Transformation of Construction Cement to a Self-Healing Hybrid Binder
Abstract
:1. Introduction
2. Results
2.1. Preparation of the Cement Samples
2.2. Old Cement Sample and Surrounding Soil Bacteria Used for PolyP Extraction
2.3. Surface Reactivity of the Cement Samples with PolyP
2.4. Biomimetic Coacervate Formation onto Cement with Bacterial PolyP
2.5. Reactions of CEM I 42.5 R Cement during Exposure to Water and PolyP: FTIR Analyses
2.6. Self-Healing of Microcracks in Different Cement Samples
2.7. Na-PolyP Addition to Cement—Sand Mixture
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of the Ca-polyP Microparticles
4.3. Preparation of PolyP Spheres
4.4. Preparation of the Cement Samples
4.5. Cement Samples for Microcrack Formation and Self-Healing Analysis
4.6. Old Cement and Surrounding Gravel/Sand
4.7. Coacervate Formation onto Surface of Hardened Cement Paste
4.8. Mixing of Cement with Sand
4.9. Isolation of Microbial PolyP
4.10. Fourier Transformed Infrared Spectroscopy
4.11. EDX Analysis
4.12. Microscopic Analysis
4.13. Mechanical Toughness: 3-Point Bend Testing
4.14. Local Mechanical Properties—Nanoindentation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-activated binders: A review. Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr. Build. Mat. 2008, 22, 1305–1314. [Google Scholar] [CrossRef]
- Lauer, K.R.; Slate, F.O. Autogenous healing of cement paset. J. Am. Concr. Inst. 1956, 52, 1083–1098. [Google Scholar]
- Rooij, M.; van Tittelboom, K.; Belie, N.; Schlangen, E. (Eds.) Self-Healing Phenomena in Cement-Based Materials: State-of-the-Art Report of RILEM Technical Committee 221-SHC. Self-Healing Phenomena in Cement-Based Materials; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Qureshi, T.S.; Kanellopoulos, A.; Al-Tabbaa, A. Autogenous self-healing of cement with expansive minerals-I: Impact in early age crack healing. Constr. Build. Mater. 2018, 192, 768–784. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, T.S.; Kanellopoulos, A.; Al-Tabbaa, A. Encapsulation of expansive powder minerals within a concentric glass capsule system for self-healing concrete. Constr. Build. Mater. 2016, 121, 629–643. [Google Scholar] [CrossRef]
- Edvardsen, C. Water permeability and autogeneous healing of cracks in concrete. ACI Mater. J. 1999, 96, 448–454. [Google Scholar]
- Courland, R. Concrete Planet: The Strange and Fascinating Story of the World’s Most Common Man-Made Material; Prometheus Books: Amherst, NY, USA, 2011. [Google Scholar]
- Attanasio, A.; Pascali, L.; Tarantino, V.; Arena, W.; Largo, A. Alkali-activated mortars for sustainable building solutions: Effect of binder composition on technical performance. Environments 2018, 5, 35. [Google Scholar] [CrossRef]
- Qureshi, T.S.; Al-Tabbaa, A. Influence of Expansive Minerals on the Self-Healing of Cement Paste and Mortar Systems. In Proceedings of the Fifth International Conference of Self-Healing Materials, Durham, NC, USA, 22–24 June 2015. [Google Scholar] [CrossRef]
- Bisschop, J.; van Mier, J.G. How to study drying shrinkage microcracking in cement-based materials using optical and scanning electron microscopy? Cem. Concr. Res. 2002, 32, 279–287. [Google Scholar] [CrossRef]
- Castillo, C.; Durrani, A.J. Effect of transient high temperature on high-strength concrete. Mater. J. 1990, 87, 47–53. [Google Scholar]
