Modern Concepts in Regenerative Therapy for Ischemic Stroke: From Stem Cells for Promoting Angiogenesis to 3D-Bioprinted Scaffolds Customized via Carotid Shear Stress Analysis
Abstract
:1. Introduction
2. Regenerative Tools in Modern Neurology
2.1. SCs with Potential Applications in the Treatment of Stroke
2.2. Growth Factors for Therapeutic Angiogenesis after Ischemic Stroke
2.3. Modulation of the Endogenous Angiogenic Response after Ischemic Stroke
3. Therapeutic Effects of SCs after Ischemic Stroke: Neuroprotection or Neuroregeneration?
4. Paracrine Effects of SCs and Neuroinflammation
5. Therapeutic Stem Cells after Ischemic Stroke: Current Status
6. Carotid Endothelial Shear Stress and Ischemic Stroke
7. Three-Dimensional Bioprinted Scaffolds Seeded with Stem Cells in Carotid Arteries: An Emerging Tool for Stroke Prevention
8. Tissue Engineering and Bioprinting for Ischemic Stroke
Advanced Biomaterials in the Treatment of Stroke
9. Bioprinted Scaffolds Customized on the Basis of Carotid Shear Stress Analysis: A Modern Approach for Stroke Prevention
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Amemori, T.; Romanyuk, N.; Jendelova, P.; Herynek, V.; Turnovcova, K.; Prochazka, P.; Kapkalova, M.; Cocks, G.; Price, J.; Sykova, E. Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat. Stem Cell Res. Ther. 2013, 4, 68. [Google Scholar] [CrossRef]
- Xiong, Y.; Mahmood, A.; Chopp, M. Angiogenesis, neurogenesis and brain recovery of function following injury. Curr. Opin. Investig. Drugs 2010, 11, 298–308. [Google Scholar]
- Zhang, Z.G.; Chopp, M. Neurorestorative therapies for stroke: Underlying mechanisms and translation to the clinic. Lancet Neurol. 2009, 8, 491–500. [Google Scholar] [CrossRef]
- Liu, X.S.; Zhang, Z.G.; Zhang, R.L.; Gregg, S.; Morris, D.C.; Wang, Y.; Chopp, M. Stroke induces gene profile changes associated with neurogenesis and angiogenesis in adult subventricular zone progenitor cells. J. Cereb. Blood Flow Metab. 2007, 27, 564–574. [Google Scholar] [CrossRef]
- Hayashi, T.; Noshita, N.; Sugawara, T.; Chan, P.H. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J. Cereb. Blood Flow Metab. 2003, 23, 166–180. [Google Scholar] [CrossRef]
- Krupinski, J.; Kaluza, J.; Kumar, P.; Kumar, S.; Wang, J.M. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 1994, 25, 1794–1798. [Google Scholar] [CrossRef] [PubMed]
- Bhartiya, D. Clinical Translation of Stem Cells for Regenerative Medicine: A Comprehensive Analysis. Circ. Res. 2019, 124, 840–842. [Google Scholar] [CrossRef] [PubMed]
- Kalladka, D.; Sinden, J.; Pollock, K.; Haig, C.; McLean, J.; Smith, W.; McConnachie, A.; Santosh, C.; Bath, P.M.; Dunn, L.; et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): A phase 1, first-in-man study. Lancet 2016, 388, 787–796. [Google Scholar] [CrossRef]
- Abbasi-Kangevari, M.; Ghamari, S.H.; Safaeinejad, F.; Bahrami, S.; Niknejad, H. Potential Therapeutic Features of Human Amniotic Mesenchymal Stem Cells in Multiple Sclerosis: Immunomodulation, Inflammation Suppression, Angiogenesis Promotion, Oxidative Stress Inhibition, Neurogenesis Induction, MMPs Regulation, and Remyelination Stimulation. Front. Immunol. 2019, 10, 238. [Google Scholar] [PubMed] [Green Version]
- Yu, S.P.; Wei, Z.; Wei, L. Preconditioning strategy in stem cell transplantation therapy. Transl. Stroke Res. 2013, 4, 76–88. [Google Scholar] [CrossRef]
- Thwaites, J.W.; Reebye, V.; Mintz, P.; Levicar, N.; Habib, N. Cellular replacement and regenerative medicine therapies in ischemic stroke. Regen. Med. 2012, 7, 387–395. [Google Scholar] [CrossRef]
- Mead, B.; Logan, A.; Berry, M.; Leadbeater, W.; Scheven, B.A. Concise review: Dental pulp stem cells: A novel cell therapy for retinal and central nervous system repair. Stem Cells 2017, 35, 61–67. [Google Scholar] [CrossRef]
- Koh, S.H.; Park, H.H. Neurogenesis in stroke recovery. Transl. Stroke Res. 2017, 8, 3–13. [Google Scholar] [CrossRef]
- Kuroda, S.; Koh, M.; Hori, E.; Hayakawa, Y.; Akai, T. Muse Cell: A New Paradigm for Cell Therapy and Regenerative Homeostasis in Ischemic Stroke. Adv. Exp. Med. Biol. 2018, 1103, 187–198. [Google Scholar]
- Baker, E.W.; Platt, S.R.; Lau, V.W.; Grace, H.E.; Holmes, S.P.; Wang, L.; Duberstein, K.J.; Howerth, E.W.; Kinder, H.A.; Stice, S.L.; et al. Induced pluripotent stem cell-derived neural stem cell therapy enhances recovery in an ischemic stroke pig model. Sci. Rep. 2017, 7, 10075. [Google Scholar] [CrossRef]
- Yamashita, T.; Liu, W.; Matsumura, Y.; Miyagi, R.; Zhai, Y.; Kusaki, M.; Hishikawa, N.; Ohta, Y.; Kim, S.M.; Kwak, T.H.; et al. Novel Therapeutic Transplantation of Induced Neural Stem Cells for Stroke. Cell Transplant. 2017, 26, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Boese, A.C.; Le, Q.S.E.; Pham, D.; Hamblin, M.H.; Lee, J.P. Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Res. Ther. 2018, 9, 154. [Google Scholar] [CrossRef]
- Takagi, T.; Yoshimura, S.; Sakuma, R.; Nakano-Doi, A.; Matsuyama, T.; Nakagomi, T. Novel regenerative therapies based on regionally induced multipotent stem cells in post-stroke brains: Their origin, characterization, and perspective. Transl. Stroke Res. 2017, 8, 515–528. [Google Scholar] [CrossRef]
- Eckert, M.A.; Vu, Q.; Xie, K.; Yu, J.; Liao, W.; Cramer, S.C.; Zhao, W. Evidence for high translational potential of mesenchymal stromal cell therapy to improve recovery from ischemic stroke. J. Cereb. Blood Flow Metab. 2013, 33, 1322–1334. [Google Scholar] [CrossRef]
- Benedek, I.; Bucur, O.; Benedek, T. Intracoronary infusion of mononuclear bone marrow-derived stem cells is associated with a lower plaque burden after four years. J. Atheroscler. Thromb. 2014, 21, 217–229. [Google Scholar] [CrossRef]
- Miyamoto, M.; Nakamura, K.; Shichinohe, H.; Yamauchi, T.; Ito, M.; Saito, H.; Kawabori, M.; Osanai, T.; Sasaki, T.; Houkin, K.; Kuroda, S. Human Recombinant Peptide Sponge Enables Novel, Less Invasive Cell Therapy for Ischemic Stroke. Stem Cells Int. 2018, 2018, 4829534. [Google Scholar] [CrossRef]
- Uchida, H.; Niizuma, K.; Kushida, Y.; Wakao, S.; Tominaga, T.; Borlongan, C.V.; Dezawa, M. Human Muse cells reconstruct neuronal circuitry in subacute lacunar stroke model. Stroke 2017, 48, 428–435. [Google Scholar] [CrossRef]
- Takizawa, S.; Nagata, E.; Nakayama, T.; Masuda, H.; Asahara, T. Recent progress in endothelial progenitor cell culture systems: Potential for stroke therapy. Neurol. Med. Chir. 2016, 56, 302–309. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Yuan, B.; Chen, J.; Feng, D.H.; Zhao, B.; Qin, C.; Chen, Y.F. Endothelial progenitor cells: Therapeutic perspective for ischemic stroke. CNS Neurosci. Ther. 2013, 19, 67–75. [Google Scholar] [CrossRef]
- Wankhade, U.D.; Shen, M.; Kolhe, R.; Fulzele, S. Advances in Adipose-Derived Stem Cells Isolation, Characterization, and Application in Regenerative Tissue Engineering. Stem Cells Int. 2016, 2016, 3206807. [Google Scholar] [CrossRef]
- Geng, W.; Tang, H.; Luo, S.; Lv, Y.; Liang, D.; Kang, X.; Hing, W. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am. J. Transl. Res. 2019, 11, 780–792. [Google Scholar]
