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Abstract: A genome-wide association study (GWAS) was performed on a set of 260 lines which belong
to three different bi-parental flax mapping populations. These lines were sequenced to an averaged
genome coverage of 19× using the Illumina Hi-Seq platform. Phenotypic data for 11 seed yield and oil
quality traits were collected in eight year/location environments. A total of 17,288 single nucleotide
polymorphisms were identified, which explained more than 80% of the phenotypic variation for
days to maturity (DTM), iodine value (IOD), palmitic (PAL), stearic, linoleic (LIO) and linolenic (LIN)
acid contents. Twenty-three unique genomic regions associated with 33 quantitative trait loci (QTL)
for the studied traits were detected, thereby validating four genomic regions previously identified.
The 33 QTL explained 48–73% of the phenotypic variation for oil content, IOD, PAL, LIO and LIN
but only 8–14% for plant height, DTM and seed yield. A genome-wide selective sweep scan for
selection signatures detected 114 genomic regions that accounted for 7.82% of the flax pseudomolecule
and overlapped with the 11 GWAS-detected genomic regions associated with 18 QTL for 11 traits.
The results demonstrate the utility of GWAS combined with selection signatures for dissection of the
genetic structure of traits and for pinpointing genomic regions for breeding improvement.

Keywords: flax; genome-wide association study (GWAS); selective sweep; genotyping by sequencing
(GBS); bi-parental population; single nucleotide polymorphism (SNP); seed yield; plant height;
maturity; fatty acid composition

1. Introduction

Flax (Linum usitatissimum L., 2n = 2x = 30) is a self-pollinating annual crop from the Linaceae
family. It is a dual-purpose crop grown for its seed oil or stem fiber, resulting in two morphotypes:
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linseed and fiber. The linseed or flaxseed morphotype is rich in oil (40–50%) containing five main
fatty acids: palmitic (PAL, C16:0, ~6%), stearic (STE, C18:0, ~2.5%), oleic (OLE, C18:1∆9, ~19%),
linoleic (LIO, C18:2∆9, 12, ~13%), and linolenic (LIN, C18:3∆9, 12, 15, ~55%) [1,2]. Because of its high LIN
content, linseed is the richest plant source of omega-3 fatty acid which is beneficial for reducing blood
cholesterol levels and mitigating heart diseases in humans [3,4]. The same attributes make it ideal as
industrial oil for use in paints, linoleum flooring, inks, soaps and varnishes [4].

Linseed breeding has focused on high seed yield (YLD), high oil content (OIL), and either
high or low LIN content. Low LIN (2–4%) and high LIO (65–70%) lines have been developed
through mutation breeding. NuLin™ 50 with 67.8% LIN (http://www.viterra.ca) and Omégalin with
65.8% (http://www.terredelin.com) are examples of high LIN linseed cultivars currently registered.
Extremely low LIN lines such as LinolaTM or SolinTM improve oxidative stability, making such cultivars
suitable for the fabrication of margarine [3]. Since 1910, a total of 82 flax cultivars have been released
in Canada [5]. These cultivars and elite breeding lines provide diverse genetic materials for dissecting
the genetic architecture of oil biosynthesis and yield related traits in linseed.

Several methods can be used to dissect the genetic architecture of crop traits. QTL or linkage
mapping uses bi-parental populations to identify loci responsible for trait variation between parents
based on a recombination-based genetic linkage map [6]. Bi-parental populations, such as F2,
recombinant inbred line (RIL), doubled haploid (DH) and backcross (BC) populations, are the most
widely used genetic resources for mapping QTL for traits of interest in self-fertilizing crops, including
flax [7–12]. While bi-parental populations are easy to develop and have power for QTL detection,
only the a limited number of alleles from the parental genotypes are analyzed in a single population,
resulting in a narrow genetic base and low representation of allelic diversity [13]. In addition, genetic
recombination is limited in these populations [14]. To increase the QTL dissection power, attempts
have been made to expand the genetic diversity through other multiple-parent population types, such
as nested association mapping (NAM) populations [15–17] and multi-parent advanced generation
intercross (MAGIC) populations [18–25], while retaining the advantages of association mapping and
bi-parental populations. However, the development of such populations requires careful planning
and time. Natural populations that possess tremendous phenotypic diversity can be advantageous in
genome-wide association study (GWAS) with various molecular markers in plants and animals [26–31].
Association mapping using a diverse germplasm panel overcomes the phenotypic diversity limitation
of bi-parental populations, thereby increasing the QTL mapping power [32] but is impeded by low
detection power of association of rare alleles. GWAS usually uses a natural population to investigate
wider phenotypic variation for complex traits by taking advantage of ancient genetic recombination
events in populations [33].

GWAS may be complemented by performing genome-wide selective sweep scan (GW3S) which
identifies selection signatures that are beneficial for plant adaptation. A selective sweep is the reduction
or elimination of variation among the nucleotides near a new beneficial mutation. Following strong
positive natural selection or artificial selection during domestication or breeding, selective sweeps affect
nearby linked alleles [34]. Ancient selective sweeps are relevant to natural evolution and domestication
of crop species that are subjected to natural and artificial selective pressures and forced to adapt rapidly
to new environments and thus drive speciation [35]. Breeding selects favorable alleles and retains
them in new cultivars. These signatures of selection can be detected by a cross-population comparison
approach [34]. Recent studies demonstrated that genomic regions that exhibit selection signatures
are also enriched for genes associated with biologically important traits [36–40]. Thus, detection of
selection signatures is emerging as an additional approach to identify and validate novel gene-trait
associations [41].

Genetic regions associated with storage oil biosynthesis in flax have been studied based on
QTL mapping using bi-parental populations. Several QTL responsible for oil content and fatty acid
composition have been mapped in independent studies including the three populations used herein.
The first population (BM) of 243 F2:6 recombinant inbred lines (RILs) from a cross between the Canadian
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linseed varieties CDC Bethune and Macbeth was used for a linkage mapping study and detected three
QTL each for OLE and STE, two each for LIO and IOD, and one each for PAL, LIN and OIL with
several QTL co-locating at the same locus [8]. The second population (EV) was a cross between E1747
and Viking. The third population (SU) was a cross between SP2047 (a yellow-seeded SolinTM line
with 2–4% LIN) and UGG5-5 (a brown-seeded flax line with 63–66% LIN) and comprised of 78 lines
generated through DH method. It was used in a linkage mapping study using simple sequence repeat
(SSR) markers which identified QTL for LIO, LIN and iodine value (IOD) co-locating on LG7 and LG16,
and a QTL for PAL on LG9 [7]. The linkage-based studies from these populations provided numerous
QTL for important traits but the QTL were generally far from the markers and poorly delimited because
of the low resolution of the genetic maps [18,19,42].The three bi-parental populations were also used
to construct a consensus genetic map [43], and to perform genomic selection [44] primarily using SSR
markers. Because the three populations have been simultaneously phenotyped for several common
agronomic and seed oil quality traits in the same environments (years/locations), we designed the
present study to test the efficiency of the combined bi-parental population approach for GWAS and
GW3S to detect genomic regions associated with seed yield and seed oil quality traits using genotyping
by sequencing (GBS).

