Long Non-Coding RNAs in Kidney Disease
Abstract
:1. Introduction
2. LncRNAs in Glomerular Disease
2.1. Diabetic Nephropathy—The Link between MicroRNAs and LncRNAs
2.2. Diabetic Nephropathy—Tthe Role of Specific Long Non-Coding RNAs (LncRNAs)
2.3. LncRNAs in Other Glomerular Diseases
3. Tubulointerstitial Disease
3.1. LncRNAs and Acute Kidney Injury
3.2. LncRNAs Associated with Other Tubulointerstitial Diseases
4. Systemic Kidney Biomarkers
5. Conclusion and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CIHP-1 | human podocyte cell line |
MC | mesangial cells |
FSGS | focal-segmental glomerulosclerosis |
HK-2 | human proximal tubule epithelial cell line |
AB8/13 | human podocyte cell line |
IRI | ischemia reperfusion injury |
LPS | lipopolysaccharide |
RMCs | rat mesangial cell line |
HK-2 | human proximal tubule epithelial cell line |
CLP | cecal ligation puncture |
RPTECs | human renal proximal tubular epithelial cell line |
HKC | human kidney proximal tubular epithelial cell line |
CKD | chronic kidney disease |
COM | calcium oxalate monohydrate |
References
- Zhao, H.; Ma, S.X.; Shang, Y.Q.; Zhang, H.Q.; Su, W. MicroRNAs in chronic kidney disease. Clin. Chim. Acta 2019, 491, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Ledeganck, K.J.; Gielis, E.M.; Abramowicz, D.; Stenvinkel, P.; Shiels, P.G.; Van Craenenbroeck, A.H. MicroRNAs in AKI and Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2019, 14, 454–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016, 17, 47–62. [Google Scholar] [CrossRef]
- St Laurent, G.; Wahlestedt, C.; Kapranov, P. The Landscape of long noncoding RNA classification. Trends Genet. Tig. 2015, 31, 239–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, R.W.; Wang, Y.; Chen, L.L. Cellular functions of long noncoding RNAs. Nat. Cell. Biol. 2019, 21, 542–551. [Google Scholar] [CrossRef]
- Cabili, M.N.; Trapnell, C.; Goff, L.; Koziol, M.; Tazon-Vega, B.; Regev, A.; Rinn, J.L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011, 25, 1915–1927. [Google Scholar] [CrossRef] [Green Version]
- Johnsson, P.; Lipovich, L.; Grander, D.; Morris, K.V. Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim. Et. Biophys. Acta 2014, 1840, 1063–1071. [Google Scholar] [CrossRef]
- Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012, 22, 1775–1789. [Google Scholar] [CrossRef] [Green Version]
- Gloss, B.S.; Dinger, M.E. The specificity of long noncoding RNA expression. Biochim. Et. Biophys. Acta 2016, 1859, 16–22. [Google Scholar] [CrossRef]
- Maass, P.G.; Luft, F.C.; Bähring, S. Long non-coding RNA in health and disease. J. Mol. Med. 2014, 92, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Nathan, D.M. Diabetes: Advances in Diagnosis and Treatment. JAMA 2015, 314, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Fineberg, D.; Jandeleit-Dahm, K.A.; Cooper, M.E. Diabetic nephropathy: Diagnosis and treatment. Nat. Rev. Endocrinol. 2013, 9, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Paraskevopoulou, M.D.; Hatzigeorgiou, A.G. Analyzing MiRNA-LncRNA Interactions. Methods Mol. Biol. 2016, 1402, 271–286. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.J.; Ding, M.; Hou, L.J.; Cui, Y.T.; Li, C.J.; Yu, D.M. Long noncoding RNA TUG1 alleviates extracellular matrix accumulation via mediating microRNA-377 targeting of PPARgamma in diabetic nephropathy. Biochem. Biophys. Res. Commun. 2017, 484, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, Y.; Zhu, Y.C.; Wang, Y.K.; Li, J.; Li, X.Y.; Ji, T.; Bai, S.J. LncRNA NEAT1 promotes extracellular matrix accumulation and epithelial-to-mesenchymal transition by targeting miR-27b-3p and ZEB1 in diabetic nephropathy. J. Cell Physiol. 2019, 234, 12926–12933. [Google Scholar] [CrossRef]