- Gong, B.; Dong, Y.; Jiang, W.; Shan, Y.; Zhou, B.; Li, W. Intravenous Transplants of Human Adipose Derived Stem Cell Protect the Rat From Ischemia-Induced Damage. J. Stroke Cardiovasc. Dis. 2019, 28, 595–603. [Google Scholar] [CrossRef]
- Asahara, T.; Masuda, H.; Takahashi, T.; Kalka, C.; Pastore, C.; Silver, M.; Kearne, M.; Magner, M.; Isner, J.M. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 1999, 85, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Gyöngyösi, M.; Hemetsberger, R.; Posa, A.; Charwat, S.; Pavo, N.; Petnehazy, O.; Petrasi, Z.; Pavo, I.J.; Hemetsberger, H.; Benedek, I.; et al. Hypoxia-inducible factor 1-alpha release after intracoronary versus intramyocardial stem cell therapy in myocardial infarction. J. Cardiovasc. Transl. Res. 2010, 3, 114–121. [Google Scholar] [CrossRef]
- Hill, J.M.; Zalos, G.; Halcox, J.P.; Schenke, W.H.; Waclawiw, M.A.; Quyyumi, A.A.; Finkel, T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 2003, 348, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.G.; Zhang, L.; Jiang, Q.; Chopp, M. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ. Res. 2002, 90, 284–288. [Google Scholar] [CrossRef]
- Ghani, U.; Shuaib, A.; Salam, A.; Nasir, A.; Shuaib, U.; Jeerakathil, T.; Sher, F.; O’Rourke, F.; Nasser, A.M.; Schwindt, B.; et al. Endothelial progenitor cells during cerebrovascular disease. Stroke 2005, 36, 151–153. [Google Scholar] [CrossRef]
- Li, Y.F.; Ren, L.N.; Guo, G.; Cannella, L.A.; Chernaya, V.; Samuel, S.; Liu, S.; Wang, H.; Yang, X.F. Endothelial progenitor cells in ischemic stroke: An exploration from hypothesis to therapy. J. Hematol. Oncol. 2015, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, Z.G.; Li, Y.; Wang, L.; Xu, Y.X.; Gautam, S.C.; Lu, M.; Zhu, Z.; Chopp, M. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ. Res. 2003, 92, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Arenillas, J.F.; Sobrino, T.; Castillo, J.; Dávalos, A. The role of angiogenesis in damage and recovery from ischemic stroke. Curr. Treat. Options Cardiovasc. Med. 2007, 9, 205–212. [Google Scholar] [CrossRef]
- Wei, L.; Keogh, C.L.; Whitaker, V.R.; Theus, M.H.; Yu, S.P. Angiogenesis and stem cell transplantation as potential treatments of cerebral ischemic stroke. Pathophysiology 2005, 12, 47–62. [Google Scholar] [CrossRef]
- Sun, Y.; Jin, K.; Xie, L.; Childs, J.; Mao, X.O.; Logvinova, A.; Greenberg, D.A. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Investig. 2003, 111, 1843–1851. [Google Scholar] [CrossRef]
- Carmeliet, P.; Storkebaum, E. Vascular and neuronal effects of VEGF in the nervous system: Implications for neurological disorders. Semin. Cell Dev. Biol. 2002, 13, 39–53. [Google Scholar] [CrossRef]
- Ferrara, N.; Gerber, H.P. The role of vascular endothelial growth factor in angiogenesis. Acta Haematol. 2001, 106, 148–156. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Zhang, L.; Jiang, Q.; Zhang, R.; Davies, K.; Powers, C.; van Bruggen, N.; Chopp, M. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J. Clin. Investig. 2002, 106, 829–838. [Google Scholar] [CrossRef]
- Weis, S.M.; Cheresh, D.A. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 2005, 437, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Yano, A.; Shingo, T.; Takeuchi, A.; Yasuhara, T.; Kobayashi, K.; Takahashi, K.; Muraoka, K.; Matsui, T.; Miyoshi, Y.; Hamada, H.; et al. Encapsulated vascular endothelial growth factor—secreting cell grafts have neuroprotective and angiogenic effects on focal cerebral ischemia. J. Neurosurg. 2005, 103, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Croll, S.D.; Goodman, J.H.; Scharfman, H.E. Vascular Endothelial Growth Factor (VEGF) in Seizures. Adv. Exp. Med. Biol. 2004, 548, 57–68. [Google Scholar] [PubMed]
- Bates, D.O.; Harper, S.J. Regulation of vascular permeability by vascular endothelial growth factors. Vasc. Pharmacol. 2002, 39, 225–237. [Google Scholar] [CrossRef]
- Forstreuter, F.; Lucius, R.; Mentlein, R. Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells. J. Neuroimmunol. 2002, 132, 93–98. [Google Scholar] [CrossRef]
- Valable, S.; Montaner, J.; Bellail, A.; Berezowski, V.; Brillault, J.; Cecchelli, R.; Divoux, D.; MacKenzie, E.T.; Bernaudin, M.; Roussel, S.; et al. VEGF-induced BBB permeability is associated with an MMP-9 activity increase in cerebral ischemia: Both effects decreased by Ang-1. J. Cereb. Blood Flow Metab. 2005, 25, 1491–1504. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Murakami, M.; Takahashi, H.; Yamauchi, M.; Kiba, A.; Yamaguchi, S.; Yabana, N.; Alitalo, K.; Shibuya, M. Chimeric VEGF-ENZ7/PlGF promotes angiogenesis via VEGFR-2 without significant enhancement of vascular permeability and inflammation. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2019–2026. [Google Scholar] [CrossRef]
- Gomez, R.; Gonzalez-Izquierdo, M.; Zimmermann, R.C.; Novella-Maestre, E.; Alonso-Muriel, I.; Sanchez-Criado, J.; Remohi, J.; Simon, C.; Pellicer, A. Low-dose dopamine agonist administration blocks vascular endothelial growth factor (VEGF)-mediated vascular hyperpermeability without altering VEGF receptor 2-dependent luteal angiogenesis in a rat ovarian hyperstimulation model. Endocrinology 2006, 147, 5400–5411. [Google Scholar] [CrossRef]
- Klein, R.; Mahlberg, N.; Ohren, M.; Ladwig, A.; Neumaier, B.; Graf, R.; Hoehn, M.; Albrechtsen, M.; Rees, S.; Fink, G.R.; et al. The neural cell adhesion molecule-derived (NCAM)-peptide FG loop (FGL) mobilizes endogenous neural stem cells and promotes endogenous regenerative capacity after stroke. J. Neuroimmune Pharmacol. 2016, 11, 708–720. [Google Scholar] [CrossRef]
- Gertz, K.; Priller, J.; Kronenberg, G.; Fink, K.B.; Winter, B.; Schröck, H.; Ji, S.; Milosevic, M.; Harms, C.; Böhm, M.; et al. Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase–dependent augmentation of neovascularization and cerebral blood flow. Circ. Res. 2006, 99, 1132–1140. [Google Scholar] [CrossRef]
- Laufs, U.; Werner, N.; Link, A.; Endres, M.; Wassmann, S.; Jürgens, K.; Miche, E.; Böhm, M.; Nickenig, G. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 2004, 109, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wu, Y.; Jia, J. Exercise preconditioning and brain ischemic tolerance. Neuroscience 2011, 177, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Endres, M. Statins and stroke. J. Cereb. Blood Flow Metab. 2005, 25, 1093–1110. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, Z.G.; Li, Y.; Wang, Y.; Wang, L.; Jiang, H.; Zhang, C.; Lu, M.; Katakowski, M.; Feldkamp, C.S.; et al. Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann. Neurol. 2003, 53, 743–751. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, L.; Zhang, L.; Chen, J.; Zhu, Z.; Zhang, Z.; Chopp, M. Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ. Res. 2003, 92, 308–313. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, C.; Jiang, H.; Li, Y.; Zhang, L.; Robin, A.; Katakowski, M.; Lu, M.; Chopp, M. Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J. Cereb. Blood Flow Metab. 2005, 25, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Zhang, L.; Alexeyev, M.; Alvarez, D.F.; Strada, S.J.; Stevens, T. Type 5 phosphodiesterase expression is a critical determinant of the endothelial cell angiogenic phenotype. Am. J. Physiol. Lung Cell Mol. Physiol. 2009, 296, L220–L228. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Jiang, Q.; Zhang, L.; Ding, G.; Zhang, Z.G.; Li, Q.; Ewing, J.R.; Lu, M.; Panda, S.; Ledbetter, K.A.; et al. Angiogenesis and improved cerebral blood flow in the ischemic boundary area detected by MRI after administration of sildenafil to rats with embolic stroke. Brain Res. 2007, 1132, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, Z.; Zhang, R.L.; Cui, Y.; LaPointe, M.C.; Silver, B.; Chopp, M. Tadalafil, a long-acting type 5 phosphodiesterase isoenzyme inhibitor, improves neurological functional recovery in a rat model of embolic stroke. Brain Res. 2006, 1118, 192–198. [Google Scholar] [CrossRef]