2. Results

2.1. Re-Sequencing and Genome-Wide SNPs

In the present study, a set of 260 genotypes (97 from the recombinant inbreeding line (RIL)
population from a cross between CDC Bethune and Macbeth (BM), 91 from the RIL population from
a cross between E1747 and Viking (EV) and 72 from the doubled haploid population from a cross
between SP2047 and UGG5-5 (SU) along with the 5 of 6 parents except for the reference CDC Bethune)
were re-sequenced using GBS to identify genome-wide single nucleotide polymorphism (SNP) markers
on the chromosome-based flax pseudomolecules [45]. An average of ~57.7 million paired end reads
were generated for each individual, corresponding to 5754 Mb sequences or 19.2× genome equivalents
of the reference scaffolds (~302 Mb) [46] (Table S1). Paired-end reads of each genotype were aligned
to the flax scaffolds [46], resulting in a total of 536,186 SNPs. After filtering off SNPs with minor
allele frequency (MAF) <0.05 and genotyping rate <60% [47,48], 17,288 SNPs were retained on the flax
pseudomolecules [45] (Table S2). Out of these, 15,284 segregated in BM, 15,397 in EV and 7568 in SU.
The SNPs were mostly uniformly distributed across all 15 chromosomes (chr), ranging from 601 on
chr11 to 1572 on chr13 (Figure 1, Table S2). Approximately 71.1% of all SNPs were located in intergenic
regions, 16.2% were in introns and 12.7% were in exons (Table S2). These SNPs were used for further
population structure analysis, GWAS and GW3S.

2.2. Whole-Genome Pattern of LD

The LD and LD decay rates were analyzed for each population separately as well as the merged
population using the filtered SNP data. The physical distances of pair-wise SNPs at which the LD r2

dropped to half were 1242, 223, 728 and 272 kb for BM, EV, SU and merged populations respectively.
This indicated substantial variation in LD decay rate across populations (Figure 2). The average LD r2

of BM, EV, SU, and merged populations were 0.37, 0.26, 0.28 and 0.30, respectively, with the number of
haplotype blocks for each population estimated at 599, 648, 206 and 1205, respectively (Table S3).
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Figure 1. Distribution of 17,288 SNPs, 114 selective sweeps and 33 QTL on the 15 chromosomes of flax 
for each of three bi-parental populations BM, EV and SU and, for the merged population (BM + EV + 
SU). Four vertical bars from left to right for each chromosome represent the BM + EV + SU, BM, EV 
and SU populations, respectively. Short horizontal lines on bars represent SNPs. QTL regions are 
highlighted in cyan and by vertical blue lines. Red triangles identify QTL’s peak SNP. Selective 
sweeps are represented by short vertical black lines. 

 

Figure 2. Intra-chromosome LD (r2) decay of SNP pairs over the entire flax genome as a function of 
physical distances (kb) of pair-wise SNPs for the three individual and merged populations. The curves 
are drawn based on a fitted non-linear model (see Section 4.2). 

Figure 1. Distribution of 17,288 SNPs, 114 selective sweeps and 33 QTL on the 15 chromosomes
of flax for each of three bi-parental populations BM, EV and SU and, for the merged population
(BM + EV + SU). Four vertical bars from left to right for each chromosome represent the BM + EV + SU,
BM, EV and SU populations, respectively. Short horizontal lines on bars represent SNPs. QTL regions
are highlighted in cyan and by vertical blue lines. Red triangles identify QTL’s peak SNP. Selective
sweeps are represented by short vertical black lines.
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Figure 2. Intra-chromosome LD (r2) decay of SNP pairs over the entire flax genome as a function of
physical distances (kb) of pair-wise SNPs for the three individual and merged populations. The curves
are drawn based on a fitted non-linear model (see Section 4.2).
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2.3. Genetic Diversity and Population Structure

Nucleotide diversity (π) was estimated at 41.52, 38.26 and 3.95 for the BM, EV and SU populations,
respectively (Table 1), and was consistent with the number of SNPs identified from the three
populations. A strong population-differentiation (Fst) was observed at 0.44 between BM and SU
and 0.48 between EV and SU. However, Fst was weaker at 0.04 between the BM and EV (Table 1).

Table 1. Genetic differentiation (Fst) between three bi-parental (upper triangle elements) and nucleotide
diversity (π) within these populations (diagonal elements).

Population BM EV SU

BM 41.52 0.04 0.44
EV 38.26 0.48
SU 3.95

BM: CDC Bethune/Macbeth; EV: E1747/Viking; SU: SP2047/UGG5-5.

The genetic structure within the merged population was assessed based on the 17,288 SNP loci from
the 260 individuals using two methods: principal component analysis (PCA) and discriminant analysis
for principal components (DAPC). Bi-plots of the first three principal components of the PCA showed five
distinct clusters (Figure 3a,b). The BM (BM1 and BM2) and EV (EV1 and EV2) populations each contained
two sub-populations, while SU produced a single cluster. DAPC corroborated the same five clusters
(Figure 3c,d). Therefore, a DAPC Q matrix based on the five clusters was generated and used as covariates
to assess the population stratification in GWAS and phenotypic variation explained by the SNPs.
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Figure 3. Principal component analysis (PCA) and discriminant analysis of principal components
(DAPC) of the 260 individuals in three bi-parental populations (BM, EV and SU) based on 17,288 SNPs.
(a) Bi-plot of the first and second principal components (PCs); (b) Bi-plot of the first and third PCs;
(c) k-means clustering analysis based on 100 chosen PCs shows that the optimal number of clusters
(k) is 5, that is where the Bayesian information criterion (BIC) is lowest (arrow); (d) DAPC scatter
plot. Percentages in parentheses in the axis titles of (a) and (b) represent the variance explained by the
respective PCs. Individuals from the BM and EV populations grouped into two subpopulations each,
BM1 and BM2, and EV1 and EV2, respectively.
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2.4. h2
SNP

Phenotypic variation of traits was largely explained by SNPs in the three individual and the
merged populations (Table 2). The average h2

SNP for all 11 traits was 0.51. The largest h2
SNP values

among the four populations ranged from 0.45 (YLD) to 0.90 (PAL). More than 80% of the phenotypic
variation in one of the populations was explained by identified SNPs for days to maturity (DTM), IOD,
PAL, STE, LIO and LIN. The h2

SNP varied from one population to another depending on the genetic
variation between the two parents. For SU, little or no phenotypic variation was explained by SNPs
for DTM, plant height (PLH) and STE. For EV, a relatively low phenotypic variation (h2

SNP < 0.1) was
explained by SNPs for STE and OLE.

Table 2. Phenotypic variation explained by all SNPs (h2
SNP) and identified QTL (h2

GWAS) for 11 traits in
different populations.

Trait Population h2
SNP ± s No. QTL h2

GWAS ± s

YLD

BM + EV + SU 0.43 ± 0.12 1 0.14 ± 0.09 §

BM 0.22 ± 0.25
EV 0.15 ± 0.24
SU 0.45 ± 0.21

PLH

BM + EV + SU 0.53 ± 0.12 1 0.08 ± 0.11
BM 0.76 ± 0.12 2 0.21 ± 0.15
EV 0.76 ± 0.14 2 0.22 ± 0.18
SU 0.06 ± 0.20

DTM

BM + EV + SU 0.43 ± 0.13 1 0.10 ± 0.07
BM 0.81 ± 0.11 1 0.18 ± 0.13
EV 0.36 ± 0.24 1 0.18 ± 0.22
SU 0.00 ± 0.20

PRO

BM + EV + SU 0.51 ± 0.11 1 0.12 ± 0.16
BM 0.52 ± 0.20
EV 0.34 ± 0.23 1 0.09 ± 0.12
SU 0.58 ± 0.19

OIL

BM + EV + SU 0.66 ± 0.09 7 0.62 ± 0.14
BM 0.46 ± 0.22
EV 0.39 ± 0.21 1 0.08 ± 0.08
SU 0.70 ± 0.15

IOD

BM + EV + SU 0.80 ± 0.06 3 0.57 ± 0.10
BM 0.49 ± 0.19
EV 0.78 ± 0.12 2 0.51 ± 0.14
SU 0.66 ± 0.17 2 0.35 ± 0.18

PAL

BM + EV + SU 0.79 ± 0.06 4 0.48 ± 0.11
BM 0.12 ± 0.26
EV 0.55 ± 0.20 1 0.09 ± 0.11
SU 0.90 ± 0.07 1 0.56 ± 0.18

STE

BM + EV + SU 0.21 ± 0.15 2 0.41 ± 0.19
BM 0.85 ± 0.09
EV 0.02 ± 0.14
SU 0.00 ± 0.22 1

OLE

BM + EV + SU 0.55 ± 0.10 1 0.16 ± 0.13
BM 0.36 ± 0.22
EV 0.09 ± 0.25
SU 0.72 ± 0.16 1 0.20 ± 0.19
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Table 2. Cont.