- Li, X.; Zeng, L.; Cao, C.; Lu, C.; Lian, W.; Han, J.; Zhang, X.; Zhang, J.; Tang, T.; Li, M. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp. Cell Res. 2017, 350, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.L.; Khosroheidari, M.; Eddy, E.; Kiefer, J. Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: Implications for diabetic nephropathy. PLoS ONE 2013, 8, e77468. [Google Scholar] [CrossRef]
- Huppi, K.; Volfovsky, N.; Runfola, T.; Jones, T.L.; Mackiewicz, M.; Martin, S.E.; Mushinski, J.F.; Stephens, R.; Caplen, N.J. The identification of microRNAs in a genomically unstable region of human chromosome 8q24. Mol. Cancer Res. 2008, 6, 212–221. [Google Scholar] [CrossRef]
- Kato, M.; Wang, M.; Chen, Z.; Bhatt, K.; Oh, H.J.; Lanting, L.; Deshpande, S.; Jia, Y.; Lai, J.Y.; O’Connor, C.L.; et al. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nat. Commun. 2016, 7, 12864. [Google Scholar] [CrossRef]
- Millis, M.P.; Bowen, D.; Kingsley, C.; Watanabe, R.M.; Wolford, J.K. Variants in the plasmacytoma variant translocation gene (PVT1) are associated with end-stage renal disease attributed to type 1 diabetes. Diabetes 2007, 56, 3027–3032. [Google Scholar] [CrossRef]
- Hanson, R.L.; Craig, D.W.; Millis, M.P.; Yeatts, K.A.; Kobes, S.; Pearson, J.V.; Lee, A.M.; Knowler, W.C.; Nelson, R.G.; Wolford, J.K. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes 2007, 56, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.L.; DiStefano, J.K. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS ONE 2011, 6, e18671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, J.; Huang, T.; Wang, X. Danggui buxue tang suppresses high glucose-induced proliferation and extracellular matrix accumulation of mesangial cells via inhibiting lncRNA PVT1. Am. J. Transl. Res. 2017, 9, 3732–3740. [Google Scholar] [PubMed]
- Hu, M.; Wang, R.; Li, X.; Fan, M.; Lin, J.; Zhen, J.; Chen, L.; Lv, Z. LncRNA MALAT1 is dysregulated in diabetic nephropathy and involved in high glucose-induced podocyte injury via its interplay with beta-catenin. J. Cell. Mol. Med. 2017, 21, 2732–2747. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ren, D.; Xu, G. Long noncoding RNA MALAT1 mediates high glucose-induced glomerular endothelial cell injury by epigenetically inhibiting klotho via methyltransferase G9a. IUBMB Life 2019, 71, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Puthanveetil, P.; Chen, S.; Feng, B.; Gautam, A.; Chakrabarti, S. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J. Cell. Mol. Med. 2015, 19, 1418–1425. [Google Scholar] [CrossRef]
- Higgins, G.C.; Coughlan, M.T. Mitochondrial dysfunction and mitophagy: The beginning and end to diabetic nephropathy? Br. J. Pharmacol. 2014, 171, 1917–1942. [Google Scholar] [CrossRef]
- Long, J.; Badal, S.S.; Ye, Z.; Wang, Y.; Ayanga, B.A.; Galvan, D.L.; Green, N.H.; Chang, B.H.; Overbeek, P.A.; Danesh, F.R. Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. J. Clin. Investig. 2016, 126, 4205–4218. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Zhang, L.; Li, Z.; Ren, J. Astragaloside IV/lncRNA-TUG1/TRAF5 signaling pathway participates in podocyte apoptosis of diabetic nephropathy rats. Drug Des. Devel. 2018, 12, 2785–2793. [Google Scholar] [CrossRef]
- Shen, H.; Ming, Y.; Xu, C.; Xu, Y.; Zhao, S.; Zhang, Q. Deregulation of long noncoding RNA (TUG1) contributes to excessive podocytes apoptosis by activating endoplasmic reticulum stress in the development of diabetic nephropathy. J. Cell Physiol. 2019, 234, 15123–15133. [Google Scholar] [CrossRef]
