The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology
Abstract
:1. Introduction
2. Extracellular Ca2+ Microdomains
3. Measuring Fluctuations in Extracellular Ca2+ Levels
4. The Extracellular Calcium-Sensing Receptor (CaR)
4.1. Discovery and Cloning of the Extracellular Calcium-Sensing Receptor
4.2. Structural Features of the CaR
4.3. CaR Promiscuity: Many Orthosteric Agonists and Allosteric Modulators Concur in Modulating CaR Function at Multiple Sites
4.4. Trimeric G Proteins and Signalling Pathways Activated by the CaR
4.4.1. Gq/G11
4.4.2. Gi/o
4.4.3. G12/13
4.4.4. Gs
4.5. Physiopathological Significance of CaR: Old and New Aspects
4.5.1. CaR Involvement in Cancer
4.5.2. The CaR in the Heart
Role of the CaR in Cardiac Apoptosis
Role of the CaR in Apoptotic Pathways Activated by Ischemia/Reperfusion
Role of CaR Inhibition in Post-Conditioning
Role of the CaR in Pre-Conditioning
Role of the CaR in Hypertrophy and Heart Failure
Role of the CaR on the Electrical Properties of Cardiac Cells
4.6. Novel Trafficking/Signaling Modes of the CaR
The Agonist-Driven Insertional Signalling (ADIS)
4.7. Synthetic Allosteric Modulators of the CaR Can Function as Pharmacoperones
4.8. Biased Signalling
5. Old and New Extracellular Ca2+ Sensors
5.1. Metabotropic Glutamate Receptors
5.2. The GABAB Receptor
5.3. Taste Receptors
5.4. The G Protein-Coupled Receptor Family C Group 6 Member A (GPRC6A)
5.5. Notch Receptor
5.6. Cadherins
5.7. Stromal Interaction Molecule 1 (STIM1)
5.8. Hemichannels
5.9. Ion Channels
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AA | arachidonic acid |
AC | adenylate cyclase |
ATP | adenosine triphosphate |
CaM | Calmodulin |
CaMK | Ca2+/calmodulin-dependent protein kinase |
cAMP | cyclic AMP |
DAG | Diacylglycerol |
eNOS | endothelial nitric oxide synthase |
ER | endoplasmic reticulum |
ERK 1/2 | extracellullar-signal regulated kinase |
iNOS | inducible nitric oxide synthase |
InsP3 | inositol-1,4,5-trisphosphate |
JNK | Jun amino-terminal kinase |
MAPK | mitogen-activated protein kinase |
MEK | MAPK kinase |
NO | nitric oxide |
p38 | p38 mitogen-activated protein kinase |
PA | phosphatidic acid |
PHP | Pharmacoperones |
PI3K | phosphatidylinositol 3-kinase |
PI4K | phosphatidylinositol 4-kinase |
PIP2 | phosphatidylinositol 4,5-bisphosphate |
PKC | protein kinase C |
PLA2 | phospholipase A2 |
PLC | phospholipase C |
PLD | phospholipase D |
RhoA | Ras homolog gene family, member A |
SOC | store-operated Ca2+ channel |
References
- Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzuto, R.; Bernardi, P.; Pozzan, T. Mitochondria as all-round players of the calcium game. J. Physiol. 2000, 529 Pt 1, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Bootman, M.D.; Fearnley, C.; Smyrnias, I.; MacDonald, F.; Roderick, H.L. An update on nuclear calcium signalling. J. Cell Sci. 2009, 122, 2337–2350. [Google Scholar] [CrossRef] [PubMed]
- Medina, D.L.; Di Paola, S.; Peluso, I.; Armani, A.; De Stefani, D.; Venditti, R.; Montefusco, S.; Scotto-Rosato, A.; Prezioso, C.; Forrester, A.; et al. Lysosomal calcium signalling regulates autophagy through calcineurin and tfeb. Nat. Cell Biol. 2015, 17, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Corbett, E.F.; Michalak, M. Calcium, a signaling molecule in the endoplasmic reticulum? Trends Biochem. Sci. 2000, 25, 307–311. [Google Scholar] [CrossRef]
- Brown, E.M.; Gamba, G.; Riccardi, D.; Lombardi, M.; Butters, R.; Kifor, O.; Sun, A.; Hediger, M.A.; Lytton, J.; Hebert, S.C. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 1993, 366, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M.; Conigrave, A.D. Preface. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 283–284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Miller, C.L.; Brown, E.M.; Yang, J.J. The calcium sensing receptor: From calcium sensing to signaling. Sci. China Life Sci. 2015, 58, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Tennakoon, S.; Aggarwal, A.; Kallay, E. The calcium-sensing receptor and the hallmarks of cancer. Biochim. Biophys. Acta 2016, 1863, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
- Hannan, F.M.; Olesen, M.K.; Thakker, R.V. Calcimimetic and calcilytic therapies for inherited disorders of the calcium-sensing receptor signalling pathway. Br. J. Pharmacol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M.; MacLeod, R.J. Extracellular calcium sensing and extracellular calcium signaling. Physiol. Rev. 2001, 81, 239–297. [Google Scholar] [CrossRef] [PubMed]
- Hofer, A.M. Another dimension to calcium signaling: A look at extracellular calcium. J. Cell Sci. 2005, 118, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Ashby, M.C.; Tepikin, A.V. Polarized calcium and calmodulin signaling in secretory epithelia. Physiol. Rev. 2002, 82, 701–734. [Google Scholar] [CrossRef] [PubMed]
- Belan, P.; Gerasimenko, O.; Petersen, O.H.; Tepikin, A.V. Distribution of Ca2+ extrusion sites on the mouse pancreatic acinar cell surface. Cell Calcium 1997, 22, 5–10. [Google Scholar] [CrossRef]
- Peng, J.B.; Brown, E.M.; Hediger, M.A. Apical entry channels in calcium-transporting epithelia. News Physiol. Sci. 2003, 18, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Petersen, O.H. Localization and regulation of Ca2+ entry and exit pathways in exocrine gland cells. Cell Calcium 2003, 33, 337–344. [Google Scholar] [CrossRef]
- Caroppo, R.; Gerbino, A.; Debellis, L.; Kifor, O.; Soybel, D.I.; Brown, E.M.; Hofer, A.M.; Curci, S. Asymmetrical, agonist-induced fluctuations in local extracellular [Ca2+] in intact polarized epithelia. EMBO J. 2001, 20, 6316–6326. [Google Scholar] [CrossRef] [PubMed]
- Caroppo, R.; Gerbino, A.; Fistetto, G.; Colella, M.; Debellis, L.; Hofer, A.M.; Curci, S. Extracellular calcium acts as a “Third messenger” To regulate enzyme and alkaline secretion. J. Cell Biol. 2004, 166, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Gerbino, A.; Fistetto, G.; Colella, M.; Hofer, A.M.; Debellis, L.; Caroppo, R.; Curci, S. Real time measurements of water flow in amphibian gastric glands: Modulation via the extracellular Ca2+-sensing receptor. J. Biol. Chem. 2007, 282, 13477–13486. [Google Scholar] [CrossRef] [PubMed]
- Andersson, T.; Berggren, P.O.; Gylfe, E.; Hellman, B. Amounts and distribution of intracellular magnesium and calcium in pancreatic beta-cells. Acta Physiol. Scand. 1982, 114, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Nicaise, G.; Maggio, K.; Thirion, S.; Horoyan, M.; Keicher, E. The calcium loading of secretory granules. A possible key event in stimulus-secretion coupling. Biol. Cell 1992, 75, 89–99. [Google Scholar] [CrossRef]
- Gillot, I.; Ciapa, B.; Payan, P.; Sardet, C. The calcium content of cortical granules and the loss of calcium from sea urchin eggs at fertilization. Dev. Biol. 1991, 146, 396–405. [Google Scholar] [CrossRef]
- Hutton, J.C.; Penn, E.J.; Peshavaria, M. Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem. J. 1983, 210, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Gerbino, A.; Maiellaro, I.; Carmone, C.; Caroppo, R.; Debellis, L.; Barile, M.; Busco, G.; Colella, M. Glucose increases extracellular [Ca2+] in rat insulinoma (ins-1e) pseudoislets as measured with Ca2+-sensitive microelectrodes. Cell Calcium 2012, 51, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Belan, P.; Gardner, J.; Gerasimenko, O.; Gerasimenko, J.; Mills, C.L.; Petersen, O.H.; Tepikin, A.V. Isoproterenol evokes extracellular Ca2+ spikes due to secretory events in salivary gland cells. J. Biol. Chem. 1998, 273, 4106–4111. [Google Scholar] [CrossRef] [PubMed]
- Von Grafenstein, H.R.; Powis, D.A. Calcium is released by exocytosis together with catecholamines from bovine adrenal medullary cells. J. Neurochem. 1989, 53, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Thirion, S.; Stuenkel, E.L.; Nicaise, G. Calcium loading of secretory granules in stimulated neurohypophysial nerve endings. Neuroscience 1995, 64, 125–137. [Google Scholar] [CrossRef]
- Kuhtreiber, W.M.; Gillot, I.; Sardet, C.; Jaffe, L.F. Net calcium and acid release at fertilization in eggs of sea urchins and ascidians. Cell Calcium 1993, 14, 73–86. [Google Scholar] [CrossRef]
- Hofer, A.M.; Gerbino, A.; Caroppo, R.; Curci, S. The extracellular calcium-sensing receptor and cell-cell signaling in epithelia. Cell Calcium 2004, 35, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.E.; Fields, R.D. Extracellular calcium depletion in synaptic transmission. Neuroscientist 2004, 10, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Egelman, D.M.; Montague, P.R. Calcium dynamics in the extracellular space of mammalian neural tissue. Biophys. J. 1999, 76, 1856–1867. [Google Scholar] [CrossRef]
- Vassilev, P.M.; Mitchel, J.; Vassilev, M.; Kanazirska, M.; Brown, E.M. Assessment of frequency-dependent alterations in the level of extracellular Ca2+ in the synaptic cleft. Biophys. J. 1997, 72, 2103–2116. [Google Scholar] [CrossRef]
- Pumain, R.; Heinemann, U. Stimulus- and amino acid-induced calcium and potassium changes in rat neocortex. J. Neurophysiol. 1985, 53, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Rusakov, D.A.; Fine, A. Extracellular Ca2+ depletion contributes to fast activity-dependent modulation of synaptic transmission in the brain. Neuron 2003, 37, 287–297. [Google Scholar] [CrossRef]
- Moura, A.S. Membrane potential and intercellular calcium during glucose challenge in mouse islet of langerhans. Biochem. Biophys. Res. Commun. 1995, 214, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Perez-Armendariz, E.; Atwater, I. Glucose-evoked changes in [K+] and [Ca2+] in the intercellular spaces of the mouse islet of langerhans. Adv. Exp. Med. Biol. 1986, 211, 31–51. [Google Scholar] [PubMed]
- Cleemann, L.; Pizarro, G.; Morad, M. Optical measurements of extracellular calcium depletion during a single heartbeat. Science 1984, 226, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, C.; Bruggencate, G.T.; Steinberg, R.; Stöckle, H. Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc. Natl. Acad. Sci. USA 1977, 74, 1287–1290. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, L.F.; Nuccitelli, R. An ultrasensitive vibrating probe for measuring steady extracellular currents. J. Cell Biol. 1974, 63, 614–628. [Google Scholar] [CrossRef] [PubMed]