- Le, Q.X.; Dao, V.N.; Torero, J.L.; Maluk, C.; Bisby, L. Effects of temperature and temperature gradient on concrete performance at elevated temperatures. Adv. Struct. Eng. 2018, 21, 1223–1233. [Google Scholar] [CrossRef]
- Ahn, T.-H.; Kishi, T. Crack Self-healing behavior of cementitious composites cncorporating various mineral admixtures. J. Adv. Concr. Technol. 2010, 8, 171–186. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Ryou, J.-S. Self healing behavior for crack closing of expansive agent via granulation/film coating method. Constr. Build. Mater. 2014, 71, 188–193. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, W.; Yuan, Z. Influence of mineral additives and environmental conditions on the self-healing capabilities of cementitious materials. Cem. Concr. Compos. 2015, 57, 116–127. [Google Scholar] [CrossRef]
- Qureshi, T.S.; Al-Tabbaa, A. Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO. Smart Mater. Struct. 2016, 25, 1–16. [Google Scholar] [CrossRef]
- Souradeep, G.; Dai, P.S.; Wei, K.H. Autonomous healing in concrete by bio-based healing agents—A review. Constr. Build. Mater. 2017, 146, 419–428. [Google Scholar]
- Gupta, S.; Pang, S.D.; Kua, H.W. Biochar-immobilized bacteria and superabsorbent polymers enable self-healing of fiber-reinforced concrete after multiple damage cycles. Constr. Build. Mater. 2017, 146, 419–428. [Google Scholar] [CrossRef]
- Myhr, A.; Røyne, F.; Brandtsegg, A.S.; Bjerkseter, C.; Throne-Holst, H.; Borch, A.; Wentzel, A.; Røyne, A. Towards a low CO2 emission building material employing bacterial metabolism (2/2): Prospects for global warming potential reduction in the concrete industry. PLoS One 2019, 14, e0208643. [Google Scholar] [CrossRef] [PubMed]
- Mollah, M.Y.A.; Palta, P.; Hess, T.R.; Vempati, R.K.; Cocke, D.L. Chemical and physical effects of sodium lignosulfonate superplasticizer on the hydration of portland cement and solidification/stabilization consequences. Cem. Concr. Res. 1995, 25, 671–682. [Google Scholar]
- Schröder, H.C.; Müller, W.E.G. (Eds.) Inorganic polyphosphates; biochemistry, biology, biotechnology. In Progress in Molecular and Subcellular Biology; Springer: Heidelberg, Germany, 1999; Volume 23. [Google Scholar]
- Kulaev, I.S.; Vagabov, V.M.; Kulakovskaya, T.V. The Biochemistry of Inorganic Polyphosphates, 2nd ed.; John Wiley & Sons: Weinheim, Germany, 2004. [Google Scholar]
- Tan, H.; Zou, F.; Liu, M. Effect of the adsorbing behavior of phosphate retarders on hydration of cement paste. J. Mater. Civ. Eng. 2017, 29, 04017088. [Google Scholar] [CrossRef]
- Wang, X.H.; Schröder, H.C.; Müller, W.E.G. Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: Towards a new paradigm in tissue engineering. J. Mat. Chem. B 2018, 6, 2385–2412. [Google Scholar] [CrossRef]
- Morrissey, J.H.; Choi, S.H.; Smith, S.A. Polyphosphate: An ancient molecule that links platelets, coagulation, and inflammation. Blood 2012, 119, 5972–5979. [Google Scholar] [CrossRef]
- Anbu, P.; Kang, C.H.; Shin, Y.J.; So, J.S. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus 2016, 5, 250. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, B.; Schröder, H.C. Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase. Biochim. Biophys. Acta 2001, 1547, 254–261. [Google Scholar] [CrossRef]
- Huang, R.; Wan, B.; Hultz, M.; Diaz, J.M.; Tang, Y. Phosphatase-mediated hydrolysis of linear polyphosphates. Environ. Sci. Technol. 2018, 52, 1183–1190. [Google Scholar] [CrossRef] [PubMed]