- Huang, S.; Xu, Y.; Ge, X.; Xu, B.; Peng, W.; Jiang, X.; Shen, L.; Xia, L. Long noncoding RNA NEAT1 accelerates the proliferation and fibrosis in diabetic nephropathy through activating Akt/mTOR signaling pathway. J. Cell Physiol. 2019, 234, 11200–11207. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, S.; Yao, D.; Yan, Q.; Lu, W. A novel long non-coding RNA CYP4B1-PS1-001 regulates proliferation and fibrosis in diabetic nephropathy. Mol. Cell Endocrinol. 2016, 426, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, X.; Wang, M.; Yao, D.; Chen, T.; Yan, Q.; Lu, W. Long Non-Coding RNA CYP4B1-PS1-001 Inhibits Proliferation and Fibrosis in Diabetic Nephropathy by Interacting with Nucleolin. Cell Physiol. Biochem. 2018, 49, 2174–2187. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Geng, J.; Li, X.; Wan, J.; Liu, J.; Zhou, Z.; Liu, X. Long Noncoding RNA LINC01619 Regulates MicroRNA-27a/Forkhead Box Protein O1 and Endoplasmic Reticulum Stress-Mediated Podocyte Injury in Diabetic Nephropathy. Antioxid. Redox Signal 2018, 29, 355–376. [Google Scholar] [CrossRef] [PubMed]
- Ji, T.T.; Wang, Y.K.; Zhu, Y.C.; Gao, C.P.; Li, X.Y.; Li, J.; Bai, F.; Bai, S.J. Long noncoding RNA Gm6135 functions as a competitive endogenous RNA to regulate toll-like receptor 4 expression by sponging miR-203-3p in diabetic nephropathy. J. Cell Physiol. 2019, 234, 6633–6641. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Peng, R.; Sun, Y.; Liu, H.; Peng, H.; Zhang, Z. LincRNA 1700020I14Rik alleviates cell proliferation and fibrosis in diabetic nephropathy via miR-34a-5p/Sirt1/HIF-1alpha signaling. Cell Death Dis. 2018, 9, 461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, Y.; Peng, R.; Liu, H.; He, W.; Zhang, L.; Peng, H.; Zhang, Z. The Long Noncoding RNA 150Rik Promotes Mesangial Cell Proliferation via miR-451/IGF1R/p38 MAPK Signaling in Diabetic Nephropathy. Cell Physiol. Biochem. 2018, 51, 1410–1428. [Google Scholar] [CrossRef]
- Fan, W.; Peng, Y.; Liang, Z.; Yang, Y.; Zhang, J. A negative feedback loop of H19/miR-675/EGR1 is involved in diabetic nephropathy by downregulating the expression of the vitamin D receptor. J. Cell Physiol. 2019, 234, 17505–17513. [Google Scholar] [CrossRef]
- Sun, S.F.; Tang, P.M.K.; Feng, M.; Xiao, J.; Huang, X.R.; Li, P.; Ma, R.C.W.; Lan, H.Y. Novel lncRNA Erbb4-IR Promotes Diabetic Kidney Injury in db/db Mice by Targeting miR-29b. Diabetes 2018, 67, 731–744. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Tang, P.M.-K.; Tang, P.C.-T.; Xiao, J.; Huang, X.R.; Yu, C.; Ma, R.C.; Lan, H.Y. LRNA9884, a Novel Smad3-Dependent LncRNA, Promotes Diabetic Kidney Injury in db/db Mice Via Enhancing MCP-1-Dependent Renal Inflammation. Diabetes 2019, 68, 1485–1498. [Google Scholar] [CrossRef]
- Yi, H.; Peng, R.; Zhang, L.Y.; Sun, Y.; Peng, H.M.; Liu, H.D.; Yu, L.J.; Li, A.L.; Zhang, Y.J.; Jiang, W.H.; et al. LincRNA-Gm4419 knockdown ameliorates NF-kappaB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy. Cell Death Dis. 2017, 8, e2583. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pang, J.; Li, H.; Long, J.; Fang, F.; Chen, J.; Zhu, X.; Xiang, X.; Zhang, D. lncRNA ZEB1-AS1 Was Suppressed by p53 for Renal Fibrosis in Diabetic Nephropathy. Mol. Ther. Nucleic Acids 2018, 12, 741–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, J.; Wang, S.; Jiang, Y.; Duan, Y.; Cheng, G.; Liu, D.; Xiao, J.; Zhao, Z. Identification of key lncRNAs contributing to diabetic nephropathy by gene co-expression network analysis. Sci. Rep. 2019, 9, 3328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.Z.; Zhu, D.Y.; Xie, X.M.; Ding, M.; Wang, Y.L.; Sun, L.L.; Zhang, N.; Shen, E.; Wang, X.X. EA15, MIR22, LINC00472 as diagnostic markers for diabetic kidney disease. J. Cell Physiol. 