	
20.247813

	
OD

	
1.3251

	
NH




	
SCI

	
qSCI-A09_15

	
A09

	
mk18838

	
mk6517_A09

	
64,093

	
33,530,295

	
79.726

	
79.934

	
79.91

	
4.60152

	
2.2915

	
9.0716

	
3.9588043

	
OD

	
0.5063

	
CCRI35




	
qSCI-A09_15

	
A09

	
mk6528_A09

	
mk6531_A09

	
37,420,628

	
37,694,390

	
87.803

	
91.571

	
88.81

	
3.400651

	
2.6194

	
7.2082

	
2.7518516

	
OD

	
1.1267

	
CCRI35




	
qSCI-A09_cb

	
A09

	
mk6491_A09

	
mk6493_A09

	
15,408,937

	
17,834,574

	
73.597

	
73.647

	
73.61

	
2.875136

	
3.6441

	
4.9294

	
1.3527071

	
OD

	
0.804

	
CCRI35




	
qSCI-A09_cb

	
A09

	
mk18838

	
mk6517_A09

	
64,093

	
33,530,295

	
79.726

	
79.934

	
79.91

	
3.413681

	
0.7693

	
5.3779

	
6.9906408

	
OD

	
0.0048

	
CCRI35




	
qSCI-A09_cb

	
A09

	
mk6528_A09

	
mk6531_A09

	
37,420,628

	
37,694,390

	
87.803

	
91.571

	
88.81

	
2.686211

	
1.0069

	
4.6458

	
4.6139637

	
OD

	
0.1298

	
CCRI35




	
FM

	
qFM-A10_15

	
A10

	
mk7018_A10

	
mk7020_A10

	
15,617,318

	
15,617,342

	
165.83

	
165.941

	
165.91

	
2.421281

	
0.0767

	
−0.322

	
4.1981747

	
OD

	
2.1861

	
CCRI35




	
qFM-A10_15

	
A10

	
mk11965

	
mk6991_A10

	
8852

	
12,815,805

	
171.292

	
171.66

	
171.31

	
3.339848

	
0.0919

	
−0.3583

	
3.898803

	
OD

	
3.1176

	
CCRI35




	
qFM-A10_cb

	
A10

	
mk18875

	
mk18876

	
355

	
389

	
58.679

	
59.519

	
58.71

	
2.912052

	
0.0306

	
−0.1769

	
5.7810458

	
OD

	
2.1098

	
CCRI35




	
qFM-A10_cb

	
A10

	
mk11965

	
mk6991_A10

	
8852

	
12,815,805

	
171.292

	
171.66

	
171.31

	
2.779587

	
0.0402

	
−0.1538

	
3.8258706

	
OD

	
2.621

	
CCRI35




	
FS

	
qFS-A10_16

	
A10

	
mk19550

	
mk7479_A10

	
62,129

	
69,679,150

	
93.736

	
94.208

	
93.81

	
2.877307

	
−0.4206

	
0.0644

	
0.1531146

	
A

	
7.1603

	
NH




	
qFS-A10_16

	
A10

	
MulMa189-m_A10

	
mk7438_A10

	
65,789,277

	
67,378,405

	
106.543

	
109.182

	
106.81

	
3.170467

	
0.0048

	
0.3517

	
73.270833

	
OD

	
0.4704

	
CCRI35




	
qFS-A10_cb

	
A10

	
mk6982_A10

	
mk6986_A10

	
1,111,5569

	
12,645,781

	
177.095

	
185.191

	
177.11

	
3.676439

	
−0.1987

	
0.1727

	
0.8691495

	
D

	
6.206

	
NH




	
FE

	
qFE-A12_14

	
A12

	
mk9173_A12

	
mk9187_A12

	
79,355,806

	
81,262,301

	
23.53

	
38.305

	
31.51

	
2.54506

	
−0.0177

	
0.1178

	
6.6553672

	
OD

	
3.0701

	
NH




	
qFE-A12_16

	
A12

	
mk8958_A12

	
mk8961_A12

	
59,776,633

	
6,102,5182

	
161.739

	
173.999

	
163.81

	
2.838219

	
0.0006

	
0.0458

	
76.333333

	
OD

	
0.0468

	
CCRI35




	
FE

	
qFE-D01_15

	
D01

	
mk10708_D01

	
mk10809_D01

	