- Gao, F.; Sugita, M.; Nukui, H. Phosphodiesterase 5 inhibitor, zaprinast, selectively increases cerebral blood flow in the ischemic penumbra in the rat brain. Neurol. Res. 2005, 27, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Bednar, M.M. The role of sildenafil in the treatment of stroke. Curr. Opin. Investig. Drugs 2008, 9, 754–759. [Google Scholar] [PubMed]
- Pistrosch, F.; Herbrig, K.; Oelschlaegel, U.; Richter, S.; Passauer, J.; Fischer, S.; Gross, P. PPARγ-agonist rosiglitazone increases number and migratory activity of cultured endothelial progenitor cells. Atherosclerosis 2005, 183, 163–167. [Google Scholar] [CrossRef]
- Gensch, C.; Clever, Y.P.; Werner, C.; Hanhoun, M.; Böhm, M.; Laufs, U. The PPAR-γ agonist pioglitazone increases neoangiogenesis and prevents apoptosis of endothelial progenitor cells. Atherosclerosis 2007, 192, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Seifert, H.A.; Pennypacker, K.R. Molecular and cellular immune responses to ischemic brain injury. Trans. Stroke Res. 2014, 5, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Stonesifer, C.; Corey, S.; Ghanekar, S.; Diamandis, Z.; Acosta, S.A.; Borlongan, C.V. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog. Neurobiol. 2017, 158, 94–131. [Google Scholar] [CrossRef]
- Bang, O.Y. Clinical trials of adult stem cell therapy in patients with ischemic stroke. J. Clin. Neurol. 2016, 12, 14–20. [Google Scholar] [CrossRef]
- Gyöngyösi, M.; Hemetsberger, R.; Wolbank, S.; Pichler, V.; Kaun, C.; Posa, A.; Petrasi, Z.; Petnehazy, Ö.; Hofer-Warbinek, R.; de Martin, R.; et al. Delayed recovery of myocardial blood flow after intracoronary stem cell administration. Stem Cell Rev. 2011, 7, 616–623. [Google Scholar] [CrossRef]
- Kempermann, G.; Wiskott, L.; Gage, F.H. Functional significance of adult neurogenesis. Curr. Opin. Neurobiol. 2004, 14, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Z.; Nardai, S. Cerebral ischemia/repefusion injury: From bench space to bedside. Brain Res. Bull. 2017, 134, 30–37. [Google Scholar] [CrossRef]
- Sandu, R.E.; Balseanu, A.T.; Bogdan, C.; Slevin, M.; Petcu, E.; Popa-Wagner, A. Stem cell therapies in preclinical models of stroke. Is the aged brain microenvironment refractory to cell therapy? Exp. Gerontol. 2017, 94, 73–77. [Google Scholar] [CrossRef]
- Iadecola, C.; Anrather, J. The immunology of stroke: From mechanisms to translation. Nat. Med. 2011, 17, 796–808. [Google Scholar] [CrossRef]
- Popa-Wagner, A.; Filfan, M.; Uzoni, A.; Pourgolafshan, P.; Buga, A.M. Poststroke cell therapy of the aged brain. Neural Plast. 2015, 2015, 839638. [Google Scholar] [CrossRef] [PubMed]
- Widimsky, P.; Hopkins, L.N. Catheter-based interventions for acute ischaemic stroke. Eur. Heart J. 2015, 37, 3081–3089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuchi, K.; Tanaka, E.; Murai, Y.; Tancharoen, S. Clinical trials in acute ischemic stroke. CNS Drugs 2014, 28, 929–938. [Google Scholar] [CrossRef]
- Boltze, J.; Arnold, A.; Walczak, P.; Jolkkonen, J.; Cui, L.; Wagner, D.C. The dark side of the force–constraints and complications of cell therapies for stroke. Front. Neurol. 2015, 6, 155. [Google Scholar] [CrossRef]
- Marei, H.E.; Hasan, A.; Rizzi, R.; Althani, A.; Afifi, N.; Cenciarelli, C.; Caceci, T.; Shuaib, A. Potential of stem cell-based therapy for ischemic stroke. Front. Neurol. 2018, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Bang, O.Y.; Kim, E.H.; Cha, J.M.; Moon, G.J. Adult stem cell therapy for stroke: Challenges and progress. J. Stroke 2016, 18, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Rosado-de-Castro, P.H.; Schmidt, F.R.; Battistella, V.; Lopes de Souza, S.A.; Gutfilen, B.; Goldenberg, R.C.; Kasai-Brunswick, T.H.; Vairo, L.; Silva, R.M.; Wajnberg, E.; et al. Biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regen. Med. 2013, 8, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Moniche, F.; Gonzalez, A.; Gonzalez-Marcos, J.R.; Carmona, M.; Piñero, P.; Espigado, I.; Garcia-Solis, D.; Cayuela, A.; Montaner, J.; Boada, C.; et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: A pilot clinical trial. Stroke 2012, 43, 2242–2244. [Google Scholar] [CrossRef]
- Prasad, K.; Sharma, A.; Garg, A.; Mohanty, S.; Bhatnagar, S.; Johri, S.; Singh, K.K.; Nair, V.; Sarkar, R.S.; Gorthi, S.P.; et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: A multicentric, randomized trial. Stroke 2014, 45, 3618–3624. [Google Scholar] [CrossRef]
- Yozbatiran, N.; Der-Yeghiaian, L.; Cramer, S.C. A standardized approach to performing the action research arm test. Neurorehabil. Neural Repair 2008, 22, 78–90. [Google Scholar] [CrossRef]
- Díez-Tejedor, E.; Gutiérrez-Fernández, M.; Martínez-Sánchez, P.; Rodríguez-Frutos, B.; Ruiz-Ares, G.; Lara, M.L.; Gimeno, B.F. Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: A safety assessment: A phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J. Stroke Cerebrovasc. Dis. 2014, 23, 2694–2700. [Google Scholar] [CrossRef]
- Prasad, K.; Mohanty, S.; Bhatia, R.; Srivastava, M.V.P.; Garg, A.; Srivastava, A.; Goyal, V.; Tripathi, M.; Kumar, A.; Bal, C.; et al. Autologous intravenous bone marrow mononuclear cell therapy for patients with subacute ischaemic stroke: A pilot study. Indian J. Med. Res. 2012, 136, 221–228. [Google Scholar] [PubMed]
- Hess, D.C.; Wechsler, L.R.; Clark, W.M.; Savitz, S.I.; Ford, G.A.; Chiu, D.; Yavagal, D.R.; Uchino, K.; Liebeskind, D.S.; Auchus, A.P.; et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2017, 16, 360–368. [Google Scholar] [CrossRef]
- Steinberg, G.K.; Kondziolka, D.; Wechsler, L.R.; Lunsford, L.D.; Kim, A.S.; Johnson, J.N.; Bates, D.; Poggio, G.; Case, C.; McGrogan, M.; et al. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow–derived mesenchymal stem cells (SB623): A phase 1/2a study. J. Neurosurg. 2018, 1, 1–11. [Google Scholar] [CrossRef]
- Mackie, A.R.; Losordo, D.W. CD34-positive stem cells in the treatment of heart and vascular disease in human beings. Tex. Heart Inst. J. 2011, 38, 474–485. [Google Scholar] [PubMed]
- Clinicaltrials.gov. Intravenous Stem Cells After Ischemic Stroke (ISIS). Available online: https://clinicaltrials.gov/ct2/show/NCT00875654?term=nct00875654&rank=1 (accessed on 3 March 2019).
