Effects of Estrogens on Platelets and Megakaryocytes
Abstract
:1. Introduction
2. Effects of Estrogens Treatment on Megakaryopoiesis and Platelet Production
2.1. Effect of Chronic Estrogens Treatment in Mice
2.2. Effect of Estrogens Therapy in Women
3. Effects of Estrogen Treatment on Platelet Activation
3.1. Effect of Estrogen Treatment on Platelet Aggregation Response in Mice
3.2. Effect of Estrogens Therapy on Platelet Activation in Women
4. Conclusions
Funding
Conflicts of Interest
References
- Furness, S.; Roberts, H.; Marjoribanks, J.; Lethaby, A. Hormone therapy in postmenopausal women and risk of endometrial hyperplasia. Cochrane Datab. Syst. Rev. 2012. [Google Scholar] [CrossRef] [PubMed]
- Rossouw, J.E. Hormones for coronary disease-full circle. Lancet 2002, 360, 1996–1997. [Google Scholar] [CrossRef]
- Anderson, G.L.; Limacher, M.C.; Assaf, A.R.; Bassford, T.; Beresford, S.A.; Black, H.R.; Bonds, D.E.; Brunner, R.L.; Brzyski, R.G.; Caan, B.; et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: The Women’s Health Initiative randomized controlled trial. JAMA 2004, 291, 1701–1712. [Google Scholar] [PubMed]
- Canonico, M.; Plu-Bureau, G.; Scarabin, P.-Y. Progestogens and venous thromboembolism among postmenopausal women using hormone therapy. Maturitas 2011, 70, 354–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarabin, P.-Y.; Oger, E.; Plu-Bureau, G.; EStrogen and THromboEmbolism Risk Study Group. Differential association of oral and transdermal oestrogen-replacement therapy with venous thromboembolism risk. Lancet 2003, 362, 428–432. [Google Scholar] [CrossRef]
- Canonico, M.; Oger, E.; Plu-Bureau, G.; Conard, J.; Meyer, G.; Lévesque, H.; Trillot, N.; Barrellier, M.T.; Wahl, D.; Emmerich, J.; et al. Hormone therapy and venous thromboembolism among postmenopausal women: Impact of the route of estrogen administration and progestogens: The ESTHER study. Circulation 2007, 115, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Laliberté, F.; Dea, K.; Duh, M.S.; Kahler, K.H.; Rolli, M.; Lefebvre, P. Does the route of administration for estrogen hormone therapy impact the risk of venous thromboembolism? Estradiol transdermal system versus oral estrogen-only hormone therapy. Menopause 2018, 25, 1297–1305. [Google Scholar] [CrossRef]
- Kuhl, H. Pharmacology of estrogens and progestogens: Influence of different routes of administration. Climacteric 2005, 8 (Suppl. 1), 3–63. [Google Scholar] [CrossRef]
- Couse, J.F.; Korach, K.S. Estrogen receptor null mice: What have we learned and where will they lead us? Endocr. Rev. 1999, 20, 358–417. [Google Scholar] [CrossRef]
- Green, S.; Walter, P.; Kumar, V.; Krust, A.; Bornert, J.M.; Argos, P.; Chambon, P. Human oestrogen receptor cDNA: Sequence, expression and homology to v-erb-A. Nature 1986, 320, 134–139. [Google Scholar] [CrossRef]
- Kuiper, G.G.; Enmark, E.; Pelto-Huikko, M.; Nilsson, S.; Gustafsson, J.A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA 1996, 93, 5925–5930. [Google Scholar] [CrossRef] [PubMed]
- Arnal, J.F.; Lenfant, F.; Metivier, R.; Flouriot, G.; Henrion, D.; Adlanmerini, M.; Fontaine, C.; Gourdy, P.; Chambon, P.; Katzenellenbogen, B.; et al. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol. Rev. 2017, 97, 1045–1087. [Google Scholar] [CrossRef] [PubMed]