2019, 234, 8797–8803. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Zhang, D.; Ma, X. RNA-sequencing reveals genome-wide long non-coding RNAs profiling associated with early development of diabetic nephropathy. Oncotarget 2017, 8, 105832–105847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Han, R.; Shi, J.; Zhu, X.; Qin, W.; Zeng, C.; Bao, H.; Liu, Z. The long noncoding RNA LOC105374325 causes podocyte injury in individuals with focal segmental glomerulosclerosis. J. Biol. Chem. 2018, 293, 20227–20239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, R.; Hu, S.; Qin, W.; Shi, J.; Zeng, C.; Bao, H.; Liu, Z. Upregulated long noncoding RNA LOC105375913 induces tubulointerstitial fibrosis in focal segmental glomerulosclerosis. Sci. Rep. 2019, 9, 716. [Google Scholar] [CrossRef]
- Jin, L.W.; Pan, M.; Ye, H.Y.; Zheng, Y.; Chen, Y.; Huang, W.W.; Xu, X.Y.; Zheng, S.B. Down-regulation of the long non-coding RNA XIST ameliorates podocyte apoptosis in membranous nephropathy via the miR-217-TLR4 pathway. Exp. Physiol. 2019, 104, 220–230. [Google Scholar] [CrossRef]
- Liao, Z.; Ye, Z.; Xue, Z.; Wu, L.; Ouyang, Y.; Yao, C.; Cui, C.; Xu, N.; Ma, J.; Hou, G.; et al. Identification of Renal Long Non-coding RNA RP11-2B6.2 as a Positive Regulator of Type I Interferon Signaling Pathway in Lupus Nephritis. Front Immunol. 2019, 10, 975. [Google Scholar] [CrossRef]
- Fang, Y.; Hu, J.F.; Wang, Z.H.; Zhang, S.G.; Zhang, R.F.; Sun, L.M.; Cui, H.W.; Yang, F. GAS5 promotes podocyte injury in sepsis by inhibiting PTEN expression. Eur. Rev. Med. Pharm. Sci. 2018, 22, 8423–8430. [Google Scholar] [CrossRef]
- Qin, X.J.; Gao, J.R.; Xu, X.J.; Jiang, H.; Wei, L.B.; Jiang, N.N. LncRNAs expression in adriamycin-induced rats reveals the potential role of LncRNAs contributing to chronic glomerulonephritis pathogenesis. Gene 2019, 687, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.R.; Qin, X.J.; Jiang, H.; Gao, Y.C.; Guo, M.F.; Jiang, N.N. Potential role of lncRNAs in contributing to pathogenesis of chronic glomerulonephritis based on microarray data. Gene 2018, 643, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Sui, W.; Li, H.; Ou, M.; Tang, D.; Dai, Y. Altered long non-coding RNA expression profile in patients with IgA-negative mesangial proliferative glomerulonephritis. Int. J. Mol. Med. 2012, 30, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, N.; Li, Y.; Liu, N.; Wang, L. Differentially expressed long noncoding RNAs and mRNAs in patients with IgA nephropathy. Mol. Med. Rep. 2017, 16, 7724–7730. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.S.; Hsieh, H.Y.; Shih, H.M.; Sytwu, H.K.; Wu, C.C. Urinary Xist is a potential biomarker for membranous nephropathy. Biochem. Biophys. Res. Commun. 2014, 452, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.L.; Cerda, J.; Burdmann, E.A.; Tonelli, M.; Garcia-Garcia, G.; Jha, V.; Susantitaphong, P.; Rocco, M.; Vanholder, R.; Sever, M.S.; et al. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): A human rights case for nephrology. Lancet 2015, 385, 2616–2643. [Google Scholar] [CrossRef]
- Tian, H.; Wu, M.; Zhou, P.; Huang, C.; Ye, C.; Wang, L. The long non-coding RNA MALAT1 is increased in renal ischemia-reperfusion injury and inhibits hypoxia-induced inflammation. Ren. Fail. 2018, 40, 527–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, X.; Feng, G.; Shang, W.; Liu, L.; Li, J.; Feng, Y.; Xie, H.; Wang, J. Inhibition of lncRNA MEG3 protects renal tubular from hypoxia-induced kidney injury in acute renal allografts by regulating miR-181b/TNF-α signaling pathway. J. Cell Biochem. 2019, 120, 12822–12831. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.M.; Palanisamy, K.; Sun, K.T.; Day, Y.J.; Shu, K.H.; Wang, I.K.; Shyu, W.C.; Chen, P.; Chen, Y.L.; Li, C.Y. RANTES mediates kidney ischemia reperfusion injury through a possible role of HIF-1α and LncRNA PRINS. Sci. Rep. 2016, 6, 18424. [Google Scholar] [CrossRef]