- Moniche, F.; Escudero, I.; Zapata-Arriaza, E.; Usero-Ruiz, M.; Prieto-León, M.; de la Torre, J.; Gamero, M.A.; Tamayo, J.A.; Ochoa-Sepúlveda, J.J.; Maestre, J.; et al. Intra-arterial bone marrow mononuclear cells (BM-MNCs) transplantation in acute ischemic stroke (IBIS trial): protocol of a phase II, randomized, dose-finding, controlled multicenter trial. Int. J. Stroke 2015, 10, 1149–1152. [Google Scholar] [CrossRef]
- Banerjee, S.; Bentley, P.; Hamady, M.; Marley, S.; Davis, J.; Shlebak, A.; Nicholls, J.; Williamson, D.A.; Jensen, S.L.; Gordon, M.; et al. Intra-arterial immunoselected CD34+ stem cells for acute ischemic stroke. Stem Cells Transl. Med. 2014, 3, 1322–1330. [Google Scholar] [CrossRef]
- Clinicaltrials.gov. Study of Autologous Stem Cell Transplantation for Patients With Ischemic Stroke. Available online: https://clinicaltrials.gov/ct2/show/NCT00473057?term=nct00473057&rank=1 (accessed on 3 March 2019).
- Jin, K.; Sun, Y.; Xie, L.; Mao, X.O.; Childs, J.; Peel, A.; Logvinova, A.; Banwait, S.; Greenberg, D.A. Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or intravenous transplantation in the rat. Neurobiol. Dis. 2005, 18, 366–374. [Google Scholar] [CrossRef]
- Binder, D.K.; Rau, G.; Starr, P.A. Hemorrhagic complications of microelectrode-guided deep brain stimulation. Stereotact. Funct. Neurosurg. 2003, 80, 28–31. [Google Scholar] [CrossRef]
- Potts, M.B.; Silvestrini, M.T.; Lim, D.A. Devices for cell transplantation into the central nervous system: Design considerations and emerging technologies. Surg. Neurol. Int. 2013, 4, S22–S30. [Google Scholar] [PubMed]
- Chen, L.; Xi, H.; Huang, H.; Zhang, F.; Liu, Y.; Chen, D.; Xiao, J. Multiple cell transplantation based on an intraparenchymal approach for patients with chronic phase stroke. Cell Transplant. 2013, 22, S83–S91. [Google Scholar] [CrossRef]
- Li, G.; Bonamici, N.; Dey, M.; Lesniak, M.S.; Balyasnikova, I.V. Intranasal delivery of stem cell-based therapies for the treatment of brain malignancies. Expert Opin. Drug Deliv. 2018, 15, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Galeano, C.; Qiu, Z.; Mishra, A.; Farnsworth, S.L.; Hemmi, J.J.; Moreira, A.; Edenhoffer, P.; Hornsby, P.J. The Route by Which Intranasally Delivered Stem Cells Enter the Central Nervous System. Cell Transplant. 2018, 27, 501–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Fauzi, A.; Suroto, N.S.; Bajamal, A.H.; Machfoed, M.H. Intraventricular transplantation of autologous bone marrow mesenchymal stem cells via Ommaya reservoir in persistent vegetative state patients after haemorrhagic stroke: Report of two cases & review of the literature. J. Stem Cells Regen. Med. 2016, 12, 100–104. [Google Scholar]
- Al Fauzi, A.; Sumorejo, P.; Suroto, N.S.; Parenrengi, M.A.; Wahyuhadi, J.; Turchan, A.; Mahyudin, F.; Suroto, H.; Rantam, F.A.; Machfoed, M.H.; et al. Clinical Outcomes of Repeated Intraventricular Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells in Chronic Haemorrhagic Stroke. A One-Year Follow Up. Open Neurol. J. 2017, 11, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Misra, V.; Lal, A.; El Khoury, R.; Chen, P.R.; Savitz, S.I. Intra-arterial delivery of cell therapies for stroke. Stem Cells Dev. 2011, 21, 1007–1015. [Google Scholar] [CrossRef]
- Savitz, S.I.; Misra, V.; Kasam, M.; Juneja, H.; Cox, C.S., Jr.; Alderman, S.; Aisiku, I.; Kar, S.; Gee AGrotta, J.C. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann. Neurol. 2011, 70, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Battistella, V.; de Freitas, G.R.; da Fonseca, L.M.B.; Mercante, D.; Gutfilen, B.; Goldenberg, R.C.; Dias, J.V.; Kasai-Brunswick, T.H.; Wajnberg, E.; Rosado-de-Castro, P.H.; et al. Safety of autologous bone marrow mononuclear cell transplantation in patients with nonacute ischemic stroke. Regen. Med. 2011, 6, 45–52. [Google Scholar] [CrossRef]
- Kamiya, N.; Ueda, M.; Igarashi, H.; Nishiyama, Y.; Suda, S.; Inaba, T.; Katayama, Y. Intra-arterial transplantation of bone marrow mononuclear cells immediately after reperfusion decreases brain injury after focal ischemia in rats. Life Sci. 2008, 83, 433–437. [Google Scholar] [CrossRef]
- Li, Y.; Chopp, M.; Chen, J.; Wang, L.; Gautam, S.C.; Xu, Y.X.; Zhang, Z. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J. Cereb. Blood Flow Metab. 2000, 20, 1311–1319. [Google Scholar] [CrossRef]
- Ge, J.; Guo, L.; Wang, S.; Zhang, Y.; Cai, T.; Zhao, R.C.; Wu, Y. The size of mesenchymal stem cells is a significant cause of vascular obstructions and stroke. Stem Cell Rev. 2014, 10, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Schrepfer, S.; Deuse, T.; Reichenspurner, H.; Fischbein, M.P.; Robbins, R.C.; Pelletier, M.P. Stem cell transplantation: The lung barrier. Transplant. Proc. 2007, 39, 573–576. [Google Scholar] [CrossRef]
- Toma, C.; Wagner, W.R.; Bowry, S.; Schwartz, A.; Villanueva, F. Fate of culture-expanded mesenchymal stem cells in the microvasculature: In vivo observations of cell kinetics. Circ. Res. 2009, 104, 398–402. [Google Scholar] [CrossRef]