- Khetawat, G.; Faraday, N.; Nealen, M.L.; Vijayan, K.V.; Bolton, E.; Noga, S.J.; Bray, P.F. Human megakaryocytes and platelets contain the estrogen receptor beta and androgen receptor (AR): Testosterone regulates AR expression. Blood 2000, 95, 2289–2296. [Google Scholar] [PubMed]
- Jayachandran, M.; Miller, V.M. Human platelets contain estrogen receptor alpha, caveolin-1 and estrogen receptor associated proteins. Platelets 2003, 14, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, M.D.; Kunicki, T.J.; Nugent, D.J. The estrogen receptor is present in human megakaryocytes. Ann. N. Y. Acad. Sci. 1994, 714, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Gruber, C.J.; Tschugguel, W.; Schneeberger, C.; Huber, J.C. Production and actions of estrogens. N. Engl. J. Med. 2002, 346, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Nealen, M.L.; Vijayan, K.V.; Bolton, E.; Bray, P.F. Human platelets contain a glycosylated estrogen receptor beta. Circ. Res. 2001, 88, 438–442. [Google Scholar] [CrossRef]
- Di Vito, C.; Bergante, S.; Balduini, A.; Rastoldo, A.; Bagarotti, A.; Surico, N.; Bertoni, A.; Sinigaglia, F. The oestrogen receptor GPER is expressed in human haematopoietic stem cells but not in mature megakaryocytes. Br. J. Haematol. 2010, 149, 150–152. [Google Scholar] [CrossRef]
- Fan, X.; Chen, X.; Wang, C.; Dai, J.; Lu, Y.; Wang, K.; Liu, J.; Zhang, J.; Wu, X. Drospirenone enhances GPIb-IX-V-mediated platelet activation. J. Thromb. Haemost. 2015, 13, 1918–1924. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, G.; Sasaki, K.; Ito, T. Quantitative observation of megakaryocytes in the spleen and bone marrow of the mouse: Effects of sex, sex hormones, pregnancy and lactation. Arch. Histol. Jpn. 1984, 47, 251–258. [Google Scholar] [CrossRef]
- Fox, S.W.; Chambers, T.J. The effect of oestrogen on megakaryocyte differentiation and platelet counts in vivo. Int. J. Cardiol. 2006, 109, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Perry, M.J.; Samuels, A.; Bird, D.; Tobias, J.H. Effects of high-dose estrogen on murine hematopoietic bone marrow precede those on osteogenesis. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E1159–E1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, C.; Xu, Y.; Yang, K.; Chen, S.; Wang, X.; Wang, S.; Wang, C.; Shen, M.; Chen, F.; Chen, M.; et al. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1. Leukemia 2017, 31, 945–956. [Google Scholar] [CrossRef] [PubMed]
- Valéra, M.C.; Gratacap, M.P.; Gourdy, P.; Lenfant, F.; Cabou, C.; Toutain, C.E.; Marcellin, M.; Saint Laurent, N.; Sié, P.; Sixou, M.; et al. Chronic estradiol treatment reduces platelet responses and protects mice from thromboembolism through the hematopoietic estrogen receptor α. Blood 2012, 120, 1703–1712. [Google Scholar] [CrossRef] [PubMed]
- Valéra, M.C.; Noirrit-Esclassan, E.; Dupuis, M.; Buscato, M.; Vinel, A.; Guillaume, M.; Briaux, A.; Garcia, C.; Benoit, T.; Lairez, O.; et al. Effect of chronic estradiol plus progesterone treatment on experimental arterial and venous thrombosis in mouse. PLoS ONE 2017, 12, e0177043. [Google Scholar] [CrossRef] [PubMed]