Trait Population h2
SNP ± s No. QTL h2

GWAS ± s

LIO

BM + EV + SU 0.80 ± 0.06 3 0.73 ± 0.07
BM 0.54 ± 0.20
EV 0.75 ± 0.13 2 0.54 ± 0.14
SU 0.66 ± 0.17 2 0.36 ± 0.18

LIN

BM + EV + SU 0.80 ± 0.06 3 0.56 ± 0.09
BM 0.49 ± 0.19
EV 0.76 ± 0.13 2 0.55 ± 0.14
SU 0.66 ± 0.17 2 0.36 ± 0.18

YLD: seed yield; PLH: plant height; DTM: days to maturity; PRO: protein content; OIL: oil content; IOD: iodine
value; PAL: palmitic acid content; STE: stearic acid content; OLE: oleic acid content; LIO: linoleic acid content;
LIN: linolenic acid content; BM: CDC Bethune/Macbeth; EV: E1747/Viking; SU: SP2047/UGG5-5. § h2

GWAS of YLD
was estimated based on the phenotypes in a single environment (Morden/2012). For all other traits, h2

GWAS was
estimated based on the BLUP estimates of phenotypes.

2.5. QTL Identified from 11 Traits

Using the best linear unbiased prediction (BLUP) values of phenotyping data collected from six to
eight year/location environments with both generalized linear model (GLM) and mixed linear model
(MLM), we identified a total of 33 QTL for 11 traits, one for YLD, eight for OIL, five for PLH, four for
PAL, three each for IOD, LIO, and LIN, two each for DTM and STE, and one each for protein content
(PRO) and OLE (Table 3, Figure 1, Figures S1 and S2). Thirty-one of the 33 QTL were detected using
GLM and 13 with MLM (Tables S4 and S5). Of these latter 13, two QTL (QTL 18 for IOD and QTL 31
for LIN) were detected only by MLM, while the remaining 11 were identified by both MLM and GLM
(Table S4).

Out of 33 QTL identified, 12, 6, 3 and 27 were from EV, SU, BM and merged population,
respectively. Only six QTL were detected exclusively from two individual populations, including
four (QTL 2 and 6 for PLH, QTL 8 for DTM and QTL 17 for OIL) from EV and two (QTL 3 and
4 for PLH) from BM. Eighteen were identified exclusively from the merged population. Ten QTL
were detected simultaneously from the merged population and one or more individual populations
(Tables S4 and S5).

QTL for YLD (QTL 1) was identified only in two environments (2010/Morden and
2012/Saskatoon) (Figure S2) but not in other environments or using BLUP estimates over the six
year/location environments. We also performed GWAS for all other traits with phenotypic data from
individual environments and obtained similar results with the QTL identified using BLUP values over
multiple environments (Table S6).

2.6. QTL Effect Significance

To validate the QTL, we tested statistical significance of difference of phenotypes between two
contrasting haplotype pairs for each QTL in the merged and individual populations and in different
year/location environments. QTL effect differences between two contrasting haplotype pairs for all
33 QTL were significant (Figure 4, Table S7). We also assessed relationship of the number of pyramiding
positive-effect QTL in individuals with trait phenotypes. Significant linear relations for all eight traits
which had two or more QTL identified in this study were observed, showing primarily additive or
accumulative QTL effects (Figure 5).
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Table 3. QTL and associated gene candidates.

Trait QTL No. QTL Name Chr. Start Position (bp) End Position (bp) XP-CLR Score Known QTL or
Marker

Candidate
Gene IDs

Candidate Gene
Location (bp)

Candidate Gene
Name Gene Annotation

YLD 1 QYLD-Lu4.1 4 13,594,936 14,968,389 12.54 QYld.BM.crc-LG4 a

PLH

2 QPLH-Lu1.1 1 13,887,715 13,930,292

3 QPLH-Lu1.2 1 20,012,490 20,012,490
Lus10020835 19,610,837 BRI1 [49] Leucine-rich receptor-like protein kinase family

protein

Lus10020865 19,790,777 GA2 [49] Terpenoid cyclases/Protein prenyltransferases
superfamily protein

4 QPLH-Lu4.3 4 14,305,982 15,042,104 12.54

Lus10034358 14,006,288 BIM2 [49] BES1-interacting Myc-like protein 2

Lus10041435 14,157,752 MYB62 [49] Myb domain protein 62

Lus10041481 14,398,338 LMCO4 [49] Laccase/Diphenol oxidase family protein

Lus10041794 15,920,170 ROT3 [49] Cytochrome P450 superfamily protein

Lus10041801 15,948,434 WAT1 [49] Walls Are Thin 1

5 QPLH-Lu13.4 13 17,243,884 17,243,884 Lus10030567 18,680,474 GA2OX8 [49] Gibberellin 2-oxidase 8

6 QPLH-Lu13.5 14 2,320,469 2,320,469 40.61 Lus10021395 3,647,029 HCT [49] Hydroxycinnamoyl-CoA shikimate/quinate
hydroxycinnamoyl transferase

DTM 7 QDTM-Lu4.1 4 13,171,757 15,042,104 12.54 QDm.BM.crc-LG4 a

Lus10015766 13,094,864 FLC [50] K-box region and MADS-box transcription
factor family protein

Lus10034461 13,434,121 CDF3 [50] Cycling DOF factor 3

Lus10034370 13,933,421 AP1 [50] K-box region and MADS-box transcription
factor family protein

Lus10041483 14,411,103 PFT1 [50] Phytochrome and flowering time regulatory
protein (PFT1)

Lus10041500 14,512,085 ATAN11 [50] Transducin/WD40 repeat-like superfamily
protein

Lus10041540 14,716,950 RGL1 [50] RGA-like 1

Lus10041595 14,966,739 AP2 [50] Integrase-type DNA-binding superfamily
protein

8 QDTM-Lu11.2 11 14,768,686 14,768,686

PRO 9 QPRO-Lu15.1 15 14,746,288 14,746,310 8.50 Lus10030671 22,732,660 WRI [50] Integrase-type DNA-binding superfamily
protein
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Table 3. Cont.