42,734,090

	
44,178,280

	
105.061

	
106.117

	
106.11

	
2.551574

	
−0.0001

	
0.1905

	
1905

	
OD

	
0.4005

	
NH




	
qFE-D01_cb

	
D01

	
mk10832_D01

	
MulMa266-m_D01

	
46,916,080

	
51,199,148

	
77.706

	
82.287

	
79.71

	
4.141151

	
0.0444

	
0.0955

	
2.1509009

	
OD

	
0.7434

	
CCRI35




	
qFE-D01_cb

	
D01

	
mk10708_D01

	
mk10709_D01

	
42,734,090

	
42,734,155

	
106.1

	
106.117

	
106.11

	
2.998914

	
0.0009

	
0.0961

	
106.77778

	
OD

	
0.4425

	
CCRI35




	
SCI

	
qSCI-D02_15

	
D02

	
mk11587_D02

	
mk11605_D02

	
51,060,053

	
5,122,5737

	
120.178

	
120.621

	
120.61

	
2.690554

	
1.4485

	
−6.7494

	
4.6595789

	
OD

	
2.84

	
CCRI35




	
qSCI-D02_cb

	
D02

	
mk11595_D02

	
mk11603_D02

	
51,118,850

	
51,193,929

	
115.939

	
116.818

	
116.01

	
2.521173

	
0.2862

	
−4.485

	
15.67086

	
OD

	
1.8379

	
CCRI35




	
BW

	
qBW-D03_15

	
D03

	
mk12041_D03

	
mk12042_D03

	
2,290,601

	
2,894,288

	
22.573

	
37.566

	
30.61

	
2.644951

	
−0.0899

	
0.4957

	
5.5139043

	
OD

	
2.9343

	
NH




	
qBW-D03_16

	
D03

	
mk12031_D03

	
mk12032_D03

	
1,002,704

	
1,037,917

	
3.775

	
9.172

	
3.81

	
2.870793

	
0.0006

	
0.4782

	
797

	
OD

	
0.7748

	
CCRI35




	
FM

	
qFM-D03_15

	
D03

	
mk12142_D03

	
mk12159_D03

	
36,697,656

	
3,861,6587

	
125.137

	
134.584

	
130.21

	
7.52443

	
0.2667

	
0.1477

	
0.5538058

	
PD

	
8.7707

	
CCRI35




	
qFM-D03_15

	
D03

	
mk12152_D03

	
mk12159_D03

	
37,665,167

	
38,616,587

	
134.584

	
141.665

	
136.01

	
7.685125

	
0.2661

	
0.0664

	
0.2495303

	
PD

	
10.0325

	
CCRI35




	
qFM-D03_15

	
D03

	
mk12153_D03

	
mk12158_D03

	
37,668,262

	
37,938,158

	
143.823

	
145.337

	
144.81

	
6.304017

	
0.2329

	
0.0922

	
0.3958781

	
PD

	
7.4939

	
CCRI35




	
qFM-D03_cb

	
D03

	
mk12085_D03

	
mk12086_D03

	
25,573,334

	
25,700,132

	
87.285

	
87.516

	
87.31

	
4.95114

	
0.0975

	
0.0212

	
0.2174359

	
PD

	
6.3845

	
CCRI35




	
qFM-D03_cb

	
D03

	
mk12119_D03

	
mk12123_D03

	
30,535,745

	
30,566,883

	
95.393

	
95.724

	
95.41

	
6.644951

	
0.1133

	
0.0204

	
0.180053

	
A

	
8.5806

	
CCRI35




	
qFM-D03_cb

	
D03

	
mk12108_D03

	
mk12115_D03

	
2,763,8133

	
29,511,299

	
101.991

	
103.218

	
101.31

	
4.827362

	
0.095

	
0.061

	
0.6421053

	
PD

	
5.0024

	
CCRI35




	
FY

	
qFY-D03_15

	
D03

	
mk12142_D03

	
mk12159_D03

	
36,697,656

	
38,616,587

	
125.137

	
134.584

	
130.21

	
2.610206

	
0.1828

	
−0.0298

	
0.1630197

	
A

	
4.7288

	
CCRI35




	
qFY-D03_15

	
D03

	
mk12154_D03

	
mk12155_D03

	
37,676,414

	
37,682,981

	
141.665

	