- Kuhtreiber, W.M.; Jaffe, L.F. Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J. Cell Biol. 1990, 110, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Yamoah, E.N.; Lumpkin, E.A.; Dumont, R.A.; Smith, P.J.; Hudspeth, A.J.; Gillespie, P.G. Plasma membrane Ca2+-atpase extrudes Ca2+ from hair cell stereocilia. J. Neurosci. 1998, 18, 610–624. [Google Scholar] [PubMed]
- Pepperell, J.R.; Kommineni, K.; Buradagunta, S.; Smith, P.J.; Keefe, D.L. Transmembrane regulation of intracellular calcium by a plasma membrane sodium/calcium exchanger in mouse ova. Biol. Reprod. 1999, 60, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Knox, R.J.; Jonas, E.A.; Kao, L.S.; Smith, P.J.; Connor, J.A.; Kaczmarek, L.K. Ca2+ influx and activation of a cation current are coupled to intracellular Ca2+ release in peptidergic neurons of aplysia californica. J. Physiol. 1996, 494 Pt 3, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.J.; Hammar, K.; Porterfield, D.M.; Sanger, R.H.; Trimarchi, J.R. Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microsc. Res. Tech. 1999, 46, 398–417. [Google Scholar] [CrossRef]
- Mupanomunda, M.M.; Ishioka, N.; Bukoski, R.D. Interstitial Ca2+ undergoes dynamic changes sufficient to stimulate nerve-dependent Ca2+-induced relaxation. Am. J. Physiol. 1999, 276, H1035–H1042. [Google Scholar] [CrossRef] [PubMed]
- Mupanomunda, M.M.; Tian, B.; Ishioka, N.; Bukoski, R.D. Renal interstitial Ca2+. Am. J. Physiol. Renal Physiol. 2000, 278, F644–F649. [Google Scholar] [CrossRef] [PubMed]
- Hilgemann, D.W. Extracellular calcium transients at single excitations in rabbit atrium measured with tetramethylmurexide. J. Gen. Physiol. 1986, 87, 707–735. [Google Scholar] [CrossRef] [PubMed]
- Hilgemann, D.W.; Langer, G.A. Transsarcolemmal calcium movements in arterially perfused rabbit right ventricle measured with extracellular calcium-sensitive dyes. Circ. Res. 1984, 54, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Tepikin, A.V.; Llopis, J.; Snitsarev, V.A.; Gallacher, D.V.; Petersen, O.H. The droplet technique: Measurement of calcium extrusion from single isolated mammalian cells. Pflugers Arch. 1994, 428, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Tepikin, A.V.; Voronina, S.G.; Gallacher, D.V.; Petersen, O.H. Pulsatile Ca2+ extrusion from single pancreatic acinar cells during receptor-activated cytosolic Ca2+ spiking. J. Biol. Chem. 1992, 267, 14073–14076. [Google Scholar] [PubMed]
- Tepikin, A.V.; Voronina, S.G.; Gallacher, D.V.; Petersen, O.H. Acetylcholine-evoked increase in the cytoplasmic Ca2+ concentration and Ca2+ extrusion measured simultaneously in single mouse pancreatic acinar cells. J. Biol. Chem. 1992, 267, 3569–3572. [Google Scholar] [PubMed]
- Belan, P.V.; Gerasimenko, O.V.; Tepikin, A.V.; Petersen, O.H. Localization of Ca2+ extrusion sites in pancreatic acinar cells. J. Biol. Chem. 1996, 271, 7615–7619. [Google Scholar] [CrossRef] [PubMed]
- Blatter, L.A.; Niggli, E. Confocal near-membrane detection of calcium in cardiac myocytes. Cell Calcium 1998, 23, 269–279. [Google Scholar] [CrossRef]
- Etter, E.F.; Kuhn, M.A.; Fay, F.S. Detection of changes in near-membrane Ca2+ concentration using a novel membrane-associated Ca2+ indicator. J. Biol. Chem. 1994, 269, 10141–10149. [Google Scholar] [PubMed]
- Etter, E.F.; Minta, A.; Poenie, M.; Fay, F.S. Near-membrane [Ca2+] transients resolved using the ca2+ indicator ffp18. Proc. Natl. Acad. Sci. USA 1996, 93, 5368–5373. [Google Scholar] [CrossRef]
- De Luisi, A.; Hofer, A.M. Evidence that Ca2+ cycling by the plasma membrane Ca2+-atpase increases the ‘excitability’ of the extracellular Ca2+-sensing receptor. J. Cell Sci. 2003, 116, 1527–1538. [Google Scholar] [CrossRef] [PubMed]
- Care, A.D.; Sherwood, L.M.; Potts, J.T., Jr.; Aurbach, G.D. Perfusion of the isolated parathyroid gland of the goat and sheep. Nature 1966, 209, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Sherwood, L.M.; Potts, J.T., Jr.; Care, A.D.; Mayer, G.P.; Aurbach, G.D. Evaluation by radioimmunoassay of factors controlling the secretion of parathyroid hormone. Nature 1966, 209, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Barneo, J.; Armstrong, C.M. Depolarizing response of rat parathyroid cells to divalent cations. J. Gen. Physiol. 1983, 82, 269–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoback, D.; Thatcher, J.; Leombruno, R.; Brown, E. Effects of extracellular Ca2+ and Mg2+ on cytosolic Ca2+ and pth release in dispersed bovine parathyroid cells. Endocrinology 1983, 113, 424–426. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.; Enyedi, P.; LeBoff, M.; Rotberg, J.; Preston, J.; Chen, C. High extracellular Ca2+ and Mg2+ stimulate accumulation of inositol phosphates in bovine parathyroid cells. FEBS Lett. 1987, 218, 113–118. [Google Scholar] [CrossRef]
- Kifor, O.; Brown, E.M. Relationship between diacylglycerol levels and extracellular Ca2+ in dispersed bovine parathyroid cells. Endocrinology 1988, 123, 2723–2729. [Google Scholar] [CrossRef] [PubMed]
- Shoback, D.M.; McGhee, J.M. Fluoride stimulates the accumulation of inositol phosphates, increases intracellular free calcium, and inhibits parathyroid hormone release in dispersed bovine parathyroid cells. Endocrinology 1988, 122, 2833–2839. [Google Scholar] [CrossRef] [PubMed]
- Shoback, D.M.; Membreno, L.A.; McGhee, J.G. High calcium and other divalent cations increase inositol trisphosphate in bovine parathyroid cells. Endocrinology 1988, 123, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.F.; Scarpa, A. Are changes in intracellular free calcium necessary for regulating secretion in parathyroid cells? Ann. N. Y. Acad. Sci. 1987, 493, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Foord, S.M.; Bonner, T.I.; Neubig, R.R.; Rosser, E.M.; Pin, J.P.; Davenport, A.P.; Spedding, M.; Harmar, A.J. International union of pharmacology. Xlvi. G protein-coupled receptor list. Pharmacol. Rev. 2005, 57, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Clemmensen, C.; Smajilovic, S.; Wellendorph, P.; Brauner-Osborne, H. The GPCR, class c, group 6, subtype a (GPRC6A) receptor: From cloning to physiological function. Br. J. Pharmacol. 2014, 171, 1129–1141. [Google Scholar] [CrossRef] [PubMed]
- Norskov-Lauritsen, L.; Brauner-Osborne, H. Role of post-translational modifications on structure, function and pharmacology of class c g protein-coupled receptors. Eur. J. Pharmacol. 2016, 763, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Garrett, J.E.; Capuano, I.V.; Hammerland, L.G.; Hung, B.C.; Brown, E.M.; Hebert, S.C.; Nemeth, E.F.; Fuller, F. Molecular cloning and functional expression of human parathyroid calcium receptor cdnas. J. Biol. Chem. 1995, 270, 12919–12925. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Spiegel, A.M. Structure and function of the human calcium-sensing receptor: Insights from natural and engineered mutations and allosteric modulators. J. Cell. Mol. Med. 2007, 11, 908–922. [Google Scholar] [CrossRef] [PubMed]
- Kunishima, N.; Shimada, Y.; Tsuji, Y.; Sato, T.; Yamamoto, M.; Kumasaka, T.; Nakanishi, S.; Jingami, H.; Morikawa, K. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 2000, 407, 971–977. [Google Scholar] [PubMed]
- Muto, T.; Tsuchiya, D.; Morikawa, K.; Jingami, H. Structures of the extracellular regions of the group ii/iii metabotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 2007, 104, 3759–3764. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Xiong, D.; Mosyak, L.; Malito, D.L.; Kniazeff, J.; Chen, Y.; Burmakina, S.; Quick, M.; Bush, M.; Javitch, J.A.; et al. Structure and functional interaction of the extracellular domain of human GABAB receptor GBR2. Nat. Neurosci. 2012, 15, 970–978. [Google Scholar] [CrossRef] [PubMed]
- Chakravarti, B.; Chattopadhyay, N.; Brown, E.M. Signaling through the extracellular calcium-sensing receptor (CASR). Adv. Exp. Med. Biol. 2012, 740, 103–142. [Google Scholar] [PubMed]
- Hu, J.; Reyes-Cruz, G.; Goldsmith, P.K.; Gantt, N.M.; Miller, J.L.; Spiegel, A.M. Functional effects of monoclonal antibodies to the purified amino-terminal extracellular domain of the human Ca2+ receptor. J. Bone Miner Res. 2007, 22, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Trivedi, S.; Brown, E.M. Dimerization of the extracellular calcium-sensing receptor (CAR) on the cell surface of car-transfected hek293 cells. J. Biol. Chem. 1998, 273, 23605–23610. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Trivedi, S.; Kifor, O.; Quinn, S.J.; Brown, E.M. Intermolecular interactions between dimeric calcium-sensing receptor monomers are important for its normal function. Proc. Natl. Acad. Sci. USA 1999, 96, 2834–2839. [Google Scholar] [CrossRef] [PubMed]
- Gama, L.; Wilt, S.G.; Breitwieser, G.E. Heterodimerization of calcium sensing receptors with metabotropic glutamate receptors in neurons. J. Biol. Chem. 2001, 276, 39053–39059. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Tu, C.; Cheng, Z.; Rodriguez, L.; Chen, T.H.; Gassmann, M.; Bettler, B.; Margeta, M.; Jan, L.Y.; Shoback, D. Complex formation with the type b gamma-aminobutyric acid receptor affects the expression and signal transduction of the extracellular calcium-sensing receptor. Studies with HEK-293 cells and neurons. J. Biol. Chem. 2007, 282, 25030–25040. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Minet, E.; Zhang, Z.; Silver, P.A.; Bai, M. Modulation of interprotomer relationships is important for activation of dimeric calcium-sensing receptor. J. Biol. Chem. 2004, 279, 14147–14156. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.; Hauschild, B.C.; Steinbach, P.J.; Goldsmith, P.K.; Hauache, O.; Spiegel, A.M. Identification of the cysteine residues in the amino-terminal extracellular domain of the human Ca2+ receptor critical for dimerization. Implications for function of monomeric Ca2+ receptor. J. Biol. Chem. 1999, 274, 27642–27650. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Cruz, G.; Hu, J.; Goldsmith, P.K.; Steinbach, P.J.; Spiegel, A.M. Human Ca2+ receptor extracellular domain. Analysis of function of lobe i loop deletion mutants. J. Biol. Chem. 2001, 276, 32145–32151. [Google Scholar] [CrossRef] [PubMed]
