Highly Conductive and Water-Swelling Resistant Anion Exchange Membrane for Alkaline Fuel Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Membrane Morphology
2.3. Ionic Conductivity and Water-Swelling Resistance Property
2.4. Alkaline Stability and Thermal Stability
3. Materials and Methods
3.1. Materials
3.2. Preparation of Monomer N,N-Dimethylbenzylamine (1) and Polyamine Poly(N,N-Dimethylbenzylamine) (2)
3.3. Quaternization of HB-PVBC (3) with Polyamine Poly(N,N-Dimethylbenzylamine) (2)
3.4. Characterization
3.4.1. Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR)
3.4.2. Gel Permeation Chromatography (GPC)
3.4.3. Membrane Morphology Characterization
3.4.4. Ion Exchange Capacity (IEC)
3.4.5. Hydroxide Conductivity and Chloride Conductivity
3.4.6. Water Uptake and Linear Swelling Ratio (LSR)
3.4.7. Dynamic Mechanical Analyzer
3.4.8. Thermogravimetic Analysis (TGA)
3.4.9. Alkaline Stability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PEMs | Proton exchange membranes |
AEMs | Anion exchange membranes |
AFCs | Alkaline fuel cells |
PEMFCs | Proton exchange membrane fuel cells |
NMP | N-methyl pyrrolidone |
HB-PVBC | Hyperbranched poly(4-vinylbenzyl chloride) |
AIBN | 2,2’-azodiisobutyronitrile |
ATRP | Atom transfer radical polymerization |
IEC | Ion exchange capacity |
LSR | Linear swelling ratio |
GPC | Gel permeation chromatography |
NMR | Nuclear magnetic resonance |
FTIR | Fourier transform infrared |
TEM | Transmission electron microscopy |
AFM | Atomic force microscopy |
SAXS | Small angle X-ray scattering |
DSC | Differential scanning calorimetry |
TGA | Thermogravimetic analysis |
References
- Wang, J.; Gu, S.; Xiong, R.; Zhang, B.; Xu, B.; Yan, Y. Structure–Property Relationships in Hydroxide-Exchange Membranes with Cation Strings and High Ion-Exchange Capacity. Chem. Sus. Chem. 2015, 8, 4229–4234. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhu, L.; Pan, J.; Zimudzi, T.J.; Wang, Y.; Peng, Y.; Hickner, M.A.; Zhuang, L. Elastic long-chain multication cross-linked anion exchange membranes. Macromolecules 2017, 50, 3323–3332. [Google Scholar] [CrossRef]
- Tanaka, M.; Fukasawa, K.; Nishino, E.; Yamaguchi, S.; Yamada, K.; Tanaka, H.; Bae, B.; Miyatake, K.; Watanabe, M. Anion conductive block poly(arylene ether)s: Synthesis, properties, and application in alkaline fuel cells. J. Am. Chem. Soc. 2011, 133, 10646–10654. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zimudzi, T.J.; Wang, Y.; Yu, X.; Pan, J.; Han, J.; Kushner, D.I.; Zhuang, L.; Hickner, M.A. Mechanically robust anion exchange membranes via long hydrophilic cross-linkers. Macromolecules 2017, 50, 2329–2337. [Google Scholar] [CrossRef]
- He, G.; Li, Z.; Zhao, J.; Wang, S.; Wu, H.; Guiver, M.D.; Jiang, Z. Nanostructured Ion-Exchange Membranes for Fuel Cells: Recent Advances and Perspectives. Adv. Mater. 2015, 27, 5280–5295. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lin, C.X.; Wang, X.Q.; Yang, Q.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Highly conductive anion exchange membranes with long flexible multication spacer. J. Membr. Sci. 2018, 553, 209–217. [Google Scholar] [CrossRef]
- Li, N.; Yan, T.; Li, Z.; Thurn-Albrecht, T.; Binder, W.H. Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes. Energy Environ. Sci. 2012, 5, 7888–7892. [Google Scholar] [CrossRef]
- Akiyama, R.; Yokota, N.; Otsuji, K.; Miyatake, K. Structurally Well-Defined Anion Conductive Aromatic Copolymers: Effect of the Side-Chain Length. Macromolecules 2018, 51, 3394–3404. [Google Scholar] [CrossRef]