- Bord, S.; Vedi, S.; Beavan, S.R.; Horner, A.; Compston, J.E. Megakaryocyte population in human bone marrow increases with estrogen treatment: A role in bone remodeling? Bone 2000, 27, 397–401. [Google Scholar] [CrossRef]
- Ranganath, L.R.; Christofides, J.; Semple, M.J. Increased mean platelet volume after oestrogen replacement therapy. Ann. Clin. Biochem. 1996, 33 Pt 6, 555–560. [Google Scholar] [CrossRef]
- Miller, V.M.; Lahr, B.D.; Bailey, K.R.; Heit, J.A.; Harman, S.M.; Jayachandran, M. Longitudinal effects of menopausal hormone treatments on platelet characteristics and cell-derived microvesicles. Platelets 2016, 27, 32–42. [Google Scholar] [CrossRef]
- Kaplan, P.B.; Gücer, F.; Sayin, N.C.; Yüce, M.A.; Yardim, T. Effects of oral continuous and transdermal cyclic 17-beta estradiol and norethindrone acetate replacement therapy on platelet aggregation in postmenopausal women. J. Reprod. Med. 2002, 47, 651–655. [Google Scholar]
- Stachowiak, G.; Pertyński, T.; Pertyńska-Marczewska, M. Effect of transdermal hormone therapy on platelet haemostasis in menopausal women. Ann. Agric Environ. Med. 2015, 22, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Clemetson, K.J.; Clemetson, J.M. Platelet collagen receptors. Thromb. Haemost. 2001, 86, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Jurk, K.; Kehrel, B.E. Platelets: Physiology and biochemistry. Semin. Thromb. Hemost. 2005, 31, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, W.I.; el-Sabban, F.; Allen, A.D.; Nelson, G.H.; Bhatnagar, A.S.; Choi, S. Effects of estradiol on platelet aggregation in mouse mesenteric arterioles and ex vivo. Thromb. Res. 1985, 39, 253–262. [Google Scholar] [CrossRef]
- Rosenblum, W.I.; el-Sabban, F.; Allen, A.D.; Nelson, G.H.; Bhatnagar, A.S.; Choi, S.C. Effects of estradiol on platelet aggregation in cerebral microvessels of mice. Stroke 1985, 16, 980–984. [Google Scholar] [CrossRef] [PubMed]
- Geng, H.; Zhang, H.; Zhang, W.; Nieswandt, B.; Bray, P.F.; Leng, X. Transdermal 17-beta estradiol replacement therapy reduces megakaryocyte GPVI expression. Thromb. Res. 2008, 123, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Adlanmerini, M.; Solinhac, R.; Abot, A.; Fabre, A.; Raymond-Letron, I.; Guihot, A.L.; Boudou, F.; Sautier, L.; Vessières, E.; Kim, S.H.; et al. Mutation of the palmitoylation site of estrogen receptor α in vivo reveals tissue-specific roles for membrane versus nuclear actions. Proc. Natl. Acad. Sci. USA 2014, 111, E283–E290. [Google Scholar] [CrossRef] [PubMed]
- Valéra, M.C.; Fontaine, C.; Lenfant, F.; Cabou, C.; Guillaume, M.; Smirnova, N.; Kim, S.H.; Chambon, P.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S.; et al. Protective Hematopoietic Effect of Estrogens in a Mouse Model of Thrombosis: Respective Roles of Nuclear Versus Membrane Estrogen Receptor α. Endocrinology 2015, 156, 4293–4301. [Google Scholar] [CrossRef]
- Freudenberger, T.; Oppermann, M.; Marzoll, A.; Heim, H.K.; Mayer, P.; Kojda, G.; Weber, A.A.; Schrör, K.; Fischer, J.W. Differential effects of medroxyprogesterone acetate on thrombosis and atherosclerosis in mice. Br. J. Pharm. 2009, 158, 1951–1960. [Google Scholar] [CrossRef] [Green Version]