- Pace, A.J.; Gama, L.; Breitwieser, G.E. Dimerization of the calcium-sensing receptor occurs within the extracellular domain and is eliminated by cys → ser mutations at cys101 and cys236. J. Biol. Chem. 1999, 274, 11629–11634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sun, S.; Quinn, S.J.; Brown, E.M.; Bai, M. The extracellular calcium-sensing receptor dimerizes through multiple types of intermolecular interactions. J. Biol. Chem. 2001, 276, 5316–5322. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.F.; Ray, K.; Zhao, X.M.; Goldsmith, P.K.; Spiegel, A.M. Mutational analysis of the cysteines in the extracellular domain of the human Ca2+ receptor: Effects on cell surface expression, dimerization and signal transduction. FEBS Lett. 1998, 436, 353–356. [Google Scholar] [CrossRef]
- Jacobsen, S.E.; Gether, U.; Brauner-Osborne, H. Investigating the molecular mechanism of positive and negative allosteric modulators in the calcium-sensing receptor dimer. Sci. Rep. 2018, 7, 46355. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Hauache, O.; Spiegel, A.M. Human Ca2+ receptor cysteine-rich domain. Analysis of function of mutant and chimeric receptors. J. Biol. Chem. 2000, 275, 16382–16389. [Google Scholar] [CrossRef] [PubMed]
- Pin, J.P.; Galvez, T.; Prezeau, L. Evolution, structure, and activation mechanism of family 3/c G-protein-coupled receptors. Pharmacol. Ther. 2003, 98, 325–354. [Google Scholar] [CrossRef]
- Ray, J.M.; Squires, P.E.; Curtis, S.B.; Meloche, M.R.; Buchan, A.M. Expression of the calcium-sensing receptor on human antral gastrin cells in culture. J. Clin. Invest. 1997, 99, 2328–2333. [Google Scholar] [CrossRef] [PubMed]
- Awata, H.; Huang, C.; Handlogten, M.E.; Miller, R.T. Interaction of the calcium-sensing receptor and filamin, a potential scaffolding protein. J. Biol. Chem. 2001, 276, 34871–34879. [Google Scholar] [CrossRef] [PubMed]
- Hjalm, G.; MacLeod, R.J.; Kifor, O.; Chattopadhyay, N.; Brown, E.M. Filamin-a binds to the carboxyl-terminal tail of the calcium-sensing receptor, an interaction that participates in car-mediated activation of mitogen-activated protein kinase. J. Biol. Chem. 2001, 276, 34880–34887. [Google Scholar] [CrossRef] [PubMed]
- Bosel, J.; John, M.; Freichel, M.; Blind, E. Signaling of the human calcium-sensing receptor expressed in HEK293-cells is modulated by protein kinases a and c. Exp. Clin. Endocrinol. Diabetes 2003, 111, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Stepanchick, A.; McKenna, J.; McGovern, O.; Huang, Y.; Breitwieser, G.E. Calcium sensing receptor mutations implicated in pancreatitis and idiopathic epilepsy syndrome disrupt an arginine-rich retention motif. Cell. Physiol. Biochem. 2010, 26, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Hendy, G.N.; Canaff, L.; Cole, D.E. The casr gene: Alternative splicing and transcriptional control, and calcium-sensing receptor (CASR) protein: Structure and ligand binding sites. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Leach, K.; Gregory, K.J.; Kufareva, I.; Khajehali, E.; Cook, A.E.; Abagyan, R.; Conigrave, A.D.; Sexton, P.M.; Christopoulos, A. Towards a structural understanding of allosteric drugs at the human calcium-sensing receptor. Cell Res. 2016, 26, 574–592. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhou, Y.; Yang, W.; Butters, R.; Lee, H.W.; Li, S.; Castiblanco, A.; Brown, E.M.; Yang, J.J. Identification and dissection of Ca2+-binding sites in the extracellular domain of Ca2+-sensing receptor. J. Biol. Chem. 2007, 282, 19000–19010. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhou, Y.; Castiblanco, A.; Yang, W.; Brown, E.M.; Yang, J.J. Multiple Ca2+-binding sites in the extracellular domain of the Ca2+-sensing receptor corresponding to cooperative Ca2+ response. Biochemistry 2009, 48, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhou, Y.; Wong, H.C.; Castiblanco, A.; Chen, Y.; Brown, E.M.; Yang, J.J. Calmodulin regulates Ca2+-sensing receptor-mediated Ca2+ signaling and its cell surface expression. J. Biol. Chem. 2010, 285, 35919–35931. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhuo, Y.; Moniz, H.A.; Wang, S.; Moremen, K.W.; Prestegard, J.H.; Brown, E.M.; Yang, J.J. Direct determination of multiple ligand interactions with the extracellular domain of the calcium-sensing receptor. J. Biol. Chem. 2014, 289, 33529–33542. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Huang, Y.; Jiang, Y.; Mulpuri, N.; Wei, L.; Hamelberg, D.; Brown, E.M.; Yang, J.J. Identification of an L-phenylalanine binding site enhancing the cooperative responses of the calcium-sensing receptor to calcium. J. Biol. Chem. 2014, 289, 5296–5309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Mulpuri, N.; Hannan, F.M.; Nesbit, M.A.; Thakker, R.V.; Hamelberg, D.; Brown, E.M.; Yang, J.J. Role of Ca2+ and l-phe in regulating functional cooperativity of disease-associated “Toggle” Calcium-sensing receptor mutations. PLoS ONE 2014, 9, e113622. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, T.; Zou, J.; Miller, C.L.; Gorkhali, R.; Yang, J.Y.; Schilmiller, A.; Wang, S.; Huang, K.; Brown, E.M.; et al. Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist. Sci. Adv. 2016, 2, e1600241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Miller, C.L.; Gorkhali, R.; Zou, J.; Huang, K.; Brown, E.M.; Yang, J.J. Molecular basis of the extracellular ligands mediated signaling by the calcium sensing receptor. Front. Physiol. 2016, 7, 441. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M.; Fuleihan, G.E.-H.; Chen, C.J.; Kifor, O. A comparison of the effects of divalent and trivalent cations on parathyroid hormone release, 3′,5′-cyclic-adenosine monophosphate accumulation, and the levels of inositol phosphates in bovine parathyroid cells. Endocrinology 1990, 127, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Quinn, S.J.; Ye, C.P.; Diaz, R.; Kifor, O.; Bai, M.; Vassilev, P.; Brown, E. The Ca2+-sensing receptor: A target for polyamines. Am. J. Physiol. 1997, 273, C1315–C1323. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M.; Katz, C.; Butters, R.; Kifor, O. Polyarginine, polylysine, and protamine mimic the effects of high extracellular calcium concentrations on dispersed bovine parathyroid cells. J. Bone Miner Res. 1991, 6, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Ho-Pao, C.L.; Kanazirska, M.; Quinn, S.; Rogers, K.; Seidman, C.E.; Seidman, J.G.; Brown, E.M.; Vassilev, P.M. Amyloid-beta proteins activate Ca2+-permeable channels through calcium-sensing receptors. J. Neurosci. Res. 1997, 47, 547–554. [Google Scholar] [CrossRef]
- Brown, E.M.; Butters, R.; Katz, C.; Kifor, O. Neomycin mimics the effects of high extracellular calcium concentrations on parathyroid function in dispersed bovine parathyroid cells. Endocrinology 1991, 128, 3047–3054. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.F. Regulation of cytosolic calcium by extracellular divalent cations in c-cells and parathyroid cells. Cell Calcium 1990, 11, 323–327. [Google Scholar] [CrossRef]
- Colella, M.; Gerbino, A.; Hofer, A.M.; Curci, S. Recent advances in understanding the extracellular calcium-sensing receptor. F1000Res 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Conigrave, A.D.; Quinn, S.J.; Brown, E.M. L-amino acid sensing by the extracellular Ca2+-sensing receptor. Proc. Natl. Acad. Sci. USA 2000, 97, 4814–4819. [Google Scholar] [CrossRef] [PubMed]
- Conigrave, A.D.; Mun, H.C.; Lok, H.C. Aromatic l-amino acids activate the calcium-sensing receptor. J. Nutr. 2007, 137, 1524S–1527S; discussion 1548S. [Google Scholar] [CrossRef] [PubMed]
- Conigrave, A.D.; Hampson, D.R. Broad-spectrum amino acid-sensing class c G-protein coupled receptors: Molecular mechanisms, physiological significance and options for drug development. Pharmacol. Ther. 2010, 127, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yao, Y.; Kuang, D.; Hampson, D.R. Activation of family c G-protein-coupled receptors by the tripeptide glutathione. J. Biol. Chem. 2006, 281, 8864–8870. [Google Scholar] [CrossRef] [PubMed]
- Broadhead, G.K.; Mun, H.C.; Avlani, V.A.; Jourdon, O.; Church, W.B.; Christopoulos, A.; Delbridge, L.; Conigrave, A.D. Allosteric modulation of the calcium-sensing receptor by gamma-glutamyl peptides: Inhibition of pth secretion, suppression of intracellular camp levels, and a common mechanism of action with l-amino acids. J. Biol. Chem. 2011, 286, 8786–8797. [Google Scholar] [CrossRef] [PubMed]
- Quinn, S.J.; Bai, M.; Brown, E.M. Ph sensing by the calcium-sensing receptor. J. Biol. Chem. 2004, 279, 37241–37249. [Google Scholar] [CrossRef] [PubMed]
- Quinn, S.J.; Kifor, O.; Trivedi, S.; Diaz, R.; Vassilev, P.; Brown, E. Sodium and ionic strength sensing by the calcium receptor. J. Biol. Chem. 1998, 273, 19579–19586. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.F.; Steffey, M.E.; Hammerland, L.G.; Hung, B.C.; van Wagenen, B.C.; DelMar, E.G.; Balandrin, M.F. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc. Natl. Acad. Sci. USA 1998, 95, 4040–4045. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, L.; Leiris, S.; Dodd, R.H. Novel calcium sensing receptor ligands: A patent survey. Expert Opin. Ther. Pat. 2011, 21, 681–698. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, L.; Beaumard, F.; Gorojankina, T.; Faure, H.; Ruat, M.; Dodd, R.H. Design and synthesis of calindol derivatives as potent and selective calcium sensing receptor agonists. Bioorg. Med. Chem. 2015, 24, 554–569. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.F.; Goodman, W.G. Calcimimetic and calcilytic drugs: Feats, flops, and futures. Calcif. Tissue Int. 2016, 98, 341–358. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.F. Calcimimetic and calcilytic drugs: Just for parathyroid cells? Cell Calcium 2004, 35, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, J.S.; Culleton, B.; Wong, G.; Borah, M.F.; Clark, R.V.; Shapiro, W.B.; Roger, S.D.; Husserl, F.E.; Klassen, P.S.; Guo, M.D.; et al. Cinacalcet hcl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: A randomized, double-blind, multicenter study. J. Am. Soc. Nephrol. 2005, 16, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Hebert, S.C. Therapeutic use of calcimimetics. Annu. Rev. Med. 2006, 57, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M. Clinical utility of calcimimetics targeting the extracellular calcium-sensing receptor (casr). Biochem. Pharmacol. 2010, 80, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Henley, C., 3rd; Yang, Y.; Davis, J.; Lu, J.Y.; Morony, S.; Fan, W.; Florio, M.; Sun, B.; Shatzen, E.; Pretorius, J.K.; et al. Discovery of a calcimimetic with differential effects on parathyroid hormone and calcitonin secretion. J. Pharmacol. Exp. Ther. 2011, 337, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.N.; Owens, M.; Gustafsson, M.; Jensen, J.; Tabatabaei, A.; Schmelzer, K.; Olsson, R.; Burstein, E.S. Characterization of highly efficacious allosteric agonists of the human calcium-sensing receptor. J. Pharmacol. Exp. Ther. 2011, 337, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.E.; Mistry, S.N.; Gregory, K.J.; Furness, S.G.; Sexton, P.M.; Scammells, P.J.; Conigrave, A.D.; Christopoulos, A.; Leach, K. Biased allosteric modulation at the cas receptor engendered by structurally diverse calcimimetics. Br. J. Pharmacol. 2015, 172, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.F. The search for calcium receptor antagonists (calcilytics). J. Mol. Endocrinol. 2002, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Magno, A.L.; Ward, B.K.; Ratajczak, T. The calcium-sensing receptor: A molecular perspective. Endocr. Rev. 2011, 32, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Conigrave, A.D.; Ward, D.T. Calcium-sensing receptor (CASR): Pharmacological properties and signaling pathways. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.F.; Scarpa, A. Rapid mobilization of cellular Ca2+ in bovine parathyroid cells evoked by extracellular divalent cations. Evidence for a cell surface calcium receptor. J. Biol. Chem. 1987, 262, 5188–5196. [Google Scholar] [PubMed]