142.221

	
141.71

	
3.806732

	
0.184

	
−0.1844

	
1.0021739

	
D

	
6.9294

	
CCRI35




	
qFY-D03_15

	
D03

	
mk12158_D03

	
mk12161_D03

	
37,938,158

	
39,407,242

	
145.337

	
150.198

	
148.31

	
4.210641

	
0.2038

	
−0.2276

	
1.1167812

	
D

	
8.0817

	
CCRI35




	
qFY-D03_cb

	
D03

	
mk12109_D03

	
mk12111_D03

	
27,707,667

	
29,136,194

	
105.804

	
106.491

	
105.81

	
2.571118

	
0.0879

	
−0.0931

	
1.0591581

	
D

	
4.7115

	
CCRI35




	
LP

	
qLP-D03_15

	
D03

	
mk12142_D03

	
mk12159_D03

	
36,697,656

	
38,616,587

	
125.137

	
134.584

	
129.21

	
9.233442

	
1.7674

	
−0.2922

	
0.1653276

	
A

	
15.4584

	
CCRI35




	
qLP-D03_15

	
D03

	
mk12152_D03

	
mk12160_D03

	
37,665,167

	
38,832,736

	
134.986

	
141.665

	
138.01

	
8.214984

	
1.6425

	
−0.399

	
0.2429224

	
PD

	
13.9321

	
CCRI35




	
qLP-D03_16

	
D03

	
mk12152_D03

	
mk12160_D03

	
37,665,167

	
38,832,736

	
134.986

	
141.665

	
138.01

	
5.439739

	
1.4767

	
−0.9737

	
0.6593756

	
PD

	
9.8343

	
CCRI35




	
qLP-D03_16

	
D03

	
mk12153_D03

	
mk12158_D03

	
37,668,262

	
37,938,158

	
143.823

	
145.337

	
144.81

	
4.621064

	
1.2806

	
−1.0766

	
0.8406997

	
D

	
7.9495

	
CCRI35




	
qLP-D03_cb

	
D03

	
mk12152_D03

	
mk12160_D03

	
37,665,167

	
38,832,736

	
134.986

	
141.665

	
139.01

	
8.169381

	
1.2356

	
−0.1607

	
0.1300583

	
A

	
13.3867

	
CCRI35




	
qLP-D03_cb

	
D03

	
mk12158_D03

	
mk12161_D03

	
37,938,158

	
39,407,242

	
145.337

	
150.198

	
147.31

	
7.090119

	
1.1317

	
−0.3152

	
0.278519

	
PD

	
12.0557

	
CCRI35




	
FR

	
qFR-D04_15

	
D04

	
MulMa448_D04

	
MulMa451_D04

	
49,867,798

	
50,187,192

	
4.736

	
8.337

	
5.01

	
2.660152

	
−0.1841

	
−1.5832

	
8.5996741

	
OD

	
0.0079

	
NH




	
qFR-D04_cb

	
D04

	
MulMa448_D04

	
MulMa451_D04

	
49,867,798

	
50,187,192

	
4.736

	
8.337

	
5.01

	
2.781759

	
−0.227

	
−0.8557

	
3.7696035

	
OD

	
0.6158

	
NH




	
FM

	
qFM-D05_15

	
D05

	
mk12822_D05

	
mk12824_D05

	
30,214,244

	
30,216,527

	
152.95

	
153.434

	
153.01

	
5.061889

	
0.2063

	
0.008

	
0.0387785

	
A

	
6.8075

	
CCRI35




	
qFM-D05_cb

	
D05

	
MulMa463-m_D05

	
mk12861_D05

	
30,373,354

	
31,354,896

	
144.668

	
148.809

	
146.71

	
4.021716

	
0.08

	
−0.1214

	
1.5175

	
OD

	
6.6096

	
CCRI35




	
qFM-D05_cb

	
D05

	
mk12822_D05

	
mk12824_D05

	
30,214,244

	
30,216,527

	
152.95

	
153.434

	
153.41

	
4.627579

	
0.0886

	
−0.0879

	
0.9920993

	
D

	
7.3098

	
CCRI35




	
SCI

	
qSCI-D05_15

	
D05

	
MulMa463-m_D05

	
mk12861_D05

	
30,373,354

	
31,354,896

	