Trait QTL No. QTL Name Chr. Start Position (bp) End Position (bp) XP-CLR Score Known QTL or
Marker

Candidate
Gene IDs

Candidate Gene
Location (bp)

Candidate Gene
Name Gene Annotation

OIL

10 QOIL-Lu2.1 2 21,913,720 21,913,720

11 QOIL-Lu5.2 5 15,704,607 15,705,039

12 QOIL-Lu6.3 6 4,879,632 4,879,632

13 QOIL-Lu6.4 6 13,799,180 13,970,951 50.58

14 QOIL-Lu7.4 7 14,209,179 14,209,179

15 QOIL-Lu10.5 10 6,517,448 6,517,448

16 QOIL-Lu12.6 12 4,591,214 7,491,405 27.77

17 QOIL-Lu15.7 15 14,665,900 15,429,055 8.89 Lus10039906 19,833,852 KCS14-2 [51] 3-ketoacyl-CoA synthase

IOD

18 QIOD-Lu4.1 4 19,909,467 19,909,467 Lus10039906 19,833,852 KCS14-2 [51] 3-ketoacyl-CoA synthase

19 QIOD-Lu7.2 7 15,346,458 17,977,459 45.70 QIOD.crc-LG7 b Lus10038321 16,089,922 FAD3a [52] Fatty acid desaturase

20 QIOD-Lu12.3 12 489,561 2,981,642 106.22 QIOD.crc-LG16 b Lus10036184 1,035,336 FAD3b [52] Fatty acid desaturase

Lus10023359 1,729,292 FAH1 [50] Fatty acid hydroxylase 1

PAL

21 QPAL-Lu5.1 5 12,062,376 12,182,441 Lus10029880 12,062,376 KCS12-3 [51] 3-ketoacyl-CoA synthase

22 QPAL-Lu5.2 5 13,797,851 15,668,995 12.14

23 QPAL-Lu7.3 7 624,461 5,423,691 17.74
QPal.BM.crc-LG7 a

QPAL.crc-LG9 b

c79-s540_Lu2534 c

Lus10001814 79,471 KAS Ic-1 [51] 3-ketoacyl-acyl carrier protein synthase I

Lus10028925 1,085,389 KAS IIIb-2 [51] 3-ketoacyl-acyl carrier protein synthase III

Lus10028885 1,262,079 SUN1 [50] SAD1/UNC-84 domain protein 1

24 QPAL-Lu11.4 11 4,417,685 4,429,424 Lus10026345 4,333,672 KCS7-1 [51] 3-ketoacyl-CoA synthase

OLE 25 QOLE-Lu8.1 8 21,782,841 23,527,563 12.64
Lus10006636 22,165,534 KCS9-1 [51] 3-ketoacyl-CoA synthase

Lus10006637 22,174,324 KCS1-1 [51] 3-ketoacyl-CoA synthase

Lus10018485 23,111,453 DES-1-LIKE [50] Fatty acid desaturase family protein

STE
26 QSTE-Lu9.1 9 4,229,230 4,229,230 Lus10040333 4,275,842 KCS18-2 [51] 3-ketoacyl-CoA synthase

27 QSTE-Lu9.2 9 20,080,531 21,636,823 27.55
Lus10011877 20,059,127 SAD1 [51] Stearoyl acyl carrier protein desaturase

Lus10011839 20,227,416 FatA2-2 [51] FatA acyl-ACP thioesterase

LIO
28 QLIO-Lu4.1 4 19,909,467 19,909,467 Lus10039906 19,833,852 KCS14-2 [51] 3-ketoacyl-CoA synthase

29 QLIO-Lu7.2 7 14,540,706 17,977,459 45.70 QLIO.crc-LG7 b

c281-s185_ Lu566 c Lus10038321 16,089,922 FAD3a [52] Fatty acid desaturase

30 QLIO-Lu12.3 12 489,561 2,981,642 106.22 QLIO.crc-LG16 b

Llio-LG12.3 c Lus10036184 1,035,336 FAD3b [52] Fatty acid desaturase

LIN

31 QLIN-Lu4.1 4 19,909,467 19,909,467 Lus10039906 19,833,852 KCS14-2 [51] 3-ketoacyl-CoA synthase

32 QLIN-Lu7.2 7 14,540,719 17,977,459 45.70 QLIN.crc-LG7 b

c281-s185_ Lu566 c Lus10038321 16,089,922 FAD3a [52] Fatty acid desaturase

33 QLIN-Lu12.3 12 489,561 2,981,642 106.22 QLIN.crc-LG16 b

Llin-LG12.3 c
Lus10036184 1,035,336 FAD3b [52] Fatty acid desaturase

Lus10023359 1,729,292 FAH1 [50] Fatty acid hydroxylase 1

a QTL identified in [8]; b QTL identified in [7]; c QTL identified in [53]. All candidate genes are labelled by references.
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used except for PLH/QTL 3 and DTM/QTL 7 for which BM population was used, DTM/QTL 8 for 
which EV population was used, and PAL/QTL 22, LIO/QTL 28 and LIN/QTL 31 for which SU 
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differences between two contrasting haplotype pairs for each QTL are shown by boxes’ notches. For 
any given QTL, boxes’ notches that do not overlap indicate significant median differences at 95% 
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Figure 4. Trait performance of two contrasting haplotype pairs for each of 33 QTL identified from
11 traits. A QTL is represented by the peak SNP identified in the association study. The numbers of QTL
correspond to QTL No in Table 3. The BLUP values of the 11 traits in the merged population were used
except for PLH/QTL 3 and DTM/QTL 7 for which BM population was used, DTM/QTL 8 for which
EV population was used, and PAL/QTL 22, LIO/QTL 28 and LIN/QTL 31 for which SU population
was used. The box width is proportional to the size of the subpopulations. Phenotype differences
between two contrasting haplotype pairs for each QTL are shown by boxes’ notches. For any given
QTL, boxes’ notches that do not overlap indicate significant median differences at 95% confidence level.
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content (STE), (g) linoleic acid content (LIO), and (h) linolenic acid content (LIN). The BLUP values of 
the eight traits in the merged population were used. The correlation of phenotypes with the number 
of positive-effect QTL was calculated. * and ** represent statistical significance at 0.05 and 0.01 
probability level. 
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chr4, 7 and 12. Chromosome 15 harbored QTL for OIL and PRO while chr5 had QTL for OIL and 
PAL. 

2.8. Phenotypic Variation Explained by QTL 

Phenotypic variations explained by individual QTL (ℎொ்ଶ ) were estimated (Table S4). Overall, 
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average of 61% of the variation (Tables 2 and S4). We also estimated the phenotypic variation 
explained by all QTL for a trait (ℎீௐௌଶ ) (Table 2). In the merged population, the QTL explained 48–
73% of the phenotypic variation for OIL, IOD, PAL, LIO and LIN but only 8–14% for PLH, DTM and 
YLD. 

2.9. Candidate Genes Underlying QTL 

Based on the GWAS results, we investigated the genes annotated in the flax genome [54] in an 
attempt to predict candidate genes from loci significantly associated with each trait. The genomic 
locations of SNP markers at the peaks of the QTL were scanned within a 500 Kb window in either 
direction to constitute a subset of genes from which we deduced a candidate gene list based on a 
priori knowledge of their function(s). Candidate genes were identified for every QTL except for the 
YLD QTL (Table 3). We discovered seven candidate genes underlying QTL for DTM on chr4. The 
QTL for PLH harbors five candidate genes of completely different function. The genes underlying 
QTL for fatty acid composition include KCS14-2, FAD3a, and FAD3b for IOD/LIN/LIO, KCS12-3 and 
KAS Ic-1 for PAL, KCS9-1 and KCS1-1 for OLE, and KCS18-2 and SAD1 for STE. 

Figure 5. The relationship of phenotypes with the number of positive-effect QTL in individuals.
Eight traits with two or more QTL identified were analyzed: (a) plant height (PLH), (b) days to
maturity (DTM), (c) oil content (OIL), (d) iodine value (IOD), (e) palmitic acid content (PAL), (f) steric
acid content (STE), (g) linoleic acid content (LIO), and (h) linolenic acid content (LIN). The BLUP
values of the eight traits in the merged population were used. The correlation of phenotypes with the
number of positive-effect QTL was calculated. * and ** represent statistical significance at 0.05 and 0.01
probability level.