- Hannan, F.M.; Babinsky, V.N.; Thakker, R.V. Disorders of the calcium-sensing receptor and partner proteins: Insights into the molecular basis of calcium homeostasis. J. Mol. Endocrinol. 2016, 57, R127–R142. [Google Scholar] [CrossRef] [PubMed]
- Kifor, O.; MacLeod, R.J.; Diaz, R.; Bai, M.; Yamaguchi, T.; Yao, T.; Kifor, I.; Brown, E.M. Regulation of map kinase by calcium-sensing receptor in bovine parathyroid and car-transfected hek293 cells. Am. J. Physiol. Renal Physiol. 2001, 280, F291–F302. [Google Scholar] [CrossRef] [PubMed]
- Kifor, O.; Diaz, R.; Butters, R.; Brown, E.M. The Ca2+-sensing receptor (CAR) activates phospholipases c, a2, and d in bovine parathyroid and car-transfected, human embryonic kidney (HEK293) cells. J. Bone Miner Res. 1997, 12, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Boudot, C.; Saidak, Z.; Boulanouar, A.K.; Petit, L.; Gouilleux, F.; Massy, Z.; Brazier, M.; Mentaverri, R.; Kamel, S. Implication of the calcium sensing receptor and the phosphoinositide 3-kinase/AKT pathway in the extracellular calcium-mediated migration of raw 264.7 osteoclast precursor cells. Bone 2010, 46, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Li, H.X.; Kong, F.J.; Bai, S.Z.; He, W.; Xing, W.J.; Xi, Y.H.; Li, G.W.; Guo, J.; Li, H.Z.; Wu, L.Y.; et al. Involvement of calcium-sensing receptor in oxldl-induced MMP-2 production in vascular smooth muscle cells via PI3K/AKT pathway. Mol. Cell. Biochem. 2012, 362, 115–122. [Google Scholar] [CrossRef] [PubMed]
- de Jesus Ferreira, M.C.; Helies-Toussaint, C.; Imbert-Teboul, M.; Bailly, C.; Verbavatz, J.M.; Bellanger, A.C.; Chabardes, D. Co-expression of a Ca2+-inhibitable adenylyl cyclase and of a Ca2+-sensing receptor in the cortical thick ascending limb cell of the rat kidney. Inhibition of hormone-dependent camp accumulation by extracellular Ca2+. J. Biol. Chem. 1998, 273, 15192–15202. [Google Scholar] [CrossRef] [PubMed]
- Gerbino, A.; Ruder, W.C.; Curci, S.; Pozzan, T.; Zaccolo, M.; Hofer, A.M. Termination of camp signals by Ca2+ and Gαi via extracellular Ca2+ sensors: A link to intracellular Ca2+ oscillations. J. Cell Biol. 2005, 171, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Beierwaltes, W.H. The role of calcium in the regulation of renin secretion. Am. J. Physiol. Renal Physiol. 2010, 298, F1–F11. [Google Scholar] [CrossRef] [PubMed]
- Ward, B.K.; Magno, A.L.; Walsh, J.P.; Ratajczak, T. The role of the calcium-sensing receptor in human disease. Clin. Biochem. 2012, 45, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, L.A.; Brandi, M.L.; Aurbach, G.D. Prostaglandin F2 alpha and alpha-adrenergic agonists regulate parathyroid cell function via the inhibitory guanine nucleotide regulatory protein. Endocrinology 1986, 118, 2115–2119. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Barnett, J.V.; Congo, D.A.; Brown, E.M. Divalent cations suppress 3′,5′-adenosine monophosphate accumulation by stimulating a pertussis toxin-sensitive guanine nucleotide-binding protein in cultured bovine parathyroid cells. Endocrinology 1989, 124, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Leach, K.; Sexton, P.M.; Christopoulos, A.; Conigrave, A.D. Engendering biased signalling from the calcium-sensing receptor for the pharmacotherapy of diverse disorders. Br. J. Pharmacol. 2014, 171, 1142–1155. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, A.R.B.; Hvidtfeldt, M.; Bräuner-Osborne, H. Biased agonism of the calcium-sensing receptor. Cell Calcium 2012, 51, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Handlogten, M.E.; Miller, R.T. Parallel activation of phosphatidylinositol 4-kinase and phospholipase c by the extracellular calcium-sensing receptor. J. Biol. Chem. 2002, 277, 20293–20300. [Google Scholar] [CrossRef] [PubMed]
- Avlani, V.A.; Ma, W.; Mun, H.C.; Leach, K.; Delbridge, L.; Christopoulos, A.; Conigrave, A.D. Calcium-sensing receptor-dependent activation of CREB phosphorylation in HEK293 cells and human parathyroid cells. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E1097–E1104. [Google Scholar] [CrossRef] [PubMed]
- Rey, O.; Young, S.H.; Yuan, J.; Slice, L.; Rozengurt, E. Amino acid-stimulated Ca2+ oscillations produced by the Ca2+-sensing receptor are mediated by a phospholipase c/inositol 1,4,5-trisphosphate-independent pathway that requires g12, rho, filamin-a, and the actin cytoskeleton. J. Biol. Chem. 2005, 280, 22875–22882. [Google Scholar] [CrossRef] [PubMed]
- Rey, O.; Young, S.H.; Papazyan, R.; Shapiro, M.S.; Rozengurt, E. Requirement of the trpc1 cation channel in the generation of transient Ca2+ oscillations by the calcium-sensing receptor. J. Biol. Chem. 2006, 281, 38730–38737. [Google Scholar] [CrossRef] [PubMed]
- Rey, O.; Young, S.H.; Jacamo, R.; Moyer, M.P.; Rozengurt, E. Extracellular calcium sensing receptor stimulation in human colonic epithelial cells induces intracellular calcium oscillations and proliferation inhibition. J. Cell. Physiol. 2010, 225, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Kosik, K.S.; Meigs, T.E.; Yanamadala, V.; Denker, B.M. Galpha12 directly interacts with pp2a: Evidence for Gα12-stimulated PP2A phosphatase activity and dephosphorylation of microtubule-associated protein, tau. J. Biol. Chem. 2004, 279, 54983–54986. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Tate, R.I.; Ruediger, R.; Meigs, T.E.; Denker, B.M. Domains necessary for galpha12 binding and stimulation of protein phosphatase-2a (PP2A): Is galpha12 a novel regulatory subunit of PP2A? Mol. Pharmacol. 2007, 71, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- McCormick, W.D.; Atkinson-Dell, R.; Campion, K.L.; Mun, H.C.; Conigrave, A.D.; Ward, D.T. Increased receptor stimulation elicits differential calcium-sensing receptor(T888) dephosphorylation. J. Biol. Chem. 2010, 285, 14170–14177. [Google Scholar] [CrossRef] [PubMed]
- Rybchyn, M.S.; Slater, M.; Conigrave, A.D.; Mason, R.S. An AKT-dependent increase in canonical wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts. J. Biol. Chem. 2011, 286, 23771–23779. [Google Scholar] [CrossRef] [PubMed]
- Brennan, T.C.; Rybchyn, M.S.; Green, W.; Atwa, S.; Conigrave, A.D.; Mason, R.S. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br. J. Pharmacol. 2009, 157, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- Brennan, S.C.; Thiem, U.; Roth, S.; Aggarwal, A.; Fetahu, I.; Tennakoon, S.; Gomes, A.R.; Brandi, M.L.; Bruggeman, F.; Mentaverri, R.; et al. Calcium sensing receptor signalling in physiology and cancer. Biochim. Biophys. Acta 2013, 1833, 1732–1744. [Google Scholar] [CrossRef] [PubMed]
- Mamillapalli, R.; VanHouten, J.; Zawalich, W.; Wysolmerski, J. Switching of G-protein usage by the calcium-sensing receptor reverses its effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells. J. Biol. Chem. 2008, 283, 24435–24447. [Google Scholar] [CrossRef] [PubMed]
- Mamillapalli, R.; Wysolmerski, J. The calcium-sensing receptor couples to Galpha(s) and regulates pthrp and acth secretion in pituitary cells. J. Endocrinol. 2010, 204, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Brennan, S.C.; Wilkinson, W.J.; Tseng, H.E.; Finney, B.; Monk, B.; Dibble, H.; Quilliam, S.; Warburton, D.; Galietta, L.J.; Kemp, P.J.; et al. The extracellular calcium-sensing receptor regulates human fetal lung development via cftr. Sci. Rep. 2016, 6, 21975. [Google Scholar] [CrossRef] [PubMed]
- Ziegelstein, R.C.; Xiong, Y.; He, C.; Hu, Q. Expression of a functional extracellular calcium-sensing receptor in human aortic endothelial cells. Biochem. Biophys. Res. Commun. 2006, 342, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Smajilovic, S.; Sheykhzade, M.; Holmegard, H.N.; Haunso, S.; Tfelt-Hansen, J. Calcimimetic, AMG 073, induces relaxation on isolated rat aorta. Vascul. Pharmacol. 2007, 47, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, H.Z.E.; Shi, J.; Jahan, K.S.; Martinucci, M.C.; Gilbert, S.J.; Vanessa Ho, W.S.; Albert, A.P. Stimulation of calcium-sensing receptors induces endothelium-dependent vasorelaxations via nitric oxide production and activation of ikca channels. Vascul. Pharmacol. 2016, 80, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.Y.; Wang, L.M.; Zhong, H.; Liu, Y.M.; Tang, N.; Zhu, L.P.; He, F.; Hu, Q.H. TRPC1 stimulates calciumsensing receptorinduced storeoperated Ca2+ entry and nitric oxide production in endothelial cells. Mol. Med. Rep. 2017, 16, 4613–4619. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, H.Z.E.; Carlton-Carew, S.R.E.; Khan, D.M.; Zargaran, A.K.; Jahan, K.S.; Vanessa Ho, W.S.; Albert, A.P. Heteromeric TRPV4/TRPC1 channels mediate calcium-sensing receptor-induced nitric oxide production and vasorelaxation in rabbit mesenteric arteries. Vascul. Pharmacol. 2017, 96–98, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Garrett, J.E.; Tamir, H.; Kifor, O.; Simin, R.T.; Rogers, K.V.; Mithal, A.; Gagel, R.F.; Brown, E.M. Calcitonin-secreting cells of the thyroid express an extracellular calcium receptor gene. Endocrinology 1995, 136, 5202–5211. [Google Scholar] [CrossRef] [PubMed]