- Janowski, M.; Lyczek, A.; Engels, C.; Xu, J.; Lukomska, B.; Bulte, J.W.; Walczak, P. Cell size and velocity of injection are major determinants of the safety of intracarotid stem cell transplantation. J. Cereb. Blood Flow Metab. 2013, 33, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.W.; Kwon, M.; Choi, J.C.; Shin, J.W.; Park, I.W.; Choi, B.W.; Kim, J.Y. Familial occurrence of pulmonary embolism after intravenous, adipose tissue-derived stem cell therapy. Yonsei Med. J. 2013, 54, 1293–1296. [Google Scholar] [CrossRef]
- Kenmuir, C.L.; Wechsler, L.R. Update on cell therapy for stroke. Stroke Vasc. Neurol. 2017, 2, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Seminatore, C.; Polentes, J.; Ellman, D.; Kozubenko, N.; Itier, V.; Tine, S.; Tritschler, L.; Brenot, M.; Guidou, E.; Blondeau, J.; et al. The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors. Stroke 2010, 41, 153–159. [Google Scholar] [CrossRef]
- Chang, D.J.; Oh, S.H.; Lee, N.; Choi, C.; Jeon, I.; Kim, H.S.; Shin, D.A.; Lee, S.E.; Kim, D.; Song, J. Contralaterally transplanted human embryonic stem cell-derived neural precursor cells (ENStem-A) migrate and improve brain functions in stroke-damaged rats. Exp. Mol. Med. 2013, 45, e53. [Google Scholar] [CrossRef] [PubMed]
- Steward, O.; Sharp, K.G.; Yee, K.M.; Hatch, M.N.; Bonner, J.F. Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury. J. Neurosci. 2014, 34, 14013–14021. [Google Scholar] [CrossRef]
- Bladin, C.F.; Alexandrov, A.V.; Bellavance, A.; Bornstein, N.; Chambers, B.; Coté, R.; Lebrun, L.; Pirisi, A.; Norris, J.W. Seizures after stroke: A prospective multicenter study. Arch. Neurol. 2000, 57, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Bachier, C.; Potter, J.; Potter, G.; Sugay, R.; Shaughnessy, P.; Chan, K.; Jude, V.; Madden, R.; LeMaistre, C.F. High white blood cell concentration in the peripheral blood stem cell product can induce seizures during infusion of autologous peripheral blood stem cells. Biol. Blood Marrow Transplant. 2012, 18, 1055–1060. [Google Scholar] [CrossRef]
- Wichterle, H.; Lieberam, I.; Porter, J.A.; Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002, 110, 385–397. [Google Scholar] [CrossRef]
- Nagai, N.; Kawao, N.; Okada, K.; Okumoto, K.; Teramura, T.; Ueshima, S.; Umemura, K.; Matsuo, O. Systemic transplantation of embryonic stem cells accelerates brain lesion decrease and angiogenesis. Neuroreport 2010, 21, 575–579. [Google Scholar] [CrossRef]
- Toda, H.; Takahashi, J.; Iwakami, N.; Kimura, T.; Hoki, S.; Mozumi-Kitamura, K.; Ono, S.; Hashimoto, N. Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci. Lett. 2001, 316, 9–12. [Google Scholar] [CrossRef]
- Guzman, R.; Bliss, T.; De Los Angeles, A.; Moseley, M.; Palmer, T.; Steinberg, G. Neural progenitor cells transplanted into the uninjured brain undergo targeted migration after stroke onset. J. Neurosci. Res. 2008, 86, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Honmou, O.; Onodera, R.; Sasaki, M.; Waxman, S.G.; Kocsis, J.D. Mesenchymal stem cells: Therapeutic outlook for stroke. Trends Mol. Med. 2012, 18, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Mo, X.; Qin, C.; Zheng, J.; Liang, Z.; Zhang, C. Transplantation of differentiated bone marrow stromal cells promotes motor functional recovery in rats with stroke. Neurol. Res. 2013, 35, 320–328. [Google Scholar] [CrossRef]
- Lee, J.S.; Hong, J.M.; Moon, G.J.; Lee, P.H.; Ahn, Y.H.; Bang, O.Y. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 2010, 28, 1099–1106. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Y.; Liu, B.; Chen, X.; Zhang, S. Challenges and research progress of the use of mesenchymal stem cells in the treatment of ischemic stroke. Brain Dev. 2018, 40, 612–626. [Google Scholar] [CrossRef]
- Abe, K.; Yamashita, T.; Takizawa, S.; Kuroda, S.; Kinouchi, H.; Kawahara, N. Stem cell therapy for cerebral ischemia: From basic science to clinical applications. J. Cereb. Blood Flow Metab. 2012, 32, 1317–1331. [Google Scholar] [CrossRef]
- Chen, S.J.; Chang, C.M.; Tsai, S.K.; Chang, Y.L.; Chou, S.J.; Huang, S.S.; Tai, L.K.; Chen, Y.C.; Ku, H.H.; Li, H.Y.; et al. Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev. 2010, 19, 1757–1767. [Google Scholar] [CrossRef]
- Chang, D.J.; Lee, N.; Park, I.H.; Choi, C.; Jeon, I.; Kwon, J.; Oh, S.H.; Shin, D.A.; Do, J.T.; Lee, D.R.; et al. Therapeutic potential of human induced pluripotent stem cells in experimental stroke. Cell Transplant. 2013, 22, 1427–1440. [Google Scholar] [CrossRef]
- Ryu, B.; Sekine, H.; Homma, J.; Kobayashi, T.; Kawanata, T.; Shimizu, T. Allogeneic adipose-derived mesenchymal stem cell sheet that produce neurological improvement with angiogenesis and neurogenesis in a rat stroke model. J. Neurosurg. 2019, 22, 1–14. [Google Scholar] [CrossRef]
- Mu, J.; Bakreen, A.; Juntunen, M.; Korhonen, P.; Oinonen, E.; Cui, L.; Myllyniemi, M.; Zhao, S.; Miettinen, S.; Jolkkonen, J. Combined Adipose Tissue-Derived Mesenchymal Stem Cell Therapy and Rehabilitation in Experimental Stroke. Front. Neurol. 2019, 10, 235. [Google Scholar] [CrossRef] [Green Version]
- Clinicaltrials.gov. Study of Modified Stem Cells (SB623) in Patients with Chronic Motor Deficit from Ischemic Stroke (ACTIsSIMA). Available online: https://clinicaltrials.gov/ct2/show/NCT02448641?term=nct02448641&rank=1 (accessed on 3 March 2019).
- Clinicaltrials.gov. Investigation of Neural Stem Cells in Ischemic Stroke (PISCES III). Available online: https://clinicaltrials.gov/ct2/show/NCT03629275?term=nct03629275&rank=1 (accessed on 3 March 2019).