2.7. Pleiotropy of QTL

Sixteen of the 33 QTL co-located at six genomic regions concerning nine traits (Figures 1 and 6,
Table S8). QTL for PLH, DTH and YLD co-located on chr4. QTL for IOD, LIO and LIN co-located on
chr4, 7 and 12. Chromosome 15 harbored QTL for OIL and PRO while chr5 had QTL for OIL and PAL.

2.8. Phenotypic Variation Explained by QTL

Phenotypic variations explained by individual QTL (h2
QTL) were estimated (Table S4).

Overall, the QTL explained 4 to 66% of the total phenotypic variation, with an average of 32.5%
which is more than half of the average h2

SNP (51%). For five traits (IOD, LIO, LIN, PAL and OIL),
QTL explained an average of 61% of the variation (Table 2 and Table S4). We also estimated the
phenotypic variation explained by all QTL for a trait (h2

GWAS) (Table 2). In the merged population,
the QTL explained 48–73% of the phenotypic variation for OIL, IOD, PAL, LIO and LIN but only 8–14%
for PLH, DTM and YLD.

2.9. Candidate Genes Underlying QTL

Based on the GWAS results, we investigated the genes annotated in the flax genome [54] in
an attempt to predict candidate genes from loci significantly associated with each trait. The genomic
locations of SNP markers at the peaks of the QTL were scanned within a 500 Kb window in either
direction to constitute a subset of genes from which we deduced a candidate gene list based on a priori
knowledge of their function(s). Candidate genes were identified for every QTL except for the YLD
QTL (Table 3). We discovered seven candidate genes underlying QTL for DTM on chr4. The QTL for
PLH harbors five candidate genes of completely different function. The genes underlying QTL for
fatty acid composition include KCS14-2, FAD3a, and FAD3b for IOD/LIN/LIO, KCS12-3 and KAS Ic-1
for PAL, KCS9-1 and KCS1-1 for OLE, and KCS18-2 and SAD1 for STE.
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LIN vs. LIO; (d) OIL vs. PRO; (e) PLH vs. DTM; (f) DTM vs. YLD. Results of the GWAS using a GLM 
and data from the BM + EV + SU population for IOD, LIO, and LIN (a–c), the EV population for OIL 
and PRO (d), the BM population for PLH and DTM (e) and the BM + EV + SU population for DTM 
and YLD (f) are shown. The vertical and horizontal dashed lines show the cut-off value of significant 
SNP markers associated with a trait. YLD: seed yield (t ha−1); DTM: days to maturity; OIL: oil content 
(%); PRO: protein content (%); IOD: iodine value; LIO: linoleic acid content (%); LIN: linolenic acid 
content (%). 
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A GW3S was performed to identify potential selection signatures during breeding improvement 
using XP-CLR [34]. Due to the high genetic diversity in BM and EV (Table 1) and large phenotypic 
differences between them (Table S9), GW3S between BM and EV was conducted. A total of 114 
selection signatures with an average size of 226.3 kb were identified (Figures 1 and 7, Table S10), 
accounting for 7.82% of the flax pseudomolecules (~316 Mb). These putative selection signatures 
overlapped with 11 GWAS-detected genomic regions associated with 18 QTL (Figures 1 and 7). 

Some selection signatures were also associated with previously identified QTL (Table S11). For 
example, the selection signatures were associated with 10 previously reported QTL (Figure 7). The 
signatures at position 2.45–2.46 Mb on chr1 overlapped with SNP marker Lu1_2670961 linked to QTL 
QSte.BM.crc-LG1 for STE; the ones at 4.74–4.77 Mb on chr3 overlapped with Lu3_5950394, a SNP 
linked to QTL QOle.BM.crc-LG3-1/QLio.BM.crc-LG3 for OLE and LIO; signatures at 7.24–7.25 Mb on 
chr3 overlapped with SNP Lu3_8415336 linked to QTL QSte.BM.crc-LG3 for STE [8]; position 16.80–
16.81 Mb on chr10 harbors signatures that overlap with SSR Lu2262 linked to an unnamed QTL for 

Figure 6. Relations of −log10(P) values of SNP markers between two traits showing pleiotropy or
linkage relationship of SNP markers in different pairs of traits. (a) IOD vs. LIN; (b) IOD vs. LIO;
(c) LIN vs. LIO; (d) OIL vs. PRO; (e) PLH vs. DTM; (f) DTM vs. YLD. Results of the GWAS using
a GLM and data from the BM + EV + SU population for IOD, LIO, and LIN (a–c), the EV population for
OIL and PRO (d), the BM population for PLH and DTM (e) and the BM + EV + SU population for DTM
and YLD (f) are shown. The vertical and horizontal dashed lines show the cut-off value of significant
SNP markers associated with a trait. YLD: seed yield (t ha−1); DTM: days to maturity; OIL: oil content
(%); PRO: protein content (%); IOD: iodine value; LIO: linoleic acid content (%); LIN: linolenic acid
content (%).

2.10. Selection Signatures in Bi-Parental Populations

A GW3S was performed to identify potential selection signatures during breeding improvement
using XP-CLR [34]. Due to the high genetic diversity in BM and EV (Table 1) and large phenotypic
differences between them (Table S9), GW3S between BM and EV was conducted. A total of 114
selection signatures with an average size of 226.3 kb were identified (Figures 1 and 7, Table S10),
accounting for 7.82% of the flax pseudomolecules (~316 Mb). These putative selection signatures
overlapped with 11 GWAS-detected genomic regions associated with 18 QTL (Figures 1 and 7).
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(d) steric acid content (STE), (e) oil content (OIL), (f) palmitic acid content (PAL), (g) oleic acid content 
(OLE), (h) linolenic acid content (LIN), and (i) protein content (PRO). QTL associated with selective 
sweeps are also labeled on peaks of selective sweeps. The numbers represent the QTL numbers listed 
in Table 3. Multiple numbers on the same peak represent genomic regions co-located with more than 
one trait. The labels ‘m-#’ represent the genomic regions associated with QTL previously identified 
and listed in Table S11. The green dots on Manhattan plots represent significant SNPs.  

3. Discussion 

3.1. QTL Associated with Seed Yield and Seed Oil Quality Traits 

Thirty-three QTL were identified in the current study. Of which, nine QTL were identified in 
previous studies [7,8] for the same traits, including seed yield and seed oil quality traits. Cloutier et 
al. [7] detected six major QTL for LIO, LIN and IOD in SU population. These six QTL correspond to 
the two underlying genes, FAD3a and FAD3b. Some of these QTL were in close proximity on the same 
chromosome. We identified the same QTL by association mapping that were previously detected by 

Figure 7. Genome-wide selective sweep scan using XP-CLR between BM and EV (a), and Manhattan
plots of QTL overlapping with selective sweeps for (b) seed yield (YLD), (c) linoleic acid content (LIO),
(d) steric acid content (STE), (e) oil content (OIL), (f) palmitic acid content (PAL), (g) oleic acid content
(OLE), (h) linolenic acid content (LIN), and (i) protein content (PRO). QTL associated with selective
sweeps are also labeled on peaks of selective sweeps. The numbers represent the QTL numbers listed
in Table 3. Multiple numbers on the same peak represent genomic regions co-located with more than
one trait. The labels ‘m-#’ represent the genomic regions associated with QTL previously identified
and listed in Table S11. The green dots on Manhattan plots represent significant SNPs.