- Hofer, A.M.; Brown, E.M. Extracellular calcium sensing and signalling. Nat. Rev. Mol. Cell Biol. 2003, 4, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M. Mutations in the calcium-sensing receptor and their clinical implications. Horm. Res. 1997, 48, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Pollak, M.R.; Brown, E.M.; Chou, Y.H.; Hebert, S.C.; Marx, S.J.; Steinmann, B.; Levi, T.; Seidman, C.E.; Seidman, J.G. Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 1993, 75, 1297–1303. [Google Scholar] [CrossRef]
- Watanabe, S.; Fukumoto, S.; Chang, H.; Takeuchi, Y.; Hasegawa, Y.; Okazaki, R.; Chikatsu, N.; Fujita, T. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet 2002, 360, 692–694. [Google Scholar] [CrossRef]
- Pollak, M.R.; Brown, E.M.; Estep, H.L.; McLaine, P.N.; Kifor, O.; Park, J.; Hebert, S.C.; Seidman, C.E.; Seidman, J.G. Autosomal dominant hypocalcaemia caused by a Ca2+-sensing receptor gene mutation. Nat. Genet. 1994, 8, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.M.; Hauache, O.; Goldsmith, P.K.; Collins, R.; Spiegel, A.M. A missense mutation in the seventh transmembrane domain constitutively activates the human Ca2+ receptor. FEBS Lett. 1999, 448, 180–184. [Google Scholar] [CrossRef]
- Carmosino, M.; Gerbino, A.; Hendy, G.N.; Torretta, S.; Rizzo, F.; Debellis, L.; Procino, G.; Svelto, M. NKCC2 activity is inhibited by the Bartter’s syndrome type 5 gain-of-function CAR-A843E mutant in renal cells. Biol. Cell 2015, 107, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Tfelt-Hansen, J.; Brown, E.M. The calcium-sensing receptor in normal physiology and pathophysiology: A review. Crit. Rev. Clin. Lab. Sci. 2005, 42, 35–70. [Google Scholar] [CrossRef] [PubMed]
- Ruat, M.; Molliver, M.E.; Snowman, A.M.; Snyder, S.H. Calcium sensing receptor: Molecular cloning in rat and localization to nerve terminals. Proc. Natl. Acad. Sci. USA 1995, 92, 3161–3165. [Google Scholar] [CrossRef] [PubMed]
- Squires, P.E. Non-Ca2+-homeostatic functions of the extracellular Ca2+-sensing receptor (CAR) in endocrine tissues. J. Endocrinol. 2000, 165, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Canaff, L.; Petit, J.L.; Kisiel, M.; Watson, P.H.; Gascon-Barre, M.; Hendy, G.N. Extracellular calcium-sensing receptor is expressed in rat hepatocytes. Coupling to intracellular calcium mobilization and stimulation of bile flow. J. Biol. Chem. 2001, 276, 4070–4079. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xu, C.; Zhao, W.; Zhang, J.; Cao, K.; Yang, B.; Wu, L. Calcium and polyamine regulated calcium-sensing receptors in cardiac tissues. Eur. J. Biochem. 2003, 270, 2680–2688. [Google Scholar] [CrossRef] [PubMed]
- Tfelt-Hansen, J.; Hansen, J.L.; Smajilovic, S.; Terwilliger, E.F.; Haunso, S.; Sheikh, S.P. Calcium receptor is functionally expressed in rat neonatal ventricular cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H1165–H1171. [Google Scholar] [CrossRef] [PubMed]
- Alfadda, T.I.; Saleh, A.M.; Houillier, P.; Geibel, J.P. Calcium-sensing receptor 20 years later. Am. J. Physiol. Cell Physiol. 2014, 307, C221–C231. [Google Scholar] [CrossRef] [PubMed]
- Saidak, Z.; Mentaverri, R.; Brown, E.M. The role of the calcium-sensing receptor in the development and progression of cancer. Endocr. Rev. 2009, 30, 178–195. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, S.; Mantovani, G.; Lania, A.; Borgato, S.; Vicentini, L.; Beretta, E.; Faglia, G.; di Blasio, A.M.; Spada, A. Calcium-sensing receptor expression and signalling in human parathyroid adenomas and primary hyperplasia. Clin. Endocrinol. 2000, 52, 339–348. [Google Scholar] [CrossRef]
- Gogusev, J.; Duchambon, P.; Hory, B.; Giovannini, M.; Goureau, Y.; Sarfati, E.; Drueke, T.B. Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism. Kidney Int. 1997, 51, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Farnebo, F.; Enberg, U.; Grimelius, L.; Backdahl, M.; Schalling, M.; Larsson, C.; Farnebo, L.O. Tumor-specific decreased expression of calcium sensing receptor messenger ribonucleic acid in sporadic primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 1997, 82, 3481–3486. [Google Scholar] [CrossRef] [PubMed]
- Sheinin, Y.; Kallay, E.; Wrba, F.; Kriwanek, S.; Peterlik, M.; Cross, H.S. Immunocytochemical localization of the extracellular calcium-sensing receptor in normal and malignant human large intestinal mucosa. J. Histochem. Cytochem. 2000, 48, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, S.; Wang, H.; Canaff, L.; Hendy, G.N.; Appelman, H.; Varani, J. Calcium sensing receptor in human colon carcinoma: Interaction with Ca2+ and 1,25-dihydroxyvitamin D3. Cancer Res. 2005, 65, 493–498. [Google Scholar] [PubMed]
- Miller, G.; Davis, J.; Shatzen, E.; Colloton, M.; Martin, D.; Henley, C.M. Cinacalcet hcl prevents development of parathyroid gland hyperplasia and reverses established parathyroid gland hyperplasia in a rodent model of ckd. Nephrol. Dial. Transplant. 2012, 27, 2198–2205. [Google Scholar] [CrossRef] [PubMed]
- Mizobuchi, M.; Hatamura, I.; Ogata, H.; Saji, F.; Uda, S.; Shiizaki, K.; Sakaguchi, T.; Negi, S.; Kinugasa, E.; Koshikawa, S.; et al. Calcimimetic compound upregulates decreased calcium-sensing receptor expression level in parathyroid glands of rats with chronic renal insufficiency. J. Am. Soc. Nephrol. 2004, 15, 2579–2587. [Google Scholar] [CrossRef] [PubMed]
- Garland, C.; Shekelle, R.B.; Barrett-Connor, E.; Criqui, M.H.; Rossof, A.H.; Paul, O. Dietary vitamin d and calcium and risk of colorectal cancer: A 19-year prospective study in men. Lancet 1985, 1, 307–309. [Google Scholar] [CrossRef]
- Aggarwal, A.; Hobaus, J.; Tennakoon, S.; Prinz-Wohlgenannt, M.; Graca, J.; Price, S.A.; Heffeter, P.; Berger, W.; Baumgartner-Parzer, S.; Kallay, E. Active vitamin d potentiates the anti-neoplastic effects of calcium in the colon: A cross talk through the calcium-sensing receptor. J. Steroid Biochem. Mol. Biol. 2016, 155, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Canaff, L.; Hendy, G.N. Human calcium-sensing receptor gene. Vitamin d response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J. Biol. Chem. 2002, 277, 30337–30350. [Google Scholar] [CrossRef] [PubMed]
- Hendy, G.N.; Canaff, L. Calcium-sensing receptor gene: Regulation of expression. Front. Physiol. 2016, 7, 394. [Google Scholar] [CrossRef] [PubMed]
- Mihai, R.; Stevens, J.; McKinney, C.; Ibrahim, N.B. Expression of the calcium receptor in human breast cancer—A potential new marker predicting the risk of bone metastases. Eur. J. Surg. Oncol. 2006, 32, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.L.; Chattopadhyay, N.; Kifor, O.; Yamaguchi, T.; Brown, E.M. Ca2+-sensing receptor expression and pthrp secretion in pc-3 human prostate cancer cells. Am. J. Physiol. Endocrinol. Metab. 2001, 281, E1267–E1274. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.T.; Riccardi, D. New concepts in calcium-sensing receptor pharmacology and signalling. Br. J. Pharmacol. 2012, 165, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Weston, A.H.; Absi, M.; Ward, D.T.; Ohanian, J.; Dodd, R.H.; Dauban, P.; Petrel, C.; Ruat, M.; Edwards, G. Evidence in favor of a calcium-sensing receptor in arterial endothelial cells: Studies with calindol and calhex 231. Circ. Res. 2005, 97, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Smajilovic, S.; Hansen, J.L.; Christoffersen, T.E.; Lewin, E.; Sheikh, S.P.; Terwilliger, E.F.; Brown, E.M.; Haunso, S.; Tfelt-Hansen, J. Extracellular calcium sensing in rat aortic vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 2006, 348, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Berra Romani, R.; Raqeeb, A.; Laforenza, U.; Scaffino, M.F.; Moccia, F.; Avelino-Cruz, J.E.; Oldani, A.; Coltrini, D.; Milesi, V.; Taglietti, V.; et al. Cardiac microvascular endothelial cells express a functional Ca 2+-sensing receptor. J. Vascul. Res. 2009, 46, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Weston, A.H.; Absi, M.; Harno, E.; Geraghty, A.R.; Ward, D.T.; Ruat, M.; Dodd, R.H.; Dauban, P.; Edwards, G. The expression and function of Ca2+-sensing receptors in rat mesenteric artery; comparative studies using a model of type ii diabetes. Br. J. Pharmacol. 2008, 154, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Smajilovic, S.; Tfelt-Hansen, J. Calcium acts as a first messenger through the calcium-sensing receptor in the cardiovascular system. Cardiovasc. Res. 2007, 75, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Weston, A.H.; Geraghty, A.; Egner, I.; Edwards, G. The vascular extracellular calcium-sensing receptor: An update. Acta Physiol. 2011, 203, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Smajilovic, S.; Yano, S.; Jabbari, R.; Tfelt-Hansen, J. The calcium-sensing receptor and calcimimetics in blood pressure modulation. Br. J. Pharmacol. 2011, 164, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Schreckenberg, R.; Schluter, K.D. Calcium sensing receptor expression and signalling in cardiovascular physiology and disease. Vascul. Pharmacol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.H.; Liu, M.N.; Li, H.; Shi, S.; Zhao, Y.J.; Wang, R.; Xu, C.Q. Calcium-sensing receptor induces rat neonatal ventricular cardiomyocyte apoptosis. Biochem. Biophys. Res. Commun. 2006, 350, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.H.; Fu, S.B.; Lu, F.H.; Wu, B.; Gong, D.M.; Pan, Z.W.; Lv, Y.J.; Zhao, Y.J.; Li, Q.F.; Wang, R.; et al. Involvement of calcium-sensing receptor in ischemia/reperfusion-induced apoptosis in rat cardiomyocytes. Biochem. Biophys. Res. Commun. 2006, 347, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.H.; Li, Y.Q.; Feng, S.L.; Li, B.X.; Pan, Z.W.; Xu, C.Q.; Li, T.T.; Yang, B.F. Calcium-sensing receptor activation contributed to apoptosis stimulates trpc6 channel in rat neonatal ventricular myocytes. Biochem. Biophys. Res. Commun. 2010, 394, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.L.; Sun, M.R.; Li, T.T.; Yin, X.; Xu, C.Q.; Sun, Y.H. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes. Biochem. Biophys. Res. Commun. 2011, 406, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, G.; Liu, Y.; Fu, Y.; Chi, J.; Zhu, Y.; Zhao, Y.; Yin, X. Cyclosporin a induces cardiomyocyte injury through calcium-sensing receptor-mediated calcium overload. Pharmazie 2011, 66, 52–57. [Google Scholar] [PubMed]