- Glass, J.D.; Boulis, N.M.; Johe, K.; Rutkove, S.B.; Federici, T.; Polak, M.; Kelly, C.; Feldman, E.L. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: Results of a phase I trial in 12 patients. Stem Cells 2012, 30, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Osanai, T.; Houkin, K.; Uchiyama, S.; Minematsu, K.; Taguchi, A.; Terasaka, S. Treatment evaluation of acute stroke for using in regenerative cell elements (TREASURE) trial: Rationale and design. Int. J. Stroke 2018, 13, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Broderick, J.P.; Adeoye, O.; Elm, J. Evolution of the modified Rankin scale and its use in future stroke trials. Stroke 2017, 48, 2007–2012. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.L.; Chen, C.T.; Chou, Y.T.; Shih, C.L.; Koh, C.L.; Hsieh, C.L. Is the long form of the Fugl-Meyer motor scale more responsive than the short form in patients with stroke? Arch. Phys. Med. Rehabil. 2014, 95, 941–949. [Google Scholar] [CrossRef]
- Lyden, P. Using the national institutes of health stroke scale: A cautionary tale. Stroke 2017, 48, 513–519. [Google Scholar] [CrossRef]
- Buzas, R.; Rogobete, A.F.; Popovici, S.E.; Mateescu, T.; Hoinoiu, T.; Sorop, V.B.; Bratu, T.; Ticlea, M.; Popoiu, C.M.; Sandesc, D. Nuclear Transcription Factor Kappa B (NF-кB) and Molecular Damage Mechanisms in Acute Cardiovascular Diseases. A Review. J. Cardiovasc. Emerg. 2018, 4, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Xing, R.; De Wilde, D.; McCann, G.; Ridwan, Y.; Schrauwen, J.T.C.; van der Steen, A.F.W.; Gijsen, F.J.H.; Van der Heiden, K. Contrast-enhanced micro-CT imaging in murine carotid arteries: A new protocol for computing wall shear stress. Biomed. Eng. Online 2016, 15, 156. [Google Scholar] [CrossRef] [PubMed]
- Cibis, M.; Potters, W.V.; Gijsen, F.J.; Marquering, H.; VanBavel, E.; van der Steen, A.F.; Nederveen, A.J.; Wentzel, J.J. Wall shear stress calculations based on 3D cine phase contrast MRI and computational fluid dynamics: A comparison study in healthy carotid arteries. NMR Biomed. 2014, 27, 826–834. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, L.; Zhou, W.; Xin, L.; Xia, X.; Li, S.; Zheng, H.; Niu, L. Computational and experimental assessment of influences of hemodynamic shear stress on carotid plaque. Biomed. Eng. Online 2017, 16, 92. [Google Scholar] [CrossRef] [PubMed]
- Nyulas, T.; Marton, E.; Rus, V.A.; Rat, N.; Ratiu, M.; Benedek, T.; Benedek, I. Morphological features and plaque composition in culprit atheromatous plaques of patients with acute coronary syndromes. J. Cardiovasc. Emerg. 2018, 4, 84–94. [Google Scholar] [CrossRef]
- Cheng, C.; Tempel, D.; van Haperen, R.; van der Baan, A.; Grosveld, F.; Daemen, M.J.; Krams, R.; de Crom, R. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 2006, 113, 2744–2753. [Google Scholar] [CrossRef]
- Masatsugu, K.; Itoh, H.; Chun, T.H.; Saito, T.; Yamashita, J.; Doi, K.; Inoue, M.; Sawada, N.; Fukunaga, Y.; Sakaguchi, S.; et al. Shear stress attenuates endothelin and endothelin-converting enzyme expression through oxidative stress. Regul. Pept. 2003, 111, 13–19. [Google Scholar] [CrossRef]
- Lind, L.; Andersson, J.; Larsson, A.; Sandhagen, B. Shear stress in the common carotid artery is related to both intima-media thickness and echogenecity. Clin. Hemorheol. Microcirc. 2009, 43, 299–308. [Google Scholar]
- Zhang, B.; Gu, J.; Qian, M.; Niu, L.; Ghista, D. Study of correlation between wall shear stress and elasticity in atherosclerotic carotid arteries. Biomed. Eng. Online 2018, 17, 5. [Google Scholar] [CrossRef]
- De Wilde, D.; Trachet, B.; De Meyer, G.R.; Segers, P. Shear stress metrics and their relation to atherosclerosis: An in vivo follow-up study in atherosclerotic mice. Ann. Biomed. Eng. 2016, 44, 2327–2338. [Google Scholar] [CrossRef]
- Jeong, S.K.; Lee, J.Y.; Rosenson, R.S. Association between ischemic stroke and vascular shear stress in the carotid artery. J. Clin. Neurol. 2014, 10, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, A.N.; Cole, J.E.; Goddard, M.E.; Park, I.; Mohri, Z.; Sansom, S.; Udalova, I.; Krams, R.; Monaco, C. Low shear stress induces M1 macrophage polarization in murine thin-cap atherosclerotic plaques. J. Mol. Cell. Cardiol. 2015, 89, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Oshida, S.; Mori, F.; Sasaki, M.; Sato, Y.; Kobayshi, M.; Yoshida, K.; Fujiwara, S.; Ogasawara, K. Wall shear stress and T1 contrast ratio are associated with embolic signals during carotid exposure in endarterectomy. Stroke 2018, 49, 2061–2066. [Google Scholar] [CrossRef] [PubMed]
- Pedrigi, R.M.; Mehta, V.V.; Bovens, S.M.; Mohri, Z.; Poulsen, C.B.; Gsell, W.; Tremoleda, J.L.; Towhidi, L.; de Silva, R.; Petretto, E.; et al. Influence of shear stress magnitude and direction on atherosclerotic plaque composition. R. Soc. Open. Sci. 2016, 3, 16058. [Google Scholar] [CrossRef]
- Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al. Heart disease and stroke statistics—2012 update: A report from the American Heart Association. Circulation 2012, 125, e2–e220. [Google Scholar]
- Bartosh, T.J.; Ylöstalo, J.H.; Mohammadipoor, A.; Bazhanov, N.; Coble, K.; Claypool, K.; Lee, R.H.; Choi, H. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiin¬flammatory properties. Proc. Natl. Acad. Sci. USA 2010, 107, 13724–13729. [Google Scholar] [CrossRef] [PubMed]
- Frith, J.E.; Thomson, B.; Genever, P.G. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng. Part C Methods 2010, 16, 735–749. [Google Scholar] [CrossRef] [PubMed]
- Sart, S.; Tsai, A.C.; Li, Y.; Ma, T. Three-dimensional aggregates of mesenchymal stem cells: Cellular mechanisms, biological properties, and applications. Tissue Eng. Part B Rev. 2013, 20, 365–380. [Google Scholar] [CrossRef] [PubMed]
- Imitola, J.; Park, K.I.; Teng, Y.D.; Nisim, S.; Lachyankar, M.; Ourednik, J.; Mueller, F.J.; Yiou, R.; Atala, A.; Sidman, R.L.; et al. Stem cells: Cross–talk and developmental programs. Philos Trans. R Soc. Lond. B Biol. Sci. USA 2004, 359, 823–837. [Google Scholar] [CrossRef] [PubMed]
- George, P.; Bliss, T.M.; Mehta, S.; Sun, G.; Steinberg, G.K. Abstract T MP17: Electrically preconditioned neural stem cells improve stroke recovery. Stroke 2015, 46, ATMP17. [Google Scholar]
- Teng, Y.D.; Lavik, E.B.; Qu, X.; Park, K.I.; Ourednik, J.; Zurakowski, D.; Langer, R.; Snyder, E.Y. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc. Natl. Acad. Sci. USA 2002, 99, 3024–3029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aref, A.; Horvath, R.; McColl, J.; Ramsden, J.J. Optical monitoring of stem cell-substratum interactions. J. Biomed. Opt. 2009, 14, 010501. [Google Scholar] [CrossRef]
- Kirouac, D.C.; Zandstra, P.W. The systematic production of cells for cell therapies. Cell Stem Cell 2008, 3, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Bracci, R.; Maccaroni, E.; Cascinu, S. Transient sunitinib resistance in gastrointestinal stromal tumors. N. Engl. J. Med. 2013, 368, 2042–2043. [Google Scholar] [CrossRef]
- Vijayavenkataraman, S.; Yan, W.C.; Lu, W.F.; Wang, C.H.; Fuh, J.Y.H. 3D bioprinting of tissues and organs for regenerative medicine. Adv. Drug. Deliv. Rev. 2018, 132, 296–332. [Google Scholar] [CrossRef] [PubMed]