- Shultz, J.M.; Zhu, X.D.; Knopp, R.H.; Leboeuf, R.C.; Rosenfeld, M.E. Norgestimate and medroxyprogesterone acetate do not attenuate the atheroprotective effects of 17β-estradiol in ovariectomized, apolipoprotein E-deficient mice. Fertil. Steril. 2004, 82 (Suppl. 3), 1133–1139. [Google Scholar] [CrossRef]
- Valéra, M.C.; Noirrit-Esclassan, E.; Dupuis, M.; Fontaine, C.; Lenfant, F.; Briaux, A.; Cabou, C.; Garcia, C.; Lairez, O.; Foidart, J.M.; et al. Effect of estetrol, a selective nuclear estrogen receptor modulator, in mouse models of arterial and venous thrombosis. Mol. Cell. Endocrinol. 2018, 477, 132–139. [Google Scholar] [CrossRef]
- Johnson, M.; Ramey, E.; Ramwell, P.W. Sex and age differences in human platelet aggregation. Nature 1975, 253, 355–357. [Google Scholar] [CrossRef] [PubMed]
- Faraday, N.; Goldschmidt-Clermont, P.J.; Bray, P.F. Gender differences in platelet GPIIb-IIIa activation. Thromb. Haemost. 1997, 77, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.F.; Matsubayashi, H.; Izumi, S.I.; Sugi, T.; Arai, T.; Kondo, A.; Makino, T. Sex difference in platelet aggregation detected by new aggregometry using light scattering. Endocr. J. 2001, 48, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Berlin, G.; Hammar, M.; Tapper, L.; Tynngård, N. Effects of age, gender and menstrual cycle on platelet function assessed by impedance aggregometry. Platelets 2019, 30, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Ersöz, G.; Zergeroğlu, A.M.; Yakaryilmaz, A. The effect of submaximal exercise on platelet aggregation during late follicular and midluteal phases in women. Thromb. Res. 2002, 108, 147–150. [Google Scholar] [CrossRef]
- Suzuki, S.; Matsuno, K.; Kondoh, M. Primary hemostasis during women’s life cycle measured by Thrombostat 4000. Semin. Thromb. Hemost. 1995, 21 (Suppl. 2), 103–105. [Google Scholar] [CrossRef] [PubMed]
- Roshan, T.M.; Normah, J.; Rehman, A.; Naing, L. Effect of menopause on platelet activation markers determined by flow cytometry. Am. J. Hematol. 2005, 80, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Yang, D.; Wang, L.A.; Yin, S.; Kuang, J. Effects of hormone replacement therapy on platelet activation in postmenopausal women. Chin. Med. J. 2003, 116, 1134–1136. [Google Scholar] [PubMed]
- Aldrighi, J.M.; Oliveira, R.L.; D’amico, É.; Rocha, T.R.; Gebara, O.E.; Rosano, G.M.; Ramires, J.A. Platelet activation status decreases after menopause. Gynecol. Endocrinol. 2005, 20, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Singla, A.; Bliden, K.P.; Jeong, Y.H.; Abadilla, K.; Antonino, M.J.; Muse, W.C.; Mathew, D.P.; Bailon, O.; Tantry, U.S.; Gurbel, P.A. Platelet reactivity and thrombogenicity in postmenopausal women. Menopause 2013, 20, 57–63. [Google Scholar] [CrossRef]
- Thijs, A.; Van Baal, W.M.; Van Der Mooren, M.J.; Kenemans, P.; Dräger, A.M.; Huijgens, P.C.; Stehouwer, C.D. Effects of hormone replacement therapy on blood platelets. Eur. J. Clin. Investig. 2002, 32, 613–618. [Google Scholar] [CrossRef]