- Zhao, Y.; Hou, G.; Zhang, Y.; Chi, J.; Zhang, L.; Zou, X.; Tang, J.; Liu, Y.; Fu, Y.; Yin, X. Involvement of the calcium-sensing receptor in cyclosporin a-induced cardiomyocyte apoptosis in rats. Pharmazie 2011, 66, 968–974. [Google Scholar] [PubMed]
- Chi, J.; Zhu, Y.; Fu, Y.; Liu, Y.; Zhang, X.; Han, L.; Yin, X.; Zhao, D. Cyclosporin a induces apoptosis in H9C2 cardiomyoblast cells through calcium-sensing receptor-mediated activation of the erk MAPK and p38 MAPK pathways. Mol. Cell. Biochem. 2013, 367, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-Y.; Liu, X.-Y.; Han, G.; Wang, Z.-Y.; Li, X.-X.; Jiang, Z.-M.; Jiang, C.-M. LPS induces cardiomyocyte injury through calcium-sensing receptor. Mol. Cell. Biochem. 2013, 379, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.M.; Han, L.P.; Li, H.Z.; Qu, Y.B.; Zhang, Z.R.; Wang, R.; Xu, C.Q.; Li, W.M. Calcium-sensing receptors induce apoptosis in cultured neonatal rat ventricular cardiomyocytes during simulated ischemia/reperfusion. Cell Biol. Int. 2008, 32, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Tian, Z.; Zhang, W.; Zhao, Y.; Bai, S.; Ren, H.; Chen, H.; Yu, X.; Wang, J.; Wang, L.; et al. Calcium-sensing receptors induce apoptosis in rat cardiomyocytes via the Endo (sarco) plasmic reticulum pathway during hypoxia/reoxygenation. Basic Clin. Pharmacol. Toxicol. 2010, 106, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.H.; Tian, Z.; Zhang, W.H.; Zhao, Y.J.; Li, H.L.; Ren, H.; Zheng, H.S.; Liu, C.; Hu, G.X.; Tian, Y.; et al. Calcium-sensing receptors regulate cardiomyocyte Ca2+ signaling via the sarcoplasmic reticulum-mitochondrion interface during hypoxia/reoxygenation. J. Biomed. Sci. 2010, 17, 50. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Li, H.Z.; Zhang, W.H.; Wang, L.C.; Wang, L.N.; Zhang, L.; Li, G.W.; Li, H.X.; Yang, B.F.; Wu, L.; et al. Increased expression of calcium-sensing receptors induced by ox-LDL amplifies apoptosis of cardiomyocytes during simulated ischaemia-reperfusion. Clin. Exp. Pharmacol. Physiol. 2010, 37, e128–e135. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.M.; Xu, C.Q.; Mi, Y.; Li, H.Z.; Wang, R.; Li., W.-M. Calcium-sensing receptor induced myocardial ischemia/reperfusion injury via the c-jun nh2-terminal protein kinase pathway. Acta Cardiol. Sin. 2010, 26, 102–110. [Google Scholar]
- Zheng, H.S.; Liu, J.; Liu, C.; Lu, F.H.; Zhao, Y.J.; Jin, Z.F.; Ren, H.; Leng, X.N.; Jia, J.; Hu, G.X.; et al. Calcium-sensing receptor activating phosphorylation of PKC delta translocation on mitochondria to induce cardiomyocyte apoptosis during ischemia/reperfusion. Mol. Cell. Biochem. 2011, 358, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhu, T.; Sun, T.; Wang, L.; Pan, S.; Tao, Z.; Yang, Z.; Cao, K. Activation of calcium-sensing receptors is associated with apoptosis in a model of simulated cardiomyocytes ischemia/reperfusion. J. Biomed. Res. 2010, 24, 301–307. [Google Scholar] [CrossRef]
- Yan, L.; Zhu, T.B.; Wang, L.S.; Pan, S.Y.; Tao, Z.X.; Yang, Z.; Cao, K.; Huang, J. Inhibitory effect of hepatocyte growth factor on cardiomyocytes apoptosis is partly related to reduced calcium sensing receptor expression during a model of simulated ischemia/reperfusion. Mol. Biol. Rep. 2011, 38, 2695–2701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.H.; Lu, F.H.; Zhao, Y.J.; Wang, L.N.; Tian, Y.; Pan, Z.W.; Lv, Y.J.; Wang, Y.L.; Du, L.J.; Sun, Z.R.; et al. Post-conditioning protects rat cardiomyocytes via pkcepsilon-mediated calcium-sensing receptors. Biochem. Biophys. Res. Commun. 2007, 361, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Teng, Z.; Lu, F.H.; Zhao, Y.J.; Li, H.; Ren, H.; Chen, H.; Pan, Z.W.; Lv, Y.J.; Yang, B.F.; et al. Post-conditioning protects cardiomyocytes from apoptosis via PKC (epsilon)-interacting with calcium-sensing receptors to inhibit Endo (sarco) plasmic reticulum-mitochondria crosstalk. Mol. Cell. Biochem. 2010, 341, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.T.; Hu, G.X.; Zhao, Y.J.; Li, H.L.; Jin, Z.F.; Ren, H.; Dong, S.Y.; Zhong, X.; Li, H.Z.; Yang, B.F.; et al. Post-conditioning protecting rat cardiomyocytes from apoptosis via attenuating calcium-sensing receptor-induced Endo (sarco) plasmic reticulum stress. Mol. Cell. Biochem. 2012, 361, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cao, S.; Deng, S.; Yao, G.; Yu, T. Ischemic postconditioning and pinacidil suppress calcium overload in anoxia-reoxygenation cardiomyocytes via down-regulation of the calcium-sensing receptor. PeerJ 2016, 4, e2612. [Google Scholar] [CrossRef] [PubMed]
- Dyukova, E.; Schreckenberg, R.; Sitdikova, G.; Schlüter, K.-D. Influence of ischemic pre- and post-conditioning on cardiac expression of calcium-sensing receptor. BioNanoScience 2017, 7, 112–114. [Google Scholar] [CrossRef]
- Sun, J.; Murphy, E. Calcium sensing receptor: A sensor and mediator of ischemic preconditioning in the hearts. Am. J. Physiol. Heart Circ. Physiol. 2010, 299. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.Z.; Sun, J.; Wu, H.; Zhang, N.; Li, H.X.; Li, G.W.; Li, H.Z.; He, W.; Zhang, W.H.; Zhao, Y.J.; et al. Decrease in calcium-sensing receptor in the progress of diabetic cardiomyopathy. Diabetes Res. Clin. Pract. 2012, 95, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Cao, Y.; Huang, W.; Liu, Y.; Wang, Y.; Li, L.; Liu, L.; Ji, Z.; Sun, H. Crucial role of calcium-sensing receptor activation in cardiac injury of diabetic rats. PLoS ONE 2013, 8, e65147. [Google Scholar] [CrossRef] [PubMed]
- Matturri, L.; Milei, J.; Grana, D.R.; Lavezzi, A.M. Characterization of myocardial hypertrophy by DNA content, pcna expression and apoptotic index. Int. J. Cardiol. 2002, 82, 33–39. [Google Scholar] [CrossRef]
- Wang, L.N.; Wang, C.; Lin, Y.; Xi, Y.H.; Zhang, W.H.; Zhao, Y.J.; Li, H.Z.; Tian, Y.; Lv, Y.J.; Yang, B.F.; et al. Involvement of calcium-sensing receptor in cardiac hypertrophy-induced by angiotensinii through calcineurin pathway in cultured neonatal rat cardiomyocytes. Biochem. Biophys. Res. Commun. 2008, 369, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.L.J.; Lu, F.; Wang, Y.; Zhao, Y.; Dong, S.; Leng, X.; Jia, J.; Ren, H.; Xu, C.; Zhang, W. Calcium sensing receptor regulates cardiomyocyte function through nuclear calcium. Cell Biol. Int. 2012, 36, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Colella, M.; Pozzan, T. Cardiac cell hypertrophy in vitro: Role of calcineurin/nfat as Ca2+ signal integrators. Ann. N. Y. Acad. Sci. 2008, 1123, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.H.; Fu, S.B.; Leng, X.; Zhang, X.; Dong, S.; Zhao, Y.J.; Ren, H.; Li, H.; Zhong, X.; Xu, C.Q.; et al. Role of the calcium-sensing receptor in cardiomyocyte apoptosis via the sarcoplasmic reticulum and mitochondrial death pathway in cardiac hypertrophy and heart failure. Cell. Physiol. Biochem. 2013, 31, 728–743. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, C.; Lin, Y.; Xi, Y.; Li, H.; Shi, S.; Li, H.; Zhang, W.; Zhao, Y.; Tian, Y.; et al. Suppression of calcium-sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy. Mol. Med. Rep. 2016, 14, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, T.; Wu, J.; Yu, X.; Zheng, D.; Yang, F.; Li, T.; Wang, L.; Zhao, Y.; Dong, S.; et al. Calcium sensing receptor promotes cardiac fibroblast proliferation and extracellular matrix secretion. Cell. Physiol. Biochem. 2014, 33, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Schreckenberg, R.; Dyukova, E.; Sitdikova, G.; Abdallah, Y.; Schluter, K.D. Mechanisms by which calcium receptor stimulation modifies electromechanical coupling in isolated ventricular cardiomyocytes. Pflugers Arch. 2015, 467, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Chang, H.-K.; Lee, S.-P.; Shieh, R.-C. Activation of the Ca2+-sensing receptors increases currents through inward rectifier k+ channels via activation of phosphatidylinositol 4-kinase. Pflugers Arch. 2017, 468, 1931–1943. [Google Scholar] [CrossRef] [PubMed]
- Tagliavini, S.; Genedani, S.; Bertolini, A.; Bazzani, C. Ischemia- and reperfusion-induced arrhythmias are prevented by putrescine. Eur. J. Pharmacol. 1991, 194, 7–10. [Google Scholar] [CrossRef]
- Schepelmann, M.; Yarova, P.L.; Lopez-Fernandez, I.; Davies, T.S.; Brennan, S.C.; Edwards, P.J.; Aggarwal, A.; Graca, J.; Rietdorf, K.; Matchkov, V.; et al. The vascular Ca2+-sensing receptor regulates blood vessel tone and blood pressure. Am. J. Physiol. Cell Physiol. 2016, 310, C193–C204. [Google Scholar] [CrossRef] [PubMed]
- Wess, J. G-protein-coupled receptors: Molecular mechanisms involved in receptor activation and selectivity of g-protein recognition. FASEB J. 1997, 11, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, R.J. Historical review: A brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol. Sci. 2004, 25, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, S.; Ahn, S.; Rominger, D.H.; Gowen-MacDonald, W.; Lam, C.M.; Dewire, S.M.; Violin, J.D.; Lefkowitz, R.J. Quantifying ligand bias at seven-transmembrane receptors. Mol. Pharmacol. 2010, 80, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.J.; Hofmann, K.P. Spatial and temporal aspects of signaling by G-protein-coupled receptors. Mol. Pharmacol. 2015, 88, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Pupo, A.S.; Duarte, D.A.; Lima, V.; Teixeira, L.B.; Parreiras, E.S.L.T.; Costa-Neto, C.M. Recent updates on gpcr biased agonism. Pharmacol. Res. 2016, 112, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Calebiro, D.; Sungkaworn, T.; Maiellaro, I. Real-time monitoring of GPCR/CAMP signalling by fret and single-molecule microscopy. Horm. Metab. Res. 2014, 46, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, C.; Vicencio, J.M.; Estrada, M.; Lin, Y.; Rocco, P.; Rebellato, P.; Munoz, J.P.; Garcia-Prieto, J.; Quest, A.F.; Chiong, M.; et al. Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors. Circ. Res. 2013, 112, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Benard, G.; Massa, F.; Puente, N.; Lourenco, J.; Bellocchio, L.; Soria-Gomez, E.; Matias, I.; Delamarre, A.; Metna-Laurent, M.; Cannich, A.; et al. Mitochondrial cb1 receptors regulate neuronal energy metabolism. Nat. Neurosci. 2012, 15, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Calebiro, D.; Nikolaev, V.O.; Gagliani, M.C.; de Filippis, T.; Dees, C.; Tacchetti, C.; Persani, L.; Lohse, M.J. Persistent camp-signals triggered by internalized g-protein coupled receptors. PLoS Biol. 2009, 7, e1000172. [Google Scholar] [CrossRef] [PubMed]