- Mironov, V.; Kasyanov, V.; Markwald, R.R. Nanotechnology in vascular tissue engineering: From nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol. 2008, 26, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Derakhshanfar, S.; Mbeleck, R.; Xu, K.; Zhang, X.; Zhong, W.; Xing, M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact. Mater. 2018, 3, 144–156. [Google Scholar] [CrossRef]
- Tricomi, B.J.; Dias, A.D.; Corr, D.T. Stem cell bioprinting for applications in regenerative medicine. Ann. N. Y. Acad. Sci. 2016, 1383, 115–124. [Google Scholar] [CrossRef]
- Ozawa, T.; Mickle, D.A.; Weisel, R.D.; Koyama, N.; Ozawa, S.; Li, R.K. Optimal biomaterial for creation of autologous cardiac grafts. Circulation 2002, 106, 176–182. [Google Scholar]
- Jin, K.; Mao, X.; Xie, L.; Galvan, V.; Lai, B.; Wang, Y.; Gorostiza, O.; Wang, X.; Greenberg, D.A. Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J. Cereb. Blood Flow Metab. 2010, 30, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Boisserand, L.S.; Kodama, T.; Papassin, J.; Auzely, R.; Moisan, A.; Rome, C.; Detante, O. Biomaterial Applications in Cell-Based Therapy in Experimental Stroke. Stem Cells Int. 2016, 2016, 6810562. [Google Scholar] [CrossRef] [PubMed]
- Delcroix, G.J.R.; Schiller, P.C.; Benoit, J.P.; Montero-Menei, C.N. Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials 2010, 31, 2105–2120. [Google Scholar] [CrossRef]
- Pakulska, M.M.; Ballios, B.G.; Shoichet, M.S. Injectable hydrogels for central nervous system therapy. Biomed. Mater. 2012, 7, 024101. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cooke, M.J.; Morshead, C.M.; Shoichet, M.S. Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials 2012, 33, 2681–2692. [Google Scholar] [CrossRef] [PubMed]
- Emerich, D.F.; Silva, E.; Ali, O.; Mooney, D.; Bell, W.; Yu, S.J.; Kaneko, Y.; Borlongan, C. Injectable VEGF hydrogels produce near complete neurological and anatomical protection following cerebral ischemia in rats. Cell Transplant. 2010, 19, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Perale, G.; Rossi, F.; Sundstrom, E.; Bacchiega, S.; Masi, M.; Forloni, G.; Veglianese, P. Hydrogels in spinal cord injury repair strategies. ACS Chem. Neurosci. 2011, 2, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Mdzinarishvili, A.; Sutariya, V.; Talasila, P.K.; Geldenhuys, W.J.; Sadana, P. Engineering triiodothyronine (T3) nanoparticle for use in ischemic brain stroke. Drug Deliv. Transl. Res. 2013, 3, 309–317. [Google Scholar] [CrossRef]
- Kalladka, D.; Muir, K.W. Brain repair: Cell therapy in stroke. Stem Cells Cloning 2014, 7, 31–44. [Google Scholar]
- Bifari, F.; Pacelli, L.; Krampera, M. Immunological properties of embryonic and adult stem cells. World J. Stem Cells 2010, 2, 50–60. [Google Scholar] [CrossRef]
- Szajer, J.; Ho-Shon, K. A comparison of 4D flow MRI-derived wall shear stress with computational fluid dynamics methods for intracranial aneurysms and carotid bifurcations—a review. Magn. Reson. Imaging 2018, 48, 62–69. [Google Scholar] [CrossRef]
- Szilágyi, S.M.; Popovici, M.M.; Szilágyi, L. Automatic Segmentation Techniques of the Coronary Artery Using CT Images in Acute Coronary Syndromes. J. Cardiovasc. Emerg. 2017, 3, 9–17. [Google Scholar] [CrossRef]
Year | Title | Study Design | Objectives | Number of Enrolled Patients | Condition | Stem Cell Type | Route of Administration/Delivery | Time after Stroke | Follow-up Period | Primary Outcome Measures | Clinical Trial Identification Number |
---|---|---|---|---|---|---|---|---|---|---|---|
2015–2017 | Intraarterial Stem Cells in Subacute Ischemic Stroke [79] | Phase 1; interventional; prospective randomized end observer blinded study; test group (stem cell therapy) vs. control group (standard of care) | Evaluation of the safety of intervention | 229 (18–80 years old) | Acute MCA ischemic stroke | Autologous BMMNC stem cells | Intraarterial: Ipsilateral MCA | 0–15 days | 6 months | - Change in NIHSS - Symptomatic intracranial hemorrhage - New ischemic lesion - Death | NCT03080571 |
2009–2011 | Stem Cell Therapy for Acute Ischemic Stroke Patients [80] | Phase 2; interventional; prospective randomized end observer blinded study; test group (stem cell therapy) vs. control group (standard of care) | Evaluation of the efficacy of intervention | 120 (18–70 years old) | MCA/ACA ischemic stroke | Autologous BMSCs | Intravenous | 7–29 days | 6 months | Functional ability to perform activities of daily living on MBI score | NCT02425670 |
2014–2017 | A Phase II Efficacy Study of Intracerebral CTX0E03 DP in Patients with Stable Paresis of the Arm Following an Ischemic Stroke [81] | Phase 2; interventional; prospective randomized efficacy study; non-comparative study | Evaluation of the efficacy of intervention | 23 (≥40 years old) | MCA ischemic stroke; arm paresis | Allogenic human neural stem cell (CTX DP) | Intracerebral | >28 days | 12 months | A minimum of 2 points of improvement in the ARAT test number 2 | NCT02117635 |
2014–2017 | Reparative Therapy in Acute Ischemic Stroke with Allogenic Mesenchymal Stem Cells from Adipose Tissue, Safety Assessment, a Randomized, Double-Blind Placebo-Controlled Single-Center Pilot Clinical Trial (AMASCIS-01) [82] | Phase 2; interventional; prospective randomized double-blind, efficacy study; test group (stem cell therapy) vs. control group (placebo) | Evaluation of the efficacy of intervention | 19 (60–80 years old) | Ischemic stroke | Allogenic MSC from adipose tissue | Intravenous | 12 h | 24 months | - Serious adverse events - Neurological and systemic complications - Development of tumors. | NCT01678534 |
2008–2011 | Intravenous Autologous Bone Marrow-Derived Stem Cells Therapy for Patients with Acute Ischemic Stroke [83] | Phase 2; interventional; prospective randomized double-blind, safety, feasibility and efficacy study; test group (stem cell therapy) vs. control group (placebo) | Evaluation of the safety, feasibility and efficacy of intervention | 120 (18–70 years old) | Acute ischemic stroke | Autologous BMSCs | Intravenous | 7–30 days | 6 months | Difference between the two groups in MBI score | NCT01501773 |
2011–2015 | Study to Examine the Effects of MultiStem in Ischemic Stroke (MASTERS) [84] | Phase 2; interventional; prospective randomized double-blind, safety and effectiveness study; test group (stem cell therapy) vs. control group (placebo) | Evaluation of the safety and potential effectiveness of intervention | 134 (18–83 years old) | Ischemic stroke | Adult stem cell investigational product, MultiStem (BMSCs, allogenic) | Intravenous | 1–2 days | 7 days 90 days 365 days | - Frequency of dose-limiting adverse events - Stroke recovery | NCT01436487 |
2011–2015 | A Phase 1/2A Study of the Safety and Efficacy of Modified Stromal Cells (SB623) in Patients with Stable Ischemic Stroke [85] | Phase 1, phase 2; interventional; safety and efficacy study; single group assignment | Evaluation of the safety and potential effectiveness of intervention | 18 (18–75 years old) | Chronic, stable ischemic stroke patients | Modified stem cells, SB623 | Stereotactic surgical implantation | 6–60 months | 2 years | Safety (WHO criteria); Improvement in stroke symptoms | NCT01287936 |