- García-Martínez, M.C.; Labiós, M.; Hermenegildo, C.; Tarín, J.J.; O’Connor, E.; Cano, A. The effect of hormone replacement therapy on Ca2+ mobilization and P-selectin (CD62P) expression in platelets examined under flow cytometry. Blood Coagul. Fibrinolysis 2004, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Aune, B.; Oian, P.; Omsjø, I.; Osterud, B. Hormone replacement therapy reduces the reactivity of monocytes and platelets in whole blood—A beneficial effect on atherogenesis and thrombus formation? Am. J. Obs. Gynecol. 1995, 173, 1816–1820. [Google Scholar] [CrossRef]
- Rank, A.; Nieuwland, R.; Nikolajek, K.; Rösner, S.; Wallwiener, L.M.; Hiller, E.; Toth, B. Hormone replacement therapy leads to increased plasma levels of platelet derived microparticles in postmenopausal women. Arch. Gynecol. Obs. 2012, 285, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Bar, J.; Tepper, R.; Fuchs, J.; Pardo, Y.; Goldberger, S.; Ovadia, J. The effect of estrogen replacement therapy on platelet aggregation and adenosine triphosphate release in postmenopausal women. Obs. Gynecol. 1993, 81, 261–264. [Google Scholar]
- Teede, H.J.; McGrath, B.P.; Turner, A.; Majewski, H. Effects of oral combined hormone replacement therapy on platelet aggregation in postmenopausal women. Clin. Sci. 2001, 100, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.S.; Vaidya, D.; Kickler, T.; Ouyang, P. Long-term hormone replacement therapy does not cause increased platelet activation. Am. Heart J. 2005, 150, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Raz, L.; Hunter, L.V.; Dowling, N.M.; Wharton, W.; Gleason, C.E.; Jayachandran, M.; Anderson, L.; Asthana, S.; Miller, V.M. Differential effects of hormone therapy on serotonin, vascular function and mood in the KEEPS. Climacteric 2016, 19, 49–59. [Google Scholar] [CrossRef]
- Coelingh Bennink, H.J.T.; Verhoeven, C.; Zimmerman, Y.; Visser, M.; Foidart, J.-M.; Gemzell-Danielsson, K. Pharmacodynamic effects of the fetal estrogen estetrol in postmenopausal women: Results from a multiple-rising-dose study. Menopause 2017, 24, 677–685. [Google Scholar] [CrossRef]
- Coelingh Bennink, H.J.T.; Verhoeven, C.; Zimmerman, Y.; Visser, M.; Foidart, J.-M.; Gemzell-Danielsson, K. Clinical effects of the fetal estrogen estetrol in a multiple-rising-dose study in postmenopausal women. Maturitas 2016, 91, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Raman, B.B.; Standley, P.R.; Rajkumar, V.; Ram, J.L.; Sowers, J.R. Effects of estradiol and progesterone on platelet calcium responses. Am. J. Hypertens. 1995, 8, 197–200. [Google Scholar] [CrossRef]
- Bar, J.; Lahav, J.; Hod, M.; Ben-Rafael, Z.; Weinberger, I.; Brosens, J. Regulation of platelet aggregation and adenosine triphosphate release in vitro by 17beta-estradiol and medroxyprogesterone acetate in postmenopausal women. Thromb. Haemost. 2000, 84, 695–700. [Google Scholar] [PubMed]