Some selection signatures were also associated with previously identified QTL (Table S11).
For example, the selection signatures were associated with 10 previously reported QTL (Figure 7).
The signatures at position 2.45–2.46 Mb on chr1 overlapped with SNP marker Lu1_2670961 linked to
QTL QSte.BM.crc-LG1 for STE; the ones at 4.74–4.77 Mb on chr3 overlapped with Lu3_5950394, a SNP
linked to QTL QOle.BM.crc-LG3-1/QLio.BM.crc-LG3 for OLE and LIO; signatures at 7.24–7.25 Mb
on chr3 overlapped with SNP Lu3_8415336 linked to QTL QSte.BM.crc-LG3 for STE [8]; position
16.80–16.81 Mb on chr10 harbors signatures that overlap with SSR Lu2262 linked to an unnamed QTL
for OIL; finally, position 17.52–17.53 Mb on chr10 has selection signatures that coincide with SSR
Lu2746 linked to an unnamed QTL for LIN/IOD [53].
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3. Discussion

3.1. QTL Associated with Seed Yield and Seed Oil Quality Traits

Thirty-three QTL were identified in the current study. Of which, nine QTL were identified
in previous studies [7,8] for the same traits, including seed yield and seed oil quality traits.
Cloutier et al. [7] detected six major QTL for LIO, LIN and IOD in SU population. These six QTL
correspond to the two underlying genes, FAD3a and FAD3b. Some of these QTL were in close
proximity on the same chromosome. We identified the same QTL by association mapping that were
previously detected by linkage mapping [7] using the same phenotype and SNP genotype data in
the SU population (Table 3). The refinement of flax pseudomolecule [45] between the linkage study
and our current association study allowed reassignment of chr12 for LIO, LIN and IOD QTL which
were previously assigned to LG16 [8]. In addition, the same QTL were also detected in the EV
population as well as the merged population. Our association study also validated three QTL for YLD,
DTM and PAL which were previously identified using linkage mapping using SSRs and SNPs [8,9]
and from the association mapping using a flax core collection population with SSR markers [53]
(Table 3). These verified QTL for fatty acid composition, seed yield and maturity demonstrate the
feasibility of the association mapping method to detect QTL in a bi-parental population as well as
a multi-parent population.

An additional 24 novel QTL were detected in our current study which were not discovered in
previous studies using individual BM or SU populations. These new QTL were detected using the
merged population which greatly increased the population size, thereby enhancing the association
power and resolution for QTL detection. We noted that only two QTL were discovered from the BM
population alone. This is likely the result of significantly reduced representation of lines re-sequenced
from BM population [8]. The discovery of new QTL demonstrates that GWAS using multiple
bi-parental populations is equally or more efficient for QTL detection than QTL mapping using
single bi-parental populations alone.

We tested the statistical significance of QTL effects for all 33 QTL identified for the 11 traits and
found that all effect differences were significant. We also observed significant positive correlation
between the number of positive-effect QTL and corresponding trait phenotypes in individuals for eight
traits from which had two or more QTL were identified (Figures 4 and 5, Table S7). These results not
only corroborate the significance of the QTL but also demonstrate that effects of QTL in an individual
performed additively, suggesting that marker-assisted selection (MAS) for these QTL would be effective
in breeding. Thus, we listed the flanking sequences of these QTL in Table S12 for MAS purpose.

3.2. Pleotropic QTL Associated with Seed Yield and Quality Traits

Six genomic regions associated with more than one trait were identified. QTL for IOD, LIO,
and LIN were concurrent on chromosomes 4, 7 and 12; QTL for YLD, PLH, and DTM co-located on
chr4; QTL for PRO and OIL were on chr15 and QTL for PAL and OIL were on chr5 (Figures 1 and 6,
Table S8).

IOD is a measure of the degree of unsaturation of the oil that is calculated from the GC-derived
fatty acid composition. Thus, breeding lines with high LIN normally show high IOD [7] due to the
high correlation between IOD, LIO, and LIN [44] (Table S13). QTL co-located at the same genomic
regions indicate that the traits may be controlled by the same gene or tightly linked genes. The two
genomic regions on chromosomes 7 and 12 harbor the two fatty acid desaturase genes, FAD3a and
FAD3b. These genes are responsible for linoleic and linolenic acid composition [52,55].

PLH and DTM are complex traits that considerably impact the adaptability, biomass, and economic
yield of agricultural crops [56,57]. In soybean, one QTL that strongly associated with both PLH and
DTM traits was identified with an SNP at 45.0 Mb position on chromosome 19 and it harbors the
candidate gene DT1, which is homolog to Arabidopsis terminal flower 1 (TFL-1, AT5G03840) [56].
Based on in silico gene annotation, the DT1 homolog are located on chromosomes 6 and 8 in flax
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but no QTL for either PLH or DTM were identified on these two chromosomes. This could be due
to the lack of functional polymorphism(s) at those loci among the parents of our three populations.
However, a different genomic region on chr4 harbours five candidate genes for PLH and seven for
DTM, raising the possibility that PLH and DTM are controlled by tightly linked genes in flax. The same
genomic region was also associated with YLD. Because plant height and maturity affect seed yield,
it is not surprising that QTL for PLH, DTM and YLD were mapped to the same locus. This pleiotropic
relationship between YLD and DTM was previously validated [8] (Table 3).

Inheritance of seed oil content is complicated due to its quantitative nature. The seed oil content
was directly affected by fatty acid composition traits, such as PAL, STE, OLE, LIO, and LIN, or indirectly
by several major agronomic traits, such as seed yield and protein content [58]. Significant correlations
of OIL were observed with PAL (−0.57; p = 0) and PRO (−0.70; p = 0) (Table S13). OIL is also usually
negatively correlated with PRO in oilseed crops [59]. Of the eight QTL associated with oil content,
two co-located with QTL for PAL on chr5 and for PRO on chr15, respectively.

3.3. Phenotypic Variation Explained by SNPs and QTL

SNP heritability (h2
SNP) for a trait is the total proportion of phenotypic variance explained by

additive contributions from genome-wide SNPs. A method for estimating h2
SNP for a complex trait was

initially proposed in 2011 [60,61] and implemented in GCTA (Genome-wide Complex Trait Analysis)
software [61]. Since then, the method has been applied to many quantitative traits largely in human and
animal genetic studies [62,63]. The method was also used to estimate phenotypic variance explained
by a subset of SNPs selected by p-values from GWAS in an independent sample [64]. However the
estimate of variance explained by the SNP subsets ascertained by the p-values from GWAS in the same
sample may be inflated due to positive correlation between true SNP effects and estimation errors
(personal communication to the GCTA author, Jian Yang). However, as the GCTA-based heritability
estimation method includes the population structure effect in the linear model and also considers
heritability estimates to be irrelevant to the number of SNPs used [60,61], the accuracy of estimates
should be higher than those obtained simply using the simple multivariate regression adopted in most
GWAS of plant traits. In the current study, for the first time we applied this method to estimate h2

SNP
for 11 agronomic and seed quality traits in three bi-parental populations and a merged population.
As the number of SNPs identified from a population depends on its genetic variation for the traits,
the trait-associated h2

SNP estimates vary across populations and traits. Overall, seed yield had a lower
h2

SNP than seed quality traits as expected considering the extent of genetic complexity of the former
(Table 2). We also used the same method to estimate phenotypic variation explained by individual
QTL (h2

QTL) and by all QTL for a specific trait (h2
GWAS). h2

GWAS measures the extent of the phenotypic
variation explained by QTL compared to that of all SNPs. This comparison led to the conclusion that
many QTL for PLH, DTM and YLD were not detected in our study but the QTL for seed quality traits
identified herein likely represent major genetic regions or genes controlling these traits.