- Tian, X.; Ji, Y.; Liang, Y.; Zhang, J.; Guan, L.; Wang, C. LINC00520 targeting miR-27b-3p regulates OSMR expression level to promote acute kidney injury development through the PI3K/AKT signaling pathway. J. Cell Physiol. 2019, 234, 14221–14233. [Google Scholar] [CrossRef]
- Geng, X.; Xu, X.; Fang, Y.; Zhao, S.; Hu, J.; Xu, J.; Jia, P.; Ding, X.; Teng, J. Effect of long non-coding RNA growth arrest-specific 5 on apoptosis in renal ischaemia/reperfusion injury. Nephrology 2019, 24, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Kolling, M.; Genschel, C.; Kaucsar, T.; Hubner, A.; Rong, S.; Schmitt, R.; Sorensen-Zender, I.; Haddad, G.; Kistler, A.; Seeger, H.; et al. Hypoxia-induced long non-coding RNA Malat1 is dispensable for renal ischemia/reperfusion-injury. Sci. Rep. 2018, 8, 3438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.; Liu, S.; Wen, J.; Xue, L.; Zhang, Y.; Yan, D.; Wang, G.; Liu, Z. Inhibition of maternally expressed gene 3 attenuated lipopolysaccharide-induced apoptosis through sponging miR-21 in renal tubular epithelial cells. J. Cell Biochem. 2018, 119, 7800–7806. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Guo, F.; Zhu, T.; Li, J.; Gu, D.; Jiang, W.; Lu, Y.; Zhou, D. Mechanism of long non-coding RNA MALAT1 in lipopolysaccharide-induced acute kidney injury is mediated by the miR-146a/NF-kappaB signaling pathway. Int. J. Mol. Med. 2018, 41, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Liu, L.; Zhang, F.; Gu, J.; Pan, G. LncRNA TapSAKI promotes inflammation injury in HK-2 cells and urine derived sepsis-induced kidney injury. J. Pharm. Pharm. 2019, 71, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhang, J.; Jiang, X.; Wang, H.; Pan, G. LncRNA HOX transcript antisense RNA accelerated kidney injury induced by urine-derived sepsis through the miR-22/high mobility group box 1 pathway. Life Sci. 2018, 210, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Lelli, A.; Nolan, K.A.; Santambrogio, S.; Goncalves, A.F.; Schonenberger, M.J.; Guinot, A.; Frew, I.J.; Marti, H.H.; Hoogewijs, D.; Wenger, R.H. Induction of long noncoding RNA MALAT1 in hypoxic mice. Hypoxia 2015, 3, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Deng, W.; Zhang, W. Long non-coding RNA TUG1 protects renal tubular epithelial cells against injury induced by lipopolysaccharide via regulating microRNA-223. Biomed. Pharmacother 2018, 104, 509–519. [Google Scholar] [CrossRef]
- Huang, W.; Lan, X.; Li, X.; Wang, D.; Sun, Y.; Wang, Q.; Gao, H.; Yu, K. Long non-coding RNA PVT1 promote LPS-induced septic acute kidney injury by regulating TNFalpha and JNK/NF-kappaB pathways in HK-2 cells. Int. Immunopharmacol. 2017, 47, 134–140. [Google Scholar] [CrossRef]
- Mimura, I.; Hirakawa, Y.; Kanki, Y.; Kushida, N.; Nakaki, R.; Suzuki, Y.; Tanaka, T.; Aburatani, H.; Nangaku, M. Novel lnc RNA regulated by HIF-1 inhibits apoptotic cell death in the renal tubular epithelial cells under hypoxia. Physiol. Rep. 2017, 5. [Google Scholar] [CrossRef]
- Chen, Y.; Qiu, J.; Chen, B.; Lin, Y.; Xie, G.; Tong, H.; Jiang, D. Long non-coding RNA NEAT1 plays an important role in sepsis-induced acute kidney injury by targeting miR-204 and modulating the NF-kappaB pathway. Int. Immunopharmacol. 2018, 59, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Li, D.; Shen, W.; Shen, X.; Liu, Y. LncRNA NEAT1 promotes hypoxia-induced renal tubular epithelial apoptosis through downregulating miR-27a-3p. J. Cell Biochem. 2019. [Google Scholar] [CrossRef]