- Irannejad, R.; Tomshine, J.C.; Tomshine, J.R.; Chevalier, M.; Mahoney, J.P.; Steyaert, J.; Rasmussen, S.G.; Sunahara, R.K.; El-Samad, H.; Huang, B.; et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 2013, 495, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Pidasheva, S.; Grant, M.; Canaff, L.; Ercan, O.; Kumar, U.; Hendy, G.N. Calcium-sensing receptor dimerizes in the endoplasmic reticulum: Biochemical and biophysical characterization of casr mutants retained intracellularly. Hum. Mol. Genet. 2006, 15, 2200–2209. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.T.; Brown, E.M.; Harris, H.W. Disulfide bonds in the extracellular calcium-polyvalent cation-sensing receptor correlate with dimer formation and its response to divalent cations in vitro. J. Biol. Chem. 1998, 273, 14476–14483. [Google Scholar] [CrossRef] [PubMed]
- Breitwieser, G.E. Minireview: The intimate link between calcium sensing receptor trafficking and signaling: Implications for disorders of calcium homeostasis. Mol. Endocrinol. 2012, 26, 1482–1495. [Google Scholar] [CrossRef] [PubMed]
- Breitwieser, G.E. Pharmacoperones and the calcium sensing receptor: Exogenous and endogenous regulators. Pharmacol. Res. 2014, 83, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Holtback, U.; Brismar, H.; DiBona, G.F.; Fu, M.; Greengard, P.; Aperia, A. Receptor recruitment: A mechanism for interactions between g protein-coupled receptors. Proc. Natl. Acad. Sci. USA 1999, 96, 7271–7275. [Google Scholar] [CrossRef] [PubMed]
- Brennan, S.C.; Mun, H.C.; Leach, K.; Kuchel, P.W.; Christopoulos, A.; Conigrave, A.D. Receptor expression modulates calcium-sensing receptor mediated intracellular Ca2+ mobilization. Endocrinology 2015, 156, 1330–1342. [Google Scholar] [CrossRef] [PubMed]
- Breitwieser, G.E. The calcium sensing receptor life cycle: Trafficking, cell surface expression, and degradation. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Ray, K. Calcium-sensing receptor: Trafficking, endocytosis, recycling, and importance of interacting proteins. Prog. Mol. Biol. Transl. Sci. 2015, 132, 127–150. [Google Scholar] [PubMed]
- Huang, C.; Miller, R.T. The calcium-sensing receptor and its interacting proteins. J. Cell Mol. Med. 2007, 11, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Quinn, S.; Trivedi, S.; Kifor, O.; Pearce, S.H.; Pollak, M.R.; Krapcho, K.; Hebert, S.C.; Brown, E.M. Expression and characterization of inactivating and activating mutations in the human Ca2+ o-sensing receptor. J. Biol. Chem. 1996, 271, 19537–19545. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.P.; Stepanchick, A.; Cavanaugh, A.; Breitwieser, G.E. Agonist-driven maturation and plasma membrane insertion of calcium-sensing receptors dynamically control signal amplitude. Sci. Signal. 2011, 4, ra78. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Breitwieser, G.E. Rescue of calcium-sensing receptor mutants by allosteric modulators reveals a conformational checkpoint in receptor biogenesis. J. Biol. Chem. 2007, 282, 9517–9525. [Google Scholar] [CrossRef] [PubMed]
- White, E.; McKenna, J.; Cavanaugh, A.; Breitwieser, G.E. Pharmacochaperone-mediated rescue of calcium-sensing receptor loss-of-function mutants. Mol. Endocrinol. 2009, 23, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- Cavanaugh, A.; McKenna, J.; Stepanchick, A.; Breitwieser, G.E. Calcium-sensing receptor biosynthesis includes a cotranslational conformational checkpoint and endoplasmic reticulum retention. J. Biol. Chem. 2010, 285, 19854–19864. [Google Scholar] [CrossRef] [PubMed]
- Rus, R.; Haag, C.; Bumke-Vogt, C.; Bahr, V.; Mayr, B.; Mohlig, M.; Schulze, E.; Frank-Raue, K.; Raue, F.; Schofl, C. Novel inactivating mutations of the calcium-sensing receptor: The calcimimetic nps r-568 improves signal transduction of mutant receptors. J. Clin. Endocrinol. Metab. 2008, 93, 4797–4803. [Google Scholar] [CrossRef] [PubMed]
- Leach, K.; Wen, A.; Cook, A.E.; Sexton, P.M.; Conigrave, A.D.; Christopoulos, A. Impact of clinically relevant mutations on the pharmacoregulation and signaling bias of the calcium-sensing receptor by positive and negative allosteric modulators. Endocrinology 2013, 154, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Hotsubo, T.; Kobayashi, K.; Mochizuki, H.; Ishizu, K.; Tajima, T. Loss-of-function and gain-of-function mutations of calcium-sensing receptor: Functional analysis and the effect of allosteric modulators NPS R-568 and NPS 2143. J. Clin. Endocrinol. Metab. 2013, 98, E1692–E1701. [Google Scholar] [CrossRef] [PubMed]
- Letz, S.; Rus, R.; Haag, C.; Dorr, H.G.; Schnabel, D.; Mohlig, M.; Schulze, E.; Frank-Raue, K.; Raue, F.; Mayr, B.; et al. Novel activating mutations of the calcium-sensing receptor: The calcilytic NPS-2143 mitigates excessive signal transduction of mutant receptors. J. Clin. Endocrinol. Metab. 2010, 95, E229–E233. [Google Scholar] [CrossRef] [PubMed]
- Letz, S.; Haag, C.; Schulze, E.; Frank-Raue, K.; Raue, F.; Hofner, B.; Mayr, B.; Schofl, C. Amino alcohol- (NPS-2143) and quinazolinone-derived calcilytics (ATF936 and AXT914) differentially mitigate excessive signalling of calcium-sensing receptor mutants causing bartter syndrome type 5 and autosomal dominant hypocalcemia. PLoS ONE 2014, 9, e115178. [Google Scholar] [CrossRef] [PubMed]
- Hannan, F.M.; Walls, G.V.; Babinsky, V.N.; Nesbit, M.A.; Kallay, E.; Hough, T.A.; Fraser, W.D.; Cox, R.D.; Hu, J.; Spiegel, A.M.; et al. The calcilytic agent NPS 2143 rectifies hypocalcemia in a mouse model with an activating calcium-sensing receptor (CASR) mutation: Relevance to autosomal dominant hypocalcemia type 1 (ADH1). Endocrinology 2015, 156, 3114–3121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, B.; Endo, I.; Ohnishi, Y.; Kondo, T.; Hasegawa, T.; Amizuka, N.; Kiyonari, H.; Shioi, G.; Abe, M.; Fukumoto, S.; et al. Calcilytic ameliorates abnormalities of mutant calcium-sensing receptor (CASR) knock-in mice mimicking autosomal dominant hypocalcemia (ADH). J. Bone Miner. Res. 2015, 30, 1980–1993. [Google Scholar] [CrossRef] [PubMed]
- Leach, K.; Conigrave, A.D.; Sexton, P.M.; Christopoulos, A. Towards tissue-specific pharmacology: Insights from the calcium-sensing receptor as a paradigm for GPCR (patho)physiological bias. Trends Pharmacol. Sci. 2015, 36, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Makita, N.; Sato, J.; Manaka, K.; Shoji, Y.; Oishi, A.; Hashimoto, M.; Fujita, T.; Iiri, T. An acquired hypocalciuric hypercalcemia autoantibody induces allosteric transition among active human ca-sensing receptor conformations. Proc. Natl. Acad. Sci. USA 2007, 104, 5443–5448. [Google Scholar] [CrossRef] [PubMed]
- Bruce, J.I.; Yang, X.; Ferguson, C.J.; Elliott, A.C.; Steward, M.C.; Case, R.M.; Riccardi, D. Molecular and functional identification of a Ca2+ (polyvalent cation)-sensing receptor in rat pancreas. J. Biol. Chem. 1999, 274, 20561–20568. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, A.R.; Smajilovic, S.; Brauner-Osborn, H. Novel strategies in drug discovery of the calcium-sensing receptor based on biased signaling. Curr. Drug. Targets 2012, 13, 1324–1335. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, A.R.; Worm, J.; Jacobsen, S.E.; Stahlhut, M.; Latta, M.; Brauner-Osborne, H. Strontium is a biased agonist of the calcium-sensing receptor in rat medullary thyroid carcinoma 6-23 cells. J. Pharmacol. Exp. Ther. 2012, 343, 638–649. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, N.; Quinn, S.J.; Kifor, O.; Ye, C.; Brown, E.M. The calcium-sensing receptor (CAR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem. Pharmacol. 2007, 74, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Coulombe, J.; Faure, H.; Robin, B.; Ruat, M. In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochem. Biophys. Res. Commun. 2004, 323, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Hurtel-Lemaire, A.S.; Mentaverri, R.; Caudrillier, A.; Cournarie, F.; Wattel, A.; Kamel, S.; Terwilliger, E.F.; Brown, E.M.; Brazier, M. The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis: New insights into the associated signaling pathways. J. Biol. Chem. 2009, 284, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Davey, A.E.; Leach, K.; Valant, C.; Conigrave, A.D.; Sexton, P.M.; Christopoulos, A. Positive and negative allosteric modulators promote biased signaling at the calcium-sensing receptor. Endocrinology 2012, 153, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Leach, K.; Wen, A.; Davey, A.E.; Sexton, P.M.; Conigrave, A.D.; Christopoulos, A. Identification of molecular phenotypes and biased signaling induced by naturally occurring mutations of the human calcium-sensing receptor. Endocrinology 2012, 153, 4304–4316. [Google Scholar] [CrossRef] [PubMed]
- Hofer, A.M.; Lefkimmiatis, K. Extracellular calcium and cAMP: Second messengers as “Third messengers”? Physiology 2007, 22, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Wellendorph, P.; Johansen, L.D.; Brauner-Osborne, H. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients. Mol. Pharmacol. 2009, 76, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Kano, M.; Kato, M. Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature 1987, 325, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Francesconi, A.; Duvoisin, R.M. Divalent cations modulate the activity of metabotropic glutamate receptors. J. Neurosci. Res. 2004, 75, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Kubo, Y.; Miyashita, T.; Murata, Y. Structural basis for a Ca2+-sensing function of the metabotropic glutamate receptors. Science 1998, 279, 1722–1725. [Google Scholar] [CrossRef] [PubMed]
- Nash, M.S.; Saunders, R.; Young, K.W.; Challiss, R.A.; Nahorski, S.R. Reassessment of the Ca2+ sensing property of a type i metabotropic glutamate receptor by simultaneous measurement of inositol 1,4,5-trisphosphate and Ca2+ in single cells. J. Biol. Chem. 2001, 276, 19286–19293. [Google Scholar] [CrossRef] [PubMed]
- Tabata, T.; Kano, M. Calcium dependence of native metabotropic glutamate receptor signaling in central neurons. Mol. Neurobiol. 2004, 29, 261–270. [Google Scholar] [CrossRef]