3.4. Selection Signatures Associated with Seed Yield and Seed Quality Traits

GW3S has been used for screening putative genomic regions under selection pressure caused by
domestication or artificial selection [36,38]. Usually, contrasting genetic populations are compared
(such as wild accessions vs. cultivated accessions, landraces vs. breeding lines) to identify the allele
frequency differentiation between different populations. In this study, we alternatively used two
contrasting bi-parental mapping populations and identified 114 selection signatures with an average
size of 226.3 kb. Some of these selection signatures support nearly 50% of the 23 GWAS-detected
genomic regions associated with 33 QTL. Some of the QTL identified by GWAS have no overlapping
selection signatures, partially because the regions of QTL had XP-CLR (Cross Population Composite
Likelihood Ratio) scores less than the predetermined cut-off values. On the other hand, many selection
signatures have high XP-CLR scores but no associated QTL (Figure 7). These significant selection
signatures may be associated with QTL for traits not included in this study. This is suggested by the
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fact that five previously identified genomic regions related to seven QTL overlapped with the selection
signatures identified in our current study comparing BM and EV (Table S10). These putative selection
signatures provide useful candidates for further QTL-trait association study. Our results combined
with previous studies demonstrate that GW3S combined with GWAS is a powerful approach for
dissecting genetic structure of breeding populations and for the identification of underlying genomic
regions for breeding improvement. Using GWAS with bi-parental populations and selection signatures
allowed the cross validation of QTL previously identified by other mapping methods and established
the foundation for genomic assisted breeding in flax.

4. Materials and Methods

4.1. Plant Materials

Three bi-parental mapping populations of different genetic backgrounds served as genotype
panel for the association study. The first population (BM) consisted of 243 F6-derived RILs generated
by single seed descent from a cross between CDC Bethune and Macbeth. Its two parents are Canadian
high-yielding conventional linseed cultivars with 55–57% LIN [65,66]. The second population (EV)
contained 90 F6-derived RILs from a cross between E1747, an ethyl methanesulfonate (EMS)-induced
low LIN breeding line [67], and Viking, a French fiber flax cultivar with ~55% LIN that was grown
extensively in the 2000’s but deregistered in 2012. The third population (SU) is an F1-derived
DH population of 78 lines obtained from a cross between the breeding line SP2047, from which
a yellow-seeded SolinTM 2047 with only 2–3% LIN has been derived, and breeding line UGG5-5, which
is a high LIN line with 63–66% LIN [7,55]. BM was designed to study yield-related traits while EV and
SU were intended for QTL identification for fatty acid composition and fiber traits.

4.2. Whole Genome Resequencing, SNP Calling, SNP Imputation and LD Analysis

Three populations consisting of 97 randomly selected lines from BM, 91 from EV, 72 from SU
including five parents (one parent is the reference genome) were grown in growth cabinets with
a 16-h light and 8-h dark cycle at 20/18 ◦C. DNA was extracted from young leaf tissue using the
DNeasy 96 Plant kit (Qiagen, Mississauga, ON, Canada) according to the manufacturer’s instructions.
The DNA was subsequently restricted, size-selected and quantified prior to the construction of
the reduced representation libraries used for Illumina sequencing as previously described [47].
Reduced representation libraries from a total of 260 individuals of the three populations, i.e.,
96 randomly selected from BM, 89 from EV, 70 from SU, and five parents (One parent CDC Bethune of
BM is used as a reference genome) were re-sequenced by the Michael Smith Genome Sciences Centre
of the BC Cancer Agency, Genome British Columbia (Vancouver, BC, Canada) using 100-bp paired-end
reads on an Illumina HiSeq 2000 platform (Illumina Inc., San Diego, CA, USA).

SNP calling was performed using the revised AGSNP pipeline [47,48,68]. The flax scaffold
sequences of cultivar CDC Bethune [46] were used as reference for read mapping. Then SNPs were
called using SAMtools [69] and further filtered using a set of criteria such as mapped read depth,
consensus base ratio, mapping quality score and homopolymers with a validation rate of 96.8%
for the called SNPs as described in detail [47]. Finally SNPs with a MAF < 0.05 and a genotyping
rate <60% were removed for further analysis. The coordinates of all SNPs were extracted from the
chromosome-based flax pseudomolecules v2.0 [45]. Missing data for these filtered SNPs were imputed
using Beagle v.4.2 [70].

Intra-chromosome LD (r2) was calculated using plink ver. 1.9 [71] with the parameters
“-r2 -ld-window-kb 2000 -ld-window-r2 0”. Before LD calculation, SNP data were pruned using
the parameter “–indep-pairwise 2000 50 0.9” to remove SNPs with high r2 (>0.9) in a 2000 kb window
with step size of 50 SNPs. Pair-wise r2 values were plotted against the base pair distance, and curves
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of LD decay with distances of paired SNPs were fitted using a non-linear regression model [72] as
follows:

r2 =
10 + cd

(2 + cd)(11 + cd)
×

1 +
(3 + cd)

(
12 + 12cd + (cd)2

)
n(2 + cd)(11 + cd)

, (1)

where c is the coefficient to be estimated, d is the distance between pair-wise SNPs, and n is the number
of total gametes, corresponding to twice the number of individuals in a population. The R function nls
was used to fit the model. The rate of LD decay for each population was determined from the fitted
model at the half of the maximum LD (r2). Haplotype blocks were calculated using plink with the
parameters “–blocks no-pheno-req –blocks-max-kb 2000”.

4.3. Differentiation and Stratification

Nucleotide diversity (π) of three bi-parental populations and genetic differentiation (Fst) between
the populations were estimated using the R package “PopGenome” [73]. The genetic structures of
the three separate inbreeding populations and the combined population were assessed using both
PCA and DAPC [74]. Analyses with DAPC included several steps: (1) PCA was conducted using the
imputed SNPs. According to the curve of accumulative variances against the number of principle
components (PCs), the optimum number of PCs was chosen at which the cumulative variance had no
obvious increase; (2) k-means clustering analysis was performed based on the chosen PCs. To identify
the optimal number of clusters, k-means was run sequentially with increasing k values and the Bayesian
information criterion (BIC) was calculated for each k. The optimum k corresponded to the lowest BIC;
(3) Discriminant analysis was conducted based on the chosen clusters and individuals were reassigned
to the different clusters. The posterior probability of cluster membership was calculated based on
the retained discrimination functions and used as the Q matrix for GWAS and heritability estimation.
PCA was performed using the function implemented in TASSEL while DAPC was conducted using
the R package “adegenet” 2.0 [75].

4.4. Phenotyping of Bi-Parental Populations

Individuals from the three populations were evaluated in field trials over four years (2009–2012) at
two sites, Morden Research and Development Centre, Manitoba (MD) and Kernen Crop Research Farm
near Saskatoon, Saskatchewan (SAS) in Canada. A type-2 modified augmented design (MAD) [76] was
used for the field experiments from which phenotypic data were collected. The detailed experimental
design was previously described [44,77]. All 243 individuals of the BM population were phenotyped
in four years (2009–2012) and two sites (MD and SAS), while 86 individuals of the EV population
and 72 individuals of the SU population were evaluated in three years (2010–2012) and two sites
(MD and SAS).