- Dang, H.-S.; Weiber, E.A.; Jannasch, P. Poly (phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high-performance anion exchange membranes. J. Mater. Chem. A 2015, 3, 5280–5284. [Google Scholar] [CrossRef]
- Lin, C.X.; Wang, X.Q.; Li, L.; Liu, F.H.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L.; Lin, C.X.; Wang, X.Q.; Li, L. Triblock copolymer anion exchange membranes bearing alkyl-tethered cycloaliphatic quaternary ammonium-head-groups for fuel cells. J. Power Sources 2017, 365, 282–292. [Google Scholar] [CrossRef]
- Clark, T.J.; Robertson, N.J.; Kostalik, H.A., IV; Lobkovsky, E.B.; Mutolo, P.F.; Abruna, H.D.; Coates, G.W. A Ring-Opening Meta thesis Polymerization Route to Alkaline Anion Exchange Membranes: Development of Hydroxide-Conducting Thin Films from an Ammonium-Functionalized Monomer. J. Am. Chem. Soc. 2009, 131, 12888–12889. [Google Scholar] [CrossRef] [PubMed]
- Merle, G.; Wessling, M.; Nijmeijer, K. Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci. 2011, 377, 1–35. [Google Scholar] [CrossRef]
- Smitha, B.; Sridhar, S.; Khan, A.A. Solid polymer electrolyte membranes for fuel cell applications-a review. J. Membr. Sci. 2005, 259, 10–26. [Google Scholar] [CrossRef]
- Pan, Z.F.; An, L.; Zhao, T.S.; Tang, Z.K. Advances and challenges in alkaline anion exchange membrane fuel cells. Prog. Energy Combust. Sci. 2018, 66, 141–175. [Google Scholar] [CrossRef]
- Gottesfeld, S.; Dekel, D.R.; Page, M.; Bae, C.; Yan, Y.; Zelenay, P.; Kim, Y.S. Anion exchange membrane fuel cells: Current status and remaining challenges. J. Power Sources 2018, 375, 170–184. [Google Scholar] [CrossRef]
- Hossain, M.M.; Hou, J.; Liang, W.; Ge, Q.; Xian, L.; Mondal, A.N.; Xu, T. Anion exchange membranes with clusters of alkyl ammonium group for mitigating water swelling but not ionic conductivity. J. Membr. Sci. 2017, 550, 101–109. [Google Scholar] [CrossRef]
- Lin, C.X.; Wang, X.Q.; Hu, E.N.; Yang, Q.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Quaternized triblock polymer anion exchange membranes with enhanced alkaline stability. J. Membr. Sci. 2017, 541, 358–366. [Google Scholar]
- Liu, L.; Li, Q.; Dai, J.; Wang, H.; Jin, B.; Bai, R. A facile strategy for the synthesis of guanidinium-functionalized polymer as alkaline anion exchange membrane with improved alkaline stability. J. Membr. Sci. 2014, 453, 52–60. [Google Scholar] [CrossRef]
- He, Y.; Pan, J.; Wu, L.; Ge, L.; Xu, T. Facile preparation of 1, 8-Diazabicyclo [5.4.0] undec-7-ene based high performance anion exchange membranes for diffusion dialysis applications. J. Membr. Sci. 2015, 491, 45–52. [Google Scholar] [CrossRef]
- Gao, X.; Lu, F.; Liu, Y.; Sun, N.; Zheng, L. The facile construction of an anion exchange membrane with 3D interconnected ionic nano-channels. Chem. Commun. 2017, 53, 767–770. [Google Scholar] [CrossRef]
- Zhu, L.; Pan, J.; Christensen, C.M.; Lin, B.; Hickner, M.A. Functionalization of poly (2, 6-dimethyl-1, 4-phenylene oxide) s with hindered fluorene side chains for anion exchange membranes. Macromolecules 2016, 49, 3300–3309. [Google Scholar] [CrossRef]
- Lai, A.N.; Wang, L.S.; Lin, C.X.; Zhuo, Y.Z.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Phenolphthalein-based poly (arylene ether sulfone nitrile) s multiblock copolymers as anion exchange membranes for alkaline fuel cells. ACS Appl. Mater. Interfaces 2015, 7, 8284–8292. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.X.; Wu, H.Y.; Li, L.; Wang, X.Q.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Anion Conductive Triblock Copolymer Membranes with Flexible Multication Side Chain. ACS Appl. Mater. Interfaces 2018, 10, 18327–18337. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Lee, S.; Woo, S.; Park, S.H.; Yim, S.D.; Shin, D.; Bae, B. Synthesis and characterization of anion exchange multi-block copolymer membranes with a fluorine moiety as alkaline membrane fuel cells. J. Power Sources 2017, 359, 568–576. [Google Scholar] [CrossRef]