144.668

	
148.809

	
144.71

	
2.566775

	
−2.7495

	
3.5799

	
1.3020185

	
OD

	
4.5444

	
NH




	
qSCI-D05_cb

	
D05

	
MulMa463-m_D05

	
mk12861_D05

	
30,373,354

	
31,354,896

	
144.668

	
148.809

	
144.71

	
2.579805

	
−1.778

	
1.3725

	
0.7719348

	
PD

	
4.7561

	
NH




	
FR

	
qFR-D08_15

	
D08

	
mk15992_D08

	
mk15995_D08

	
56,628,640

	
56,628,844

	
181.945

	
182.082

	
182.01

	
2.655809

	
0.587

	
−0.2932

	
0.4994889

	
PD

	
4.6002

	
CCRI35




	
qFR-D08_cb

	
D08

	
mk15992_D08

	
mk15995_D08

	
56,628,640

	
56,628,844

	
181.945

	
182.082

	
182.01

	
3.441911

	
0.408

	
−0.2977

	
0.7296569

	
PD

	
6.2705

	
CCRI35




	
FL

	
qFL-D08_14

	
D08

	
MulMa514_D08

	
mk16004_D08

	
54,937,781

	
58,533,805

	
187.587

	
196.342

	
196.31

	
3.583062

	
0.3322

	
−0.0152

	
0.0457556

	
A

	
5.8804

	
CCRI35




	
qFL-D08_cb

	
D08

	
MulMa514_D08

	
mk16004_D08

	
54,937,781

	
5,853,3805

	
187.587

	
196.342

	
196.31

	
3.639522

	
0.1799

	
0.0892

	
0.495831

	
PD

	
4.9405

	
CCRI35




	
qFL-D08_cb

	
D08

	
mk16017_D08

	
mk16020_D08

	
59,691,087

	
59,698,388

	
208.553

	
208.76

	
208.61

	
3.255157

	
0.1595

	
0.1876

	
1.1761755

	
D

	
3.2928

	
CCRI35




	
FE

	
qFE-D10_14

	
D10

	
mk17141_D10

	
MulMa593-m_D10

	
56,817,432

	
56,887,380

	
102.161

	
106.55

	
106.21

	
2.523344

	
−0.0328

	
0.082

	
2.5

	
OD

	
3.7527

	
NH




	
qFE-D10_15

	
D10

	
MulMa575-m_D10

	
MulMa581_D10

	
24,793,863

	
24,918,141

	
1.604

	
2.047

	
1.91

	
2.959826

	
0.0751

	
0.0306

	
0.4074567

	
PD

	
3.9966

	
CCRI35




	
FL

	
qFL-D10_14

	
D10

	
mk17141_D10

	
MulMa593-m_D10

	
56,817,432

	
56,887,380

	
102.161

	
106.55

	
105.21

	
3.411509

	
−0.1394

	
0.7384

	
5.2969871

	
OD

	
3.6287

	
NH




	
qFL-D10_cb

	
D10

	
mk2492

	
MulMa366-m

	
519

	
33,037

	
78.155

	
98.694

	
83.21

	
2.614549

	
−0.045

	
0.464

	
10.311111

	
OD

	
2.0017

	
NH




	
FL

	
qFL-D11_16

	
D11

	
mk17462_D11

	
mk17463_D11

	
15,695,804

	
15,711,598

	
88.706

	
88.935

	
88.71

	
2.831705

	
0.0011

	
0.1765

	
160.45455

	
OD

	
0.8561

	
CCRI35




	
qFL-D11_cb

	
D11

	
mk17464_D11

	
mk17514_D11

	
15,711,711

	
21,298,890

	
61.142

	
88.706

	
82.21

	
3.079262

	
−0.0461

	
0.5185

	
11.247289

	
OD

	
2.2603

	
NH




	
FS

	
qFS-D12_14

	
D12

	
mk18221_D12

	
MulMa605_D12

	
50,554,371

	
5,129,3378

	
148.99

	
160.984

	
153.01

	
3.270358

	
0.0077

	
0.8261

	
107.28571

	
OD

	
0.6079

	
CCRI35




	
qFS-D12_15

	
D12

	
mk17994_D12

	
mk17997_D12

	
3,798,8313

	
3,8143,957

	
65.608

	
66.056

	