- Liu, X.; Hong, C.; Wu, S.; Song, S.; Yang, Z.; Cao, L.; Song, T.; Yang, Y. Downregulation of lncRNA TUG1 contributes to the development of sepsis-associated acute kidney injury via regulating miR-142-3p/sirtuin 1 axis and modulating NF-kappaB pathway. J. Cell Biochem. 2019. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.J.; Zhang, M.Y.; Fan, Z.W.; Sun, W.L.; Tang, Y. Influence of lncRNA HOTAIR on acute kidney injury in sepsis rats through regulating miR-34a/Bcl-2 pathway. Eur Rev. Med. Pharm. Sci. 2019, 23, 3512–3519. [Google Scholar] [CrossRef]
- Lorenzen, J.M.; Schauerte, C.; Kielstein, J.T.; Hübner, A.; Martino, F.; Fiedler, J.; Gupta, S.K.; Faulhaber-Walter, R.; Kumarswamy, R.; Hafer, C.; et al. Circulating long noncoding RNATapSaki is a predictor of mortality in critically ill patients with acute kidney injury. Inj. Clin. Chem. 2015, 61, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Ning, H.; Zhou, Y.; Hu, Y.; Huang, B.; Wu, Y.; Huang, R. LncRNA Uc.173 is a key molecule for the regulation of lead-induced renal tubular epithelial cell apoptosis. Biomed. Pharm. 2018, 100, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Nan, A.; Zhou, X.; Chen, L.; Liu, M.; Zhang, N.; Zhang, L.; Luo, Y.; Liu, Z.; Dai, L.; Jiang, Y. A transcribed ultraconserved noncoding RNA, Uc.173, is a key molecule for the inhibition of lead-induced neuronal apoptosis. Oncotarget 2016, 7, 112–124. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, Z.Q.; Ren, Y.Q.; Zhang, L.; Sun, L.N.; Man, Y.L.; Wang, Z.K. Effects of long non-coding RNA LINC00667 on renal tubular epithelial cell proliferation, apoptosis and renal fibrosis via the miR-19b-3p/LINC00667/CTGF signaling pathway in chronic renal failure. Cell Signal. 2019, 54, 102–114. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, L.; Zhou, Z.Q.; Ren, Y.Q.; Sun, L.N.; Man, Y.L.; Ma, Z.W.; Wang, Z.K. Effects of Long Non-Coding RNA LINC00963 on Renal Interstitial Fibrosis and Oxidative Stress of Rats with Chronic Renal Failure via the Foxo Signaling Pathway. Cell Physiol. Biochem. 2018, 46, 815–828. [Google Scholar] [CrossRef]
- Aboudehen, K.; Farahani, S.; Kanchwala, M.; Chan, S.C.; Avdulov, S.; Mickelson, A.; Lee, D.; Gearhart, M.D.; Patel, V.; Xing, C.; et al. Long noncoding RNA Hoxb3os is dysregulated in autosomal dominant polycystic kidney disease and regulates mTOR signaling. J. Biol. Chem. 2018, 293, 9388–9398. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Zhang, Y.; Gong, B.; Xu, H.; Hao, Z.; Liang, C. Long noncoding RNA LINC00339 promotes renal tubular epithelial pyroptosis by regulating the miR-22-3p/NLRP3 axis in calcium oxalate-induced kidney stone. J. Cell Biochem. 2019, 120, 10452–10462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yuan, J.; Hu, H.; Chen, W.; Liu, M.; Zhang, J.; Sun, S.; Guo, Z. Long non-coding RNA CHCHD4P4 promotes epithelial-mesenchymal transition and inhibits cell proliferation in calcium oxalate-induced kidney damage. Braz. J. Med. Biol. Res. 2017, 51, e6536. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wu, H.; Wang, D.; Yang, Z.; Dong, J. LncRNA ANRIL promotes NLRP3 inflammasome activation in uric acid nephropathy through miR-122-5p/BRCC3 axis. Biochimie 2019, 157, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Van der Hauwaert, C.; Glowacki, F.; Pottier, N.; Cauffiez, C. Non-Coding RNAs as New Therapeutic Targets in the Context of Renal Fibrosis. Int. J. Mol. Sci. 2019, 20, 1977. [Google Scholar] [CrossRef] [PubMed]