Eleven common traits were evaluated in the three populations, including YLD, PLH, DTM, PRO,
OIL, IOD and five fatty acid composition traits (OLE, PAL, STE, LIO, and LIN). PLH was measured
from ground to the uppermost part of the plant at maturity. DTM was recorded from sowing to
95% of capsule maturity (seeds rattling in the capsules or bolls). Seed yield data were measured
by harvesting two 0.5-m sections from rows located in the central part of each subplot (0.2 m2).
A total of 1 g of seed from each line at each environment was sampled for OIL measurement and
fatty acid composition. Methyl esters of fatty acids were prepared according to the American Oil
Chemists’ Society (AOCS) Official Method Ce 2-66 [78] and fatty acid composition was measured by
gas chromatography (GC) following AOCS Official Method Ce 1e-91. OIL was determined by nuclear
magnetic resonance calibrated against the FOSFA extraction reference method. PRO was measured
using near-infrared spectroscopy calibrated against the combustion analysis reference method and
expressed on an N × 6.25 dry basis. Phenotyping of these seed quality traits has been previously
described [53]. All phenotypic data from the field experiments and laboratory measurements were
adjusted for soil heterogeneity as previously described based on the MAD pipeline [77]. The BLUP
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values over multiple environmental phenotypes estimated using R package “lme4” [79] were used
for further association study analyses. The Shapiro-Wilk normality test was performed for all traits
using the R function “shapiro.test”. All 11 traits followed approximately a normal or mixed normal
distribution (Figure S3). Simple correlations among 11 traits were calculated using the function “rcorr”
of the R package “Hmisc”.

4.5. Phenotypic Variation Explained by All SNPs

The phenotypic variation explained by all SNPs, denoted as h2
SNP, was estimated for all traits

based on the following mixed linear model [60] implemented in the GCTA software [61]:

y = Xβ + g + ε with its variance V = Aσ2
g + Iσ2

ε (2)

where y is an n × 1 vector of phenotypes with n individuals in a population, X is the n × n.
structure matrix, β is a vector of fixed effects of population structure, including posterior

probabilities of an individual assigning to a cluster in DAPC, g is an n × 1 vector of the total genetic
effects of the individuals with g ~N (0, Aσ2

g ), and ε is a vector of residual effects with ε ~N (0, Iσ2
ε ). A is

interpreted as the genetic relationship matrix (GRM) between individuals and estimated from SNPs.
σ2

g is estimated using the restricted maximum likelihood (REML) method based on the GRM estimated
from all SNPs. Thus, SNP heritability h2

SNP was estimated as

h2
SNP =

σ2
g

σ2
g + σ2

ε
(3)

4.6. Genome-Wide Association Study

GWAS was performed with the GLM and compressed MLM [80,81] implemented in TASSEL
(v5.2) [82], which employs the EMMA and P3D algorithms to reduce computing time. For MLM,
the kinship matrices for the merged population and the three single populations were calculated using
TASSEL (v5.2) [82]. Manhattan plots and quantile-quantile (Q-Q) plots of GWAS were obtained using
the R package “qqman” [83].

SNP markers for candidate QTL were determined based on the p-value for each marker estimated
in the GLM or MLM analysis. The p-values were adjusted by the Bonferroni correction, being α

(0.05)/No. of SNPs used in the analyses. Allele effects of significant markers were calculated as
the difference between the average phenotypic values of homozygous alleles which were obtained
directly from the TASSEL outputs. Candidate QTL were defined based on peaks of SNPs exceeded
the significance threshold for the trait. The genomic region for a QTL was defined as a genome block
spanning all significant SNPs.

The amount of phenotypic variation explained by significant QTL was estimated for all SNP
markers within the QTL regions using the same method as described above [61], denoted as h2

QTL.
We similarly estimated phenotypic variation explained by all significant QTL for a single trait and
denoted it h2

GWAS.

4.7. Candidate Gene Mining

Genome-wide gene scan along chromosomes for significant QTL was performed to characterize
the underlying genomic regions and identify candidate genes. First, all orthologous genes of the model
species Arabidopsis thaliana were mapped to the flax genome using BLASTP of flax protein sequences
against A. thaliana protein sequences at an E-value of 1.0 × 10−10. A total of 15,323 unique A. thaliana
genes were mapped. A list of known flax or A. thaliana genes associated with our studied traits and
their associations was drawn based on literature and database searches [49,51,84]. We investigated
candidate genes within QTL regions or within a 500 kb window upstream and downstream of the
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peaks depending on the LD decay estimates. In addition, previously identified QTL (SSR markers) in
flax [7,8,53] were mapped to the flax pseudomolecules to validate the QTL results from this study.

4.8. QTL Validation

Three approaches were applied to validate QTL identified by GWAS. The first approach was to
compare our QTL with previously identified QTL as described above. The same QTL was inferred if
two QTL were mapped to the same recombination block or haplotype block. The second approach
tested the significance of difference of phenotypes between two contrasting haplotype pairs of a QTL
in the populations. Statistically significant differences served to validate significant QTL. Both t and
Wilcox non-parametric tests were performed using the R functions “t.test” and “wilcox.test” for each
QTL in the merged and individual populations and in different year/location environments. To
test the positive correlations of a trait upon pyramiding of QTL, a simple regression of the number
of positive-effect QTL on phenotypic values of a trait was calculated. A positive-effect QTL in an
individual meant that this individual possessed a positive effect allele for the QTL. The last approach
was to perform genome-wide selective sweep scans to confirm QTL associated genomic regions as
described below.

4.9. Genome-Wide Selective Sweep Scan

A WG3S was performed along chromosomes across two populations using the program
XP-CLR [34]. Comparisons between BM and EV using XP-CLR were conducted. The genetic
distances (cM) between SNPs were estimated using the integrated flax consensus genetic map [43],
assuming uniform recombination between SNPs. For each chromosome, XP-CLR was executed
with the parameters “-w1 0.005 100 100 1 -p1 0.7” to estimate XP-CLR scores for 100-bp windows.
Each chromosome was then divided into 10-kb segments and the highest XP-CLR score from windows
with at least one SNP were assigned to each 10-kb segment (xmax,i). If the XP-CLR scores (xmax, i
and xmax, i+1) of two adjacent 10-kb segments were greater than the 80th percentile (xmax,80th) of the
genome-wide scores of all 10-kb fragments, then they were grouped as a single putative selective
sweep. In addition, putative selective sweeps were also merged if they were separated by no more
than one low score (<xmax,80th) segment. Merged selective sweeps were assigned the highest score
from their merged 10-kb segments. These merged segments were further combined into a larger region
if these segments belonged to the same peak in the genome-wide selective sweep plot (Figure 5a).
Finally, the combined regions falling in the highest 10th percentile of all putative selective sweeps were
considered differentially selected regions or selection signatures.

The selection signatures were compared to both our detected QTL and previously reported
QTL on the genetic loci to find associations between them. Positions where the QTL corresponding
markers were located were extended by 100 kb on both sides and then compared with the position
of the selection signatures. The QTL and selection signatures were considered associated when
they overlapped.
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Abbreviations

DH doubled haploid
GBS genotyping by sequencing
GW3S genome-wide selective sweep scan
GWAS genome-wide association study
IOD iodine value
LD linkage disequilibrium
LIN linolenic acid
LIO linoleic acid
MAF minor allele frequency
MAGIC multi-parent advanced generation intercross
NAM nested association mapping
OIL oil content
OLE oleic acid
PAL palmitic acid
QTL quantitative trait loci
RIL recombinant inbred line
SNP single nucleotide polymorphism
SSR simple sequence repeat
STE stearic acid
YLD seed yield
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