65.61

	
3.743757

	
0.3487

	
−0.7277

	
2.0868942

	
OD

	
5.7325

	
CCRI35




	
qFS-D12_cb

	
D12

	
mk19853

	
mk17913_D12

	
101,319

	
13,479,261

	
16.392

	
16.946

	
16.41

	
4.049946

	
0.1807

	
−0.3037

	
1.6806862

	
OD

	
6.3446

	
CCRI35




	
FY

	
qFY-D12_15

	
D12

	
mk17995_D12

	
mk18057_D12

	
38,058,755

	
41,722,495

	
66.861

	
96.943

	
70.91

	
2.677524

	
0.047

	
−0.4721

	
10.044681

	
OD

	
2.0175

	
CCRI35




	
qFY-D12_cb

	
D12

	
mk1009

	
mk17992_D12

	
18,989

	
37,732,030

	
66.348

	
66.861

	
66.41

	
3.252986

	
0.0211

	
−0.2739

	
12.981043

	
OD

	
1.9523

	
CCRI35




	
SCI

	
qSCI-D12_14

	
D12

	
mk18202_D12

	
mk18207_D12

	
48,411,387

	
48,718,111

	
132.168

	
133.627

	
133.61

	
3.14658

	
1.3176

	
−0.8128

	
0.6168792

	
PD

	
6.2241

	
CCRI35




	
qSCI-D12_15

	
D12

	
mk19857

	
mk17916_D12

	
117,142

	
15,801,265

	
23.692

	
24.245

	
23.71

	
3.072747

	
2.636

	
4.6094

	
1.7486343

	
OD

	
1.4248

	
CCRI35




	
FL

	
qFL-D12_14

	
D12

	
mk18210_D12

	
mk18214_D12

	
48,923,084

	
49133419

	
135.788

	
138.113

	
135.81

	
2.851249

	
0.281

	
−0.216

	
0.7686833

	
PD

	
5.2886

	
CCRI35




	
qFL-D12_cb

	
D12

	
mk18221_D12

	
MulMa605_D12

	
50,554,371

	
51,293,378

	
148.99

	
160.984

	
158.01

	
2.896851

	
0.1755

	
0.1739

	
0.9908832

	
D

	
3.2967

	
CCRI35




	
qFL-D12_cb

	
D12

	
MulMa604-m_D12

	
mk18232_D12

	
51,286,859

	
52,905,207

	
161.79

	
172.395

	
165.81

	
2.773073

	
0.1653

	
0.1375

	
0.8318209

	
D

	
3.0451

	
CCRI35




	
FL

	
qFL-D13_14

	
D13

	
mk18377_D13

	
MulMa619_D13

	
4,171,037

	
34,392,983

	
36.052

	
56.969

	
46.11

	
3.237785

	
0.1336

	
−0.7846

	
5.8727545

	
OD

	
3.0376

	
CCRI35




	
qFL-D13_15

	
D13

	
mk18378_D13

	
mk18379_D13

	
4,310,490

	
4,329,364

	
64.756

	
65.409

	
64.81

	
2.529859

	
0.2624

	
0.2724

	
1.0381098

	
D

	
2.1912

	
CCRI35




	
qFL-D13_cb

	
D13

	
mk18516_D13

	
mk18533_D13

	
41,759,681

	
47,859,575

	
2.023

	
10.429

	
9.01

	
3.051031

	
0.17

	
−0.0572

	
0.3364706

	
PD

	
5.3187

	
CCRI35




	
qFL-D13_cb

	
D13

	
mk20382

	
mk18378_D13

	
141

	
4,310,490

	
65.409

	
72.523

	
65.41

	
3.072747

	
0.1705

	
−0.0658

	
0.3859238

	
PD

	
5.4653

	
CCRI35








LOD: logarithm of odds; 0 < Ae (additive effect) < 0.20; 0.21 < PD (partial dominance) < 0.80; 0.81 < De (dominance effect) < 1.20; OD (over dominance) > 1.20; |d/a| = De/Ae; GA: gene action; DPE: direction of phenotypic explanation. For traits meaning see Figure 1 or Figure 2.
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