- Müller, W.E.G.; Tolba, E.; Schröder, H.C.; Wang, S.; Glaßer, G.; Muñoz-Espí, R.; Link, T.; Wang, X.H. A new polyphosphate calcium material with morphogenetic activity. Mater. Lett. 2015, 148, 163–166. [Google Scholar]
- Müller, W.E.G.; Wang, S.; Tolba, E.; Neufurth, M.; Ackermann, M.; Muñoz-Espí, R.; Lieberwirth, I.; Glasser, G.; Schröder, H.C.; Wang, X.H. Transformation of amorphous polyphosphate nanoparticles into coacervate complexes: an approach for the encapsulation of mesenchymal stem cells. Small 2018, 14, e1801170. [Google Scholar] [CrossRef]
- Müller, W.E.G.; Tolba, E.; Schröder, H.C.; Diehl-Seifert, B.; Wang, X.H. Retinol encapsulated into amorphous Ca2+ polyphosphate nanospheres acts synergistically in MC3T3-E1 cells. Eur. J. Pharm. Biopharm. 2015, 93, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Kakran, M.; Antipina, M.N. Emulsion-based techniques for encapsulation in biomedicine, food and personal care. Curr. Opin. Pharmacol. 2014, 18, 47–55. [Google Scholar] [CrossRef]
- Li, Q.; Liu, C.; Wang, X.H.; Jin, Z.; Song, A.; Liang, Y.; Cao, J.; Müller, W.E.G. Influence of altered microbes on soil organic carbon availability in karst agricultural soils contaminated by Pb-Zn tailings. Front. Microbiol.-Terr. Microbiol. 2018, 9, 2062. [Google Scholar] [CrossRef]
- Doty, C.B.; Rivers, W.J.; Furlong, M.A. A novel method for cultivating soil bacteria. BIOS 2013, 84, 65–73. [Google Scholar] [CrossRef]
- Tanner, R.S. Cultivation of bacteria and fungi. In Manual of Environmental Microbiology, 2nd ed.; Hurst, C.J., Crawford, R.L., Knudsen, G.R., McInemey, M.J., Stetzenbach, L.D., Eds.; ASM Press: Washington, DC, USA, 2002; pp. 63–65. [Google Scholar]
- Imsiecke, G.; Münkner, J.; Lorenz, B.; Bachinski, N.; Müller, W.E.G.; Schröder, H.C. Inorganic polyphosphates in the developing freshwater sponge Ephydatia muelleri: Effect of stress by polluted waters. Environ. Toxicol. Chem. 1996, 15, 1329–1334. [Google Scholar] [CrossRef]
- Lorenz, B.; Müller, W.E.G.; Kulaev, I.S.; Schröder, H.C. Purification and characterization of an exopolyphosphatase activity from Saccharomyces cerevisiae. J. Biol. Chem. 1994, 269, 22198–22204. [Google Scholar] [PubMed]
- Clark, J.E.; Beegen, H.; Wood, H.G. Isolation of intact chains of polyphosphate from “Propionibacterium shermanii” grown on glucose or lactate. J. Bacteriol. 1986, 168, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Ashkenazi, D.; Gitler, H.; Stern, A.; Tal, O. Metallurgical investigation on fourth century BCE silver jewellery of two hoards from Samaria. Sci. Rep. 2017, 7, 40659. [Google Scholar] [CrossRef] [PubMed]
- Giacomini, A.; Ackermann, M.; Belleri, M.; Coltrini, D.; Nico, B.; Ribatti, D.; Konerding, M.A.; Presta, M.; Righi, M. Brain angioarchitecture and intussusceptive microvascular growth in a murine model of Krabbe disease. Angiogenesis 2015, 18, 499–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, W.E.G.; Wang, X.H.; Kropf, K.; Ushijima, H.; Geurtsen, W.; Eckert, C.; Tahir, M.N.; Tremel, W.; Boreiko, A.; Schloßmacher, U.; et al. Bioorganic/inorganic hybrid composition of sponge spicules: Matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. J. Struct. Biol. 2008, 161, 188–203. [Google Scholar] [CrossRef] [PubMed]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Walker, H.N.; Lane, D.S.; Stutzman, P.E. Petrographic Methods of Examining Hardened Concrete: A Petrographic Manual; Publication Number: FHWA-HRT-04-150; U.S. Department of Transportation: Washington, DC, USA, 2006.