2009–2010 | Efficacy Study of CD34 Stem Cell in Chronic Stroke Patients [86] | Phase 2; interventional; prospective randomized double-blind, safety and effectiveness study; test group (stem cell therapy) vs. control group (conventional treatment) | Evaluation of the safety and efficacy of intervention | 30 (35–70 years old) | MCA ischemic stroke | Autologous peripheral blood stem cell (CD34+) | Intracerebral | 6–60 months | 1,2,4,12 weeks, 6,12 months | NIH-stroke scale (NIHSS) | NCT00950521 |
2010–2017 | Intravenous Stem Cells After Ischemic Stroke [87] | Phase 2; Interventional; prospective randomized double-blind, safety and effectiveness study; test group (stem cell therapy) vs. control group (conventional treatment) | Evaluation of the safety and efficacy of intervention | 31 (18–70 years old) | Ischemic stroke | Autologous MSCs | Intravenous | 14 days | 2 weeks, 1,2,4,6 months; 1,2 years | Feasibility and tolerance of the intravenous injection of autologous mesenchymal stem cells in patients with carotid ischemic stroke | NCT00875654 |
2008–2011 | Autologous Bone Marrow Stem Cells in Middle Cerebral Artery Acute Stroke Treatment [88] | Phase 1, phase 2 trial. Interventional; prospective. | Evaluation of the safety and efficacy of intervention | 20 (18–80 years) | MCA * ischemic stroke | Autologous CD34+ BMSCs | Intraarterial—in the MCA * | 5–9 days | 1,3,6 months | Absence of new neurological deficits and adverse effects during the timeframe | NCT00761982 |
2007–2012 | A Phase I/II Safety and Tolerability Study Following the Autologous Infusion of Immuno-selected CD34+ Subset Bone Marrow Stem Cells into Patients with Acute Total Anterior Circulation Ischemic Stroke [89] | Phase 1, phase 2 trial. Interventional; prospective; non-randomized; single group study; safety and tolerability study. | Evaluation of the safety and tolerability of intervention | 5 (30–80 years old) | Total or partial anterior circulation syndrome; acute ischemic stroke | Autologous CD34+ BMSCs | Intraarterial—in the ipsilateral MCA * | 7 days | 6 months | Adverse events graded according to CTC toxicity criteria and laboratory test results | NCT00535197 |
2005–2011 | Study of Autologous Stem Cell Transplantation for Patients with Ischemic Stroke [90] | Phase 1, phase 2 trial. Interventional; prospective; non-randomized; single group study; safety and feasibility study | Evaluation of the safety and feasibility of intervention | 12 (18–75 years old) | MCA * ischemic stroke | Autologous BMSCs | Intraarterial Intravenous | 3 h to 90 days | 4 months | Absence of new neurological deficits during the procedure and at follow-up | NCT00473057 |
Brief Title | Study of Modified Stem Cells (SB623) in Patients with Chronic Motor Deficit from Ischemic Stroke [128] | Investigation of Neural Stem Cells in Ischemic Stroke (PISCES III) [129] | Intracerebral Transplantation of Neural Stem Cells for the Treatment of Ischemic Stroke [130] | Treatment Evaluation of Acute Stroke for Using in Regenerative Cell Elements (TREASURE) [131] | Pilot Investigation of Stem Cells in Stroke (PISCES) [8] | MultiStem® Administration for Stroke Treatment and Enhanced Recovery Study (MASTERS-2) [84] |
---|---|---|---|---|---|---|
Clinical trial identification number | NCT02448641 | NCT03629275 | NCT03296618 | NCT02961504 | NCT01151124 | NCT03545607 |
Eligible patients | Ischemic stroke (aged 18–75 years) | Ischemic stroke in the supratentorial region (aged 35–75 years) | Chronic motor ischemic stroke (aged 35–60 years) | Acute ischemic stroke (aged over 20 years) | Ischemic stroke involving subcortical white matter or basal ganglia (aged 60–85 years) | Ischemic stroke involving the cerebral cortex (aged over 18 years) |
Time from index event | 6–90 months | 6–12 months | 3–24 months | 36 h | 6 months to 5 years | 18–36 h |
Intervention | Stereotactic, intracranial injection of SB623 cells vs. sham surgery | Stereotactic surgery with an intracerebral injection of 20 million CTX0E03 Drug Product stem cells in the adjacent stroke area vs. sham surgery | One-time stereotactic, intracranial injection of a hNSC line, NSI-566 (neural stem cells) vs. sham surgery | Intravenous administration of 1.2 billion HLCM051 cells vs. placebo | Surgical delivery of CTX0E03 neural stem cells in the damaged cerebral area | Single intravenous infusion of MultiStem® 18–36 h after stroke vs. placebo |
Study type | Phase 2; interventional; double-blind, randomized | Phase 2; interventional; placebo-controlled, randomized | Phase 1; interventional; single group assignment | Phase 2, 3; interventional; open-label, randomized | Phase 1; interventional; single group assignment | Phase 3; interventional; double-blind, placebo-controlled, randomized |
Estimated enrollment number | 156 subjects | 110 subjects | 18 subjects | 220 subjects | 12 subjects | 300 subjects |
Primary outcome measure | Improvement of FMMS * by ≥10 points | Improvement of Mrs * by ≥1 point | Adverse events | Proportion of subjects with an excellent outcome defined by the functional assessments ** | Incidence of adverse events ** | Shift analysis for mRS * |
Time frame for primary outcome measure | 6 months | 6 months | 24 months | 90 days | 12 months | 90 days |
Start date | January 2016 | August 2018 | June 2012 | November 2017 | June 2010 | July 2018 |
Estimated completion date (to final enrollment) | May 2019 | November 2019 | May 2018 | March 2020 | March 2023 | December 2020 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedek, A.; Cernica, D.; Mester, A.; Opincariu, D.; Hodas, R.; Rodean, I.; Keri, J.; Benedek, T. Modern Concepts in Regenerative Therapy for Ischemic Stroke: From Stem Cells for Promoting Angiogenesis to 3D-Bioprinted Scaffolds Customized via Carotid Shear Stress Analysis. Int. J. Mol. Sci. 2019, 20, 2574. https://doi.org/10.3390/ijms20102574
Benedek A, Cernica D, Mester A, Opincariu D, Hodas R, Rodean I, Keri J, Benedek T. Modern Concepts in Regenerative Therapy for Ischemic Stroke: From Stem Cells for Promoting Angiogenesis to 3D-Bioprinted Scaffolds Customized via Carotid Shear Stress Analysis. International Journal of Molecular Sciences. 2019; 20(10):2574. https://doi.org/10.3390/ijms20102574
Chicago/Turabian StyleBenedek, Annabella, Daniel Cernica, Andras Mester, Diana Opincariu, Roxana Hodas, Ioana Rodean, Johanna Keri, and Theodora Benedek. 2019. "Modern Concepts in Regenerative Therapy for Ischemic Stroke: From Stem Cells for Promoting Angiogenesis to 3D-Bioprinted Scaffolds Customized via Carotid Shear Stress Analysis" International Journal of Molecular Sciences 20, no. 10: 2574. https://doi.org/10.3390/ijms20102574
APA StyleBenedek, A., Cernica, D., Mester, A., Opincariu, D., Hodas, R., Rodean, I., Keri, J., & Benedek, T. (2019). Modern Concepts in Regenerative Therapy for Ischemic Stroke: From Stem Cells for Promoting Angiogenesis to 3D-Bioprinted Scaffolds Customized via Carotid Shear Stress Analysis. International Journal of Molecular Sciences, 20(10), 2574. https://doi.org/10.3390/ijms20102574