- Moro, L.; Reineri, S.; Piranda, D.; Pietrapiana, D.; Lova, P.; Bertoni, A.; Graziani, A.; Defilippi, P.; Canobbio, I.; Torti, M.; et al. Nongenomic effects of 17β-estradiol in human platelets: Potentiation of thrombin-induced aggregation through estrogen receptor beta and Src kinase. Blood 2005, 105, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Olié, V.; Canonico, M.; Scarabin, P.-Y. Risk of venous thrombosis with oral versus transdermal estrogen therapy among postmenopausal women. Curr. Opin. Hematol. 2010, 17, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Valéra, M.C.; Parant, O.; Cenac, C.; Arnaud, C.; Gallini, A.; Hamdi, S.; Sié, P.; Arnal, J.F.; Payrastre, B. Platelet Adhesion and Thrombus Formation in Whole Blood at Arterial Shear Rate at the End of Pregnancy. Am. J. Reprod. Immunol. 2015, 74, 533–541. [Google Scholar] [CrossRef]
MK Number | Platelet Count | |
---|---|---|
Mice | Fox et al.: 10 or 100 µg/kg: ↘ | Fox et al.: 10 or 100 μg/kg/day (10 days): ↘ |
500 μg/kg: ↗ | 500 μg/kg (single injection): ↗ | |
Perry et al.: 500 μg/kg: ↗ and ↘ | Valera et al. (2017): 80 μg/kg/day (3 weeks): = | |
Du et al.: 500 μg/kg/day ↗ | Valera et al. (2012): 200 μg/kg/day (3 weeks): ↘ | |
Du et al.: 500 μg/kg/day (3 days): ↗ | ||
Women | Bord et al.: ↗ | Ranganath et al. (6 weeks): ↗ |
Miller et al. (48 months): = | ||
Kaplan et al. (3 months): = | ||
Stachowiak et al. (3 months): ↘ |
Molecule | Dose and Duration | Results | |
---|---|---|---|
Rosenblum et al. [33] | E2 | Pellet 0.5 mg, 12 days | Faster thrombosis (mesenteric arterioles) |
Rosenblum et al. [34] | E2 | Pellet 0.5 mg, 12 days | Faster thrombosis (cerebral microvessels) |
Valera el al. [20] | E2 | Pellet 200 μg/kg/day, 3 weeks | Protection against thromboembolism |
Aggregation and adhesion under flow ↘ | |||
Valera et al. [24] | E2 + P4 | Pellet E2 80 μg/kg/day, | Protection against venous and arterial thrombosis |
P4 10 mg, 3 weeks | |||
Freudenberger et al. [38] | E2 + MPA | MPA 27.7 µg/d E2: 1.1µg/d, 90 days | arterial thrombosis ↗ |
Geng et al. [35] | E2 | 1-μg 21-day slow-release pellet, 21 days | Aggregation ↘ |
Valera el al. [25] | Estetrol | Pellet 6 mg/kg/day, 3 weeks | Protection against thromboembolism |
Adhesion under flow ↘ |
Decreased platelet activation | Gu et al. |
Aune et al. | |
Bar et al. | |
No change | Kaplan et al. |
Teede et al. | |
Williams et al. | |
Miller et al. | |
Increased platelet activation | Thijs et al. |
Garcia-Martinez et al. | |
Miller et al. | |
Raz et al. | |
Rank et al. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dupuis, M.; Severin, S.; Noirrit-Esclassan, E.; Arnal, J.-F.; Payrastre, B.; Valéra, M.-C. Effects of Estrogens on Platelets and Megakaryocytes. Int. J. Mol. Sci. 2019, 20, 3111. https://doi.org/10.3390/ijms20123111
Dupuis M, Severin S, Noirrit-Esclassan E, Arnal J-F, Payrastre B, Valéra M-C. Effects of Estrogens on Platelets and Megakaryocytes. International Journal of Molecular Sciences. 2019; 20(12):3111. https://doi.org/10.3390/ijms20123111
Chicago/Turabian StyleDupuis, Marion, Sonia Severin, Emmanuelle Noirrit-Esclassan, Jean-François Arnal, Bernard Payrastre, and Marie-Cécile Valéra. 2019. "Effects of Estrogens on Platelets and Megakaryocytes" International Journal of Molecular Sciences 20, no. 12: 3111. https://doi.org/10.3390/ijms20123111
APA StyleDupuis, M., Severin, S., Noirrit-Esclassan, E., Arnal, J. -F., Payrastre, B., & Valéra, M. -C. (2019). Effects of Estrogens on Platelets and Megakaryocytes. International Journal of Molecular Sciences, 20(12), 3111. https://doi.org/10.3390/ijms20123111