- Barnett, S.J.; Macphee, D.E.; Lachowski, E.E.; Crammond, N.J. XRD, EDX and IR analysis of solid solutions between thaumasite and ettringite. Cem. Concr. Res. 2002, 32, 719–730. [Google Scholar] [CrossRef]
- Myneni, S.C.B.; Traina, S.J.; Waychunas, G.A.; Logan, T.J. Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochim. Cosmochim. Acta 1998, 62, 3499–3514. [Google Scholar] [CrossRef]
- Huang, H.; Ye, G. Self-healing of cracks by using saturated calcium hydroxide solution to activate slag in slag cementitious materials. In Proceedings of the 3rd International Conference on Sustainable Construction Materials and Technologies, Kyoto, Japan, 19–21 August 2013; pp. 1–10. [Google Scholar]
- Ylmen, R.; Jäglid, U. Carbonation of Portland cement studied by diffuse reflection Fourier transform infrared spectroscopy. Intern. J. Concr. Struct. Mat. 2013, 7, 119–125. [Google Scholar] [CrossRef]
- Yu, P.; Kirkpatrick, R.J.; Poe, B.; McMillan, P.F.; Cong, X. Structure of calcium silicate hydrate (c-s-h): Near, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 1999, 82, 742–748. [Google Scholar] [CrossRef]
- Blaiszik, B.J.; Kramer, S.L.B.; Olugebefola, S.C.; Moore, J.S.; Sottos, N.R.; White, S.R. Self-healing polymers and composites. Annu. Rev. Mater. Res. 2010, 40, 179–211. [Google Scholar] [CrossRef]
- Bergman, S.D.; Wudl, F. Mendable polymers. J. Mater. Chem. 2008, 18, 41–62. [Google Scholar] [CrossRef]
- White, S.R.; Sottos, N.R.; Moore, J.; Geubelle, P.; Kessler, M.; Brown, E.; Suresh, S.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797. [Google Scholar] [CrossRef] [PubMed]
- Ann, K.Y.; Cho, C.-G. Corrosion resistance of calcium aluminate cement concrete exposed to a chloride environment. Materials 2014, 7, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Kang, D.H. The use of bacterial alkaline phosphatase assay for rapid monitoring of bacterial counts on spinach. J. Food Sci. 2008, 73, M236–M238. [Google Scholar] [CrossRef] [PubMed]
- Barat, R.; Montoya, T.; Borrás, L.; Ferrer, J.; Seco, A. Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism. Water Res. 2008, 42, 3415–3424. [Google Scholar] [CrossRef] [PubMed]
- Jonkers, H.M.; Thijssen, A.; Muyzer, G.; Copuroglu, O.; Schlangen, E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 2010, 36, 230–235. [Google Scholar] [CrossRef]
- Mestnikov, A. Thermal highly porous insulation materials made of mineral raw materials. In IOP Conf. Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2015; Volume 71, p. 012014. [Google Scholar]
- Chen, J.; Jiang, M. Long-term evolution of delayed ettringite and gypsum in Portland cement mortars under sulfate erosion. Constr. Build. Mat. 2009, 23, 812–816. [Google Scholar] [CrossRef] [Green Version]
- Müller, W.E.G.; Tolba, E.; Schröder, H.C.; Muñoz-Espí, R.; Diehl-Seifert, B.; Wang, X.H. Amorphous polyphosphate-hydroxyapatite: A morphogenetically active substrate for bone-related SaOS-2 cells in vitro. Acta Biomat. 2016, 31, 358–367. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, W.E.G.; Tolba, E.; Wang, S.; Li, Q.; Neufurth, M.; Ackermann, M.; Muñoz-Espí, R.; Schröder, H.C.; Wang, X. Transformation of Construction Cement to a Self-Healing Hybrid Binder. Int. J. Mol. Sci. 2019, 20, 2948. https://doi.org/10.3390/ijms20122948
Müller WEG, Tolba E, Wang S, Li Q, Neufurth M, Ackermann M, Muñoz-Espí R, Schröder HC, Wang X. Transformation of Construction Cement to a Self-Healing Hybrid Binder. International Journal of Molecular Sciences. 2019; 20(12):2948. https://doi.org/10.3390/ijms20122948
Chicago/Turabian StyleMüller, Werner E.G., Emad Tolba, Shunfeng Wang, Qiang Li, Meik Neufurth, Maximilian Ackermann, Rafael Muñoz-Espí, Heinz C. Schröder, and Xiaohong Wang. 2019. "Transformation of Construction Cement to a Self-Healing Hybrid Binder" International Journal of Molecular Sciences 20, no. 12: 2948. https://doi.org/10.3390/ijms20122948
APA StyleMüller, W. E. G., Tolba, E., Wang, S., Li, Q., Neufurth, M., Ackermann, M., Muñoz-Espí, R., Schröder, H. C., & Wang, X. (2019). Transformation of Construction Cement to a Self-Healing Hybrid Binder. International Journal of Molecular Sciences, 20(12), 2948. https://doi.org/10.3390/ijms20122948