- Moe, O.W. Kidney stones: Pathophysiology and medical management. Lancet 2006, 367, 333–344. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.W.; Zhang, Y.; Zhang, S.P.; Hu, Q.Y.; Liang, H. Analyses of long non-coding RNA and mRNA profiling using RNA sequencing in calcium oxalate monohydrate-stimulated renal tubular epithelial cells. Urolithiasis 2019, 47, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Gao, X.; Yang, Y.; Ye, Z.; Wang, E.; Dong, Z. Changing expression profiles of long non-coding RNAs, mRNAs and circular RNAs in ethylene glycol-induced kidney calculi rats. BMC Genom. 2018, 19, 660. [Google Scholar] [CrossRef]
- Wan, L.; Dreyfuss, G. Splicing-Correcting Therapy for SMA. Cell 2017, 170, 5. [Google Scholar] [CrossRef]
- Benson, M.D.; Waddington-Cruz, M.; Berk, J.L.; Polydefkis, M.; Dyck, P.J.; Wang, A.K.; Plante-Bordeneuve, V.; Barroso, F.A.; Merlini, G.; Obici, L.; et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 22–31. [Google Scholar] [CrossRef]
- Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 11–21. [Google Scholar] [CrossRef]
- Park, J.; Shrestha, R.; Qiu, C.; Kondo, A.; Huang, S.; Werth, M.; Li, M.; Barasch, J.; Susztak, K. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 2018, 360, 758–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaiskos, N.; Rahmatollahi, M.; Boltengagen, A.; Liu, H.; Hoehne, M.; Rinschen, M.; Schermer, B.; Benzing, T.; Rajewsky, N.; Kocks, C.; et al. A Single-Cell Transcriptome Atlas of the Mouse Glomerulus. J. Am. Soc. Nephrol. 2018, 29, 2060–2068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, J.; Akat, K.M.; Sun, Z.; Zhang, W.; Schlondorff, D.; Liu, Z.; Tuschl, T.; Lee, K.; He, J.C. Single-Cell RNA Profiling of Glomerular Cells Shows Dynamic Changes in Experimental Diabetic Kidney Disease. J. Am. Soc. Nephrol. 2019, 30, 533–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Kirita, Y.; Donnelly, E.L.; Humphreys, B.D. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis. J. Am. Soc. Nephrol. 2019, 30, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Der, E.; Ranabothu, S.; Suryawanshi, H.; Akat, K.M.; Clancy, R.; Morozov, P.; Kustagi, M.; Czuppa, M.; Izmirly, P.; Belmont, H.M.; et al. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight 2017, 2. [Google Scholar] [CrossRef] [PubMed]
Diabetic Nephropathy | ||||
---|---|---|---|---|
lncRNA | main disease model | suggested function | target | reference |
TUG1 | diabetic mice (db/db) | transcriptional activation | Ppargc1a promoter | [28] |
diabetic mice (db/db) | miRNA binding | miR-377 | [14] | |
streptozotocin treated rats | protein binding | TRAF5 | [29] | |
MALAT1 | streptozotocin treated rats | miRNA binding | miR-23 | [16] |
streptozotocin treated mice | expression changed | IL-6 and TNF-α | [26] | |
streptozotocin treated mice | expression changed | β-catenin, SRSF1 | [24] | |
NEAT1 | streptozotocin treated rats | miRNA binding | miR-27b-3p | [15] |
streptozotocin treated rats | expression changed | Akt/mTOR signaling | [31] | |
PVT1 | high glucose treated CIHP-1 | expression changed | ECM-related proteins | [22] |
ZEB1-AS | streptozotocin treated mice | recruitment of histone modifications | ZEB1 promoter | [42] |
LRNA9884 | diabetic mice (db/db) | transcriptional activation | MCP-1 | [40] |
LINC01619 | streptozotocin treated rats | miRNA binding | miR-27a | [34] |
Gm6135 | diabetic mice (db/db) | miRNA binding | miR-203-3p | [35] |
CYP4B1-PS1-001 | diabetic mice (db/db) | protein binding | NCL | [33] |
1700020I14Rik | diabetic mice (db/db) | miRNA binding | miR-34 | [36] |
150Rik | diabetic mice (db/db) | miRNA binding | miR-451 | [37] |
H19 | vitamin D3 treated CIHP-1 | expression changed | miR-675 | [38] |
Erbb4-IR | diabetic mice (db/db) | transcriptional repression | miR-29b | [39] |