- Hardingham, N.R.; Bannister, N.J.; Read, J.C.; Fox, K.D.; Hardingham, G.E.; Jack, J.J. Extracellular calcium regulates postsynaptic efficacy through group 1 metabotropic glutamate receptors. J. Neurosci. 2006, 26, 6337–6345. [Google Scholar] [CrossRef] [PubMed]
- Gerber, U.; Gee, C.E.; Benquet, P. Metabotropic glutamate receptors: Intracellular signaling pathways. Curr. Opin. Pharmacol. 2007, 7, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kirberger, M.; Qiu, F.; Chen, G.; Yang, J.J. Towards predicting Ca2+-binding sites with different coordination numbers in proteins with atomic resolution. Proteins 2009, 75, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, K.; Kirberger, M.; Wong, H.; Chen, G.; Yang, J.J. Analysis and prediction of calcium-binding pockets from apo-protein structures exhibiting calcium-induced localized conformational changes. Protein Sci. 2010, 19, 1180–1190. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Huang, Y.; Wong, H.C.; Zhou, Y.; Wang, X.; Yang, J.; Hall, R.A.; Brown, E.M.; Yang, J.J. Elucidation of a novel extracellular calcium-binding site on metabotropic glutamate receptor 1α (mGluR1α) that controls receptor activation. J. Biol. Chem. 2010, 285, 33463–33474. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.Y.; Nagaraju, M.; Meyer, R.C.; Zhang, L.; Hamelberg, D.; Hall, R.A.; Brown, E.M.; Conn, P.J.; Yang, J.J. Extracellular calcium modulates actions of orthosteric and allosteric ligands on metabotropic glutamate receptor 1α. J. Biol. Chem. 2014, 289, 1649–1661. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.A.; Borowsky, B.; Tamm, J.A.; Craig, D.A.; Durkin, M.M.; Dai, M.; Yao, W.J.; Johnson, M.; Gunwaldsen, C.; Huang, L.Y.; et al. Gaba(b) receptors function as a heteromeric assembly of the subunits GABAbR1 and GABAbR2. Nature 1998, 396, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Wise, A.; Green, A.; Main, M.J.; Wilson, R.; Fraser, N.; Marshall, F.H. Calcium sensing properties of the GABAb receptor. Neuropharmacology 1999, 38, 1647–1656. [Google Scholar] [CrossRef]
- Silve, C.; Petrel, C.; Leroy, C.; Bruel, H.; Mallet, E.; Rognan, D.; Ruat, M. Delineating a Ca2+ binding pocket within the venus flytrap module of the human calcium-sensing receptor. J. Biol. Chem. 2005, 280, 37917–37923. [Google Scholar] [CrossRef] [PubMed]
- Tordoff, M.G.; Shao, H.; Alarcón, L.K.; Margolskee, R.F.; Mosinger, B.; Bachmanov, A.A.; Reed, D.R.; McCaughey, S. Involvement of t1r3 in calcium-magnesium taste. Physiol. Genomics 2008, 34, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Tordoff, M.G.; Alarcón, L.K.; Valmeki, S.; Jiang, P. T1R3: A human calcium taste receptor. Sci. Rep. 2012, 2, 496. [Google Scholar] [CrossRef] [PubMed]
- Wellendorph, P.; Bräuner-Osborne, H. Molecular cloning, expression, and sequence analysis of gprc6a, a novel family c G-protein-coupled receptor. Gene 2004, 335, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Pi, M.; Quarles, L.D. Osteoblast calcium-sensing receptor has characteristics of ANF/7TM receptors. J. Cell Biochem. 2005, 95, 1081–1092. [Google Scholar] [CrossRef] [PubMed]
- Faure, H.; Gorojankina, T.; Rice, N.; Dauban, P.; Dodd, R.H.; Bräuner-Osborne, H.; Rognan, D.; Ruat, M. Molecular determinants of non-competitive antagonist binding to the mouse gprc6a receptor. Cell Calcium 2009, 46, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Stenflo, J.; Stenberg, Y.; Muranyi, A. Calcium-binding EGF-like modules in coagulation proteinases: Function of the calcium ion in module interactions. Biochim. Biophys. Acta 2000, 1477, 51–63. [Google Scholar] [CrossRef]
- Raya, A.; Kawakami, Y.; Rodríguez-Esteban, C.; Ibañes, M.; Rasskin-Gutman, D.; Rodríguez-León, J.; Büscher, D.; Feijó, J.A.; Izpisúa Belmonte, J.C. Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature 2004, 427, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Halbleib, J.M.; Nelson, W.J. Cadherins in development: Cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006, 20, 3199–3214. [Google Scholar] [CrossRef] [PubMed]
- Spassova, M.A.; Soboloff, J.; He, L.P.; Xu, W.; Dziadek, M.A.; Gill, D.L. Stim1 has a plasma membrane role in the activation of store-operated Ca2+ channels. Proc. Natl. Acad. Sci. USA 2006, 103, 4040–4045. [Google Scholar] [CrossRef] [PubMed]
- Jardin, I.; López, J.J.; Redondo, P.C.; Salido, G.M.; Rosado, J.A. Store-operated Ca2+ entry is sensitive to the extracellular Ca2+ concentration through plasma membrane stim1. Biochim. Biophys. Acta 2009, 1793, 1614–1622. [Google Scholar] [CrossRef] [PubMed]
- Fasciani, I.; Temperán, A.; Pérez-Atencio, L.F.; Escudero, A.; Martínez-Montero, P.; Molano, J.; Gómez-Hernández, J.M.; Paino, C.L.; González-Nieto, D.; Barrio, L.C. Regulation of connexin hemichannel activity by membrane potential and the extracellular calcium in health and disease. Neuropharmacology 2013, 75, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Ebihara, L.; Liu, X.; Pal, J.D. Effect of external magnesium and calcium on human connexin46 hemichannels. Biophys. J. 2003, 84, 277–286. [Google Scholar] [CrossRef]
- Quist, A.P.; Rhee, S.K.; Lin, H.; Lal, R. Physiological role of Gap-junctional hemichannels. Extracellular calcium-dependent isosmotic volume regulation. J. Cell Biol. 2000, 148, 1063–1074. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Hernandez, J.M.; de Miguel, M.; Larrosa, B.; Gonzalez, D.; Barrio, L.C. Molecular basis of calcium regulation in connexin-32 hemichannels. Proc. Natl. Acad. Sci. USA 2003, 100, 16030–16035. [Google Scholar] [CrossRef] [PubMed]
- Thimm, J.; Mechler, A.; Lin, H.; Rhee, S.; Lal, R. Calcium-dependent open/closed conformations and interfacial energy maps of reconstituted hemichannels. J. Biol. Chem. 2005, 280, 10646–10654. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Tanis, J.E.; Taruno, A.; Foskett, J.K. Calcium homeostasis modulator (CALHM) ion channels. Pflugers Arch. 2016, 468, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Babini, E.; Paukert, M.; Geisler, H.S.; Grunder, S. Alternative splicing and interaction with di- and polyvalent cations control the dynamic range of acid-sensing ion channel 1 (ASIC1). J. Biol. Chem. 2002, 277, 41597–41603. [Google Scholar] [CrossRef] [PubMed]
- Immke, D.C.; McCleskey, E.W. Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade. Neuron 2003, 37, 75–84. [Google Scholar] [CrossRef]
- Paukert, M.; Babini, E.; Pusch, M.; Gründer, S. Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: Implications for channel gating. J. Gen. Physiol. 2004, 124, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Inoue, K.; Wu, X.; Papasian, C.J.; Wang, J.Q.; Xiong, Z.G.; Chu, X.P. Cysteine 149 in the extracellular finger domain of acid-sensing ion channel 1b subunit is critical for zinc-mediated inhibition. Neuroscience 2011, 193, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.P.; Mullins, F.M.; Bennett, P.B. Human ether-à-go-go-related gene k+ channel gating probed with extracellular Ca2+. Evidence for two distinct voltage sensors. J. Gen. Physiol. 1999, 113, 565–580. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.P.; Balser, J.R.; Bennett, P.B. A novel extracellular calcium sensing mechanism in voltage-gated potassium ion channels. J. Neurosci. 2001, 21, 4143–4153. [Google Scholar] [PubMed]
- Sanguinetti, M.C.; Jiang, C.; Curran, M.E.; Keating, M.T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: Herg encodes the ikr potassium channel. Cell 1995, 81, 299–307. [Google Scholar] [CrossRef]
- Xiong, Z.G.; Chu, X.P.; MacDonald, J.F. Effect of lamotrigine on the Ca2+-sensing cation current in cultured hippocampal neurons. J. Neurophysiol. 2001, 86, 2520–2526. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Lu, W.; MacDonald, J.F. Extracellular calcium sensed by a novel cation channel in hippocampal neurons. Proc. Natl. Acad. Sci. USA 1997, 94, 7012–7017. [Google Scholar] [CrossRef] [PubMed]
- Burgo, A.; Carmignoto, G.; Pizzo, P.; Pozzan, T.; Fasolato, C. Paradoxical Ca2+ rises induced by low external Ca2+ in rat hippocampal neurones. J. Physiol. 2003, 549, 537–552. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.L.; Sun, H.S.; Olah, M.E.; Sun, X.; Czerwinska, E.; Czerwinski, W.; Mori, Y.; Orser, B.A.; Xiong, Z.G.; Jackson, M.F.; et al. Trpm7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc. Natl. Acad. Sci. USA 2007, 104, 16323–16328. [Google Scholar] [CrossRef] [PubMed]
Orthosteric Agonists (Type I Calcimimetics) | Class Members |
A. Cations | High potency: Gd3+; Eu3+; Tb3+ |
Intermediate potency: Zn2+; Ni2+; Cd2+; Pb2+; Co2+; Fe2+ | |
Low potency: Ca2+; Mg2+; Ba2+; Sr2+; Mn2+ | |
B. Polyamines | spermine, spermidine, putrescine |
C. Aminoglycoside antibiotics | neomycin, gentamycin, tobramycin, poromomycin, kanamycin, ribostamycin |
D. Basic polypeptides | Poly-L-arginine, poly-L-lysine, protamine, amyloid β-peptides |
Allosteric Modulators (Type II Calcimimetics) | |
A. L-amino acids | phenylalanine, tryptophan, tyrosine, histidine |
B. Glutathione analogs | γ-glutamyl-tripeptides: glutathione, S-methylglutathione, S-propylglutathione, γ-glutamyl-tripeptides (γ-Glu-Ala, γ-Glu-Cys) |
C. Small molecule calcimimetics | The first generation: NPS R-568, NPS R-467, AMG 073, AMG 416 |
The second generation: cinacalcet | |
The third generation: dibenzylamine calcimimetics, R,R-calcimimetic B, AC-265347 | |
D. Small molecule calcilytics | NPS 2143, Calhex 231, ATF396, AXT914, ronacaleret, NPSP795, SB-423557, SB-423562 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerbino, A.; Colella, M. The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology. Int. J. Mol. Sci. 2018, 19, 999. https://doi.org/10.3390/ijms19040999
Gerbino A, Colella M. The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology. International Journal of Molecular Sciences. 2018; 19(4):999. https://doi.org/10.3390/ijms19040999
Chicago/Turabian StyleGerbino, Andrea, and Matilde Colella. 2018. "The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology" International Journal of Molecular Sciences 19, no. 4: 999. https://doi.org/10.3390/ijms19040999
APA StyleGerbino, A., & Colella, M. (2018). The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology. International Journal of Molecular Sciences, 19(4), 999. https://doi.org/10.3390/ijms19040999