Gm4419 | high glucose treated mouse MCs | protein binding | p50 | [41] |
Focal-Segmental Glomerulosclerosis | ||||
lncRNA | main disease model | suggested function | target | reference |
LOC105374325 | adriamycin treated podocytes | miRNA binding | miR-34c and miR-196a/b | [46] |
LOC105375913 | FSGS patient serum treated HK-2 | miRNA binding | miR-27b | [47] |
Membranous Nephropathy | ||||
lncRNA | main disease model | suggested function | target | reference |
XIST | angiotensin II treated AB8/13 | miRNA binding | miR-217 | [48] |
Lupus Nephritis | ||||
lncRNA | main disease model | suggested function | target | reference |
RP11-2B6.2 | IFN-I treated HeLa and HK-2 | epigenetic inhibition | SOCS1 | [49] |
Acute Kidney Injury | ||||
---|---|---|---|---|
lncRNA | main disease model | suggested function | target | reference |
MEG3 | IRI in renal allografts | miRNA binding | miR181b-5p | [58] |
LPS treated mice | miRNA binding | miR-21 | [63] | |
NEAT1 | LPS treated RMCs | miRNA binding | miR-204 | [71] |
CoCl2 treated HK-2 | miRNA binding | miR-27a-3p | [72] | |
MALAT1 | LPS treated rats | miRNA binding | miR-146a | [64] |
hypoxia treated mice | expression changed | unknown | [67] | |
TapSAKI | Urine derived sepsis in rats | miRNA binding | miR-22 | [65] |
AKI patients | circulating biomarker | unknown | [75] | |
HOTAIR | Urine derived sepsis in rats | miRNA binding | miR-22 | [66] |
CLP induced sepsis in rats | expression changed | miR-34a and Bcl-2 | [74] | |
TUG1 | LPS treated RMCs | miRNA binding | miR-142-3p | [73] |
LPS treated HK-2 | miRNA binding | miR-223 | [68] | |
LINC00520 | IRI in rats | miRNA binding | miR-27b-3p | [60] |
PVT1 | LPS treated HK-2 | protein binding | TNF-α | [69] |
PRINS | IRI in mice | protein binding | RANTES (CCL-5) | [59] |
GAS5 | IRI in mice | expression changed | mRNA of p53 and TCP1 | [61] |
DARS-AS1 | hypoxia treated HK-2 and RPTECs | expression changed | unknown | [70] |
UC.173 | lead treated HK-2 and HKC | expression changed | unknown | [76] |
Chronic kidney disease | ||||
lncRNA | main disease model | suggested function | target | reference |
LINC00667 | CKD patients and rat model | miRNA binding | miR-19b-3p | [78] |
LINC00963 | CKD rat model | expression changed | mRNA of FoxO3a | [79] |
Autosomal Dominant Polycystic Kidney Disease | ||||
lncRNA | main disease model | suggested function | target | reference |
Hoxb3os | Pkd1/2 knockout mice | expression changed | unknown | [80] |
Kidney stone | ||||
lncRNA | main disease model | suggested function | target | reference |
LINC00339 | COM treated HK-2 | miRNA binding | miR-22-3p | [81] |
CHCHD4P4 | COM treated mice | expression changed | unknown | [82] |
Uric Acid Nephropathy | ||||
lncRNA | main disease model | suggested function | target | reference |
ANRIL | uric acid treated HK-2 | miRNA binding | miR-122-5p | [83] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignarski, M.; Islam, R.; Müller, R.-U. Long Non-Coding RNAs in Kidney Disease. Int. J. Mol. Sci. 2019, 20, 3276. https://doi.org/10.3390/ijms20133276
Ignarski M, Islam R, Müller R-U. Long Non-Coding RNAs in Kidney Disease. International Journal of Molecular Sciences. 2019; 20(13):3276. https://doi.org/10.3390/ijms20133276
Chicago/Turabian StyleIgnarski, Michael, Rashidul Islam, and Roman-Ulrich Müller. 2019. "Long Non-Coding RNAs in Kidney Disease" International Journal of Molecular Sciences 20, no. 13: 3276. https://doi.org/10.3390/ijms20133276
APA StyleIgnarski, M., Islam, R., & Müller, R. -U. (2019). Long Non-Coding RNAs in Kidney Disease. International Journal of Molecular Sciences, 20(13), 3276. https://doi.org/10.3390/ijms20133276