- Li, X.; Nie, G.; Tao, J.; Wu, W.; Wang, L.; Liao, S. Assessing the influence of side-chain and main-chain aromatic benzyltrimethyl ammonium on anion exchange membranes. ACS Appl. Mater. Interfaces 2014, 6, 7585–7595. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.X.; Huang, X.L.; Guo, D.; Zhang, Q.G.; Zhu, A.M.; Ye, M.L.; Liu, Q.L. Side-chain-type anion exchange membranes bearing pendant quaternary ammonium groups via flexible spacers for fuel cells. J. Mater. Chem. A 2016, 4, 13938–13948. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhang, J.; Liang, X.; Shehzad, M.A.; Ge, X.; Zhu, Y.; Hu, M.; Yang, Z.; Wu, L.; Xu, T. Achieving high anion conductivity by densely grafting of ionic strings. J. Membr. Sci. 2018, 559, 35–41. [Google Scholar] [CrossRef]
- Hu, E.N.; Lin, C.X.; Liu, F.H.; Wang, X.Q.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Poly(arylene ether nitrile) anion exchange membranes with dense flexible ionic side chain for fuel cells. J. Membr. Sci. 2018, 550, 254–265. [Google Scholar] [CrossRef]
- He, Y.; Pan, J.; Wu, L.; Zhu, Y.; Ge, X.; Ran, J.; Yang, Z.; Xu, T. A novel methodology to synthesize highly conductive anion exchange membranes. Sci. Rep. 2015, 5, 13417. [Google Scholar] [CrossRef]
- Ge, Q.; Liu, Y.; Yang, Z.; Wu, B.; Hu, M.; Liu, X.; Hou, J.; Xu, T. Hyper-branched anion exchange membranes with high conductivity and chemical stability. Chem. Commun. 2016, 52, 10141. [Google Scholar] [CrossRef]
- Wu, L.; Pan, Q.; Varcoe, J.R.; Zhou, D.; Ran, J.; Yang, Z.; Xu, T. Thermal crosslinking of an alkaline anion exchange membrane bearing unsaturated side chains. J. Membr. Sci. 2015, 490, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Zhao, Y.; Yuan, Z.; Li, X.; Zhang, H.; Vankelecom, I.F. Highly stable anion exchange membranes with internal cross-linking networks. Adv. Funct. Mater. 2015, 25, 2583–2589. [Google Scholar] [CrossRef]
- Hao, J.; Gao, X.; Jiang, Y.; Zhang, H.; Luo, J.; Shao, Z.; Yi, B. Crosslinked high-performance anion exchange membranes based on poly (styrene-b-(ethylene-co-butylene)-b-styrene). J. Membr. Sci. 2018, 551, 66–75. [Google Scholar] [CrossRef]
- He, Y.; Liang, W.; Pan, J.; Yuan, Z.; Ge, X.; Yang, Z.; Jin, R.; Xu, T. A mechanically robust anion exchange membrane with high hydroxide conductivity. J. Membr. Sci. 2016, 504, 47–54. [Google Scholar] [CrossRef]
- Mohanty, A.D.; Chang, Y.R.; Yu, S.K.; Bae, C. Stable Elastomeric Anion Exchange Membranes Based on Quaternary Ammonium-Tethered Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers. Macromolecules 2015, 48, 7085–7095. [Google Scholar] [CrossRef]
- Zhuo, Y.Z.; Lai, A.L.; Zhang, Q.G.; Zhu, A.M.; Ye, M.L.; Liu, Q.L. Enhancement of hydroxide conductivity by grafting flexible pendant imidazolium groups into poly (arylene ether sulfone) as anion exchange membranes. J. Mater. Chem. A 2015, 3, 18105–18114. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wu, L.; Varcoe, J.; Li, C.R.; Ong, A.L.; Poyntonb, S.; Xu, T.W. Aromatic polyelectrolytes via polyacylation of pre-quaternized monomers for alkaline fuel cells. J. Mater. Chem. A 2013, 1, 2595–2601. [Google Scholar] [CrossRef]
- Yang, Z.J.; Zhou, J.H.; Wang, S.W.; Hou, J.Q.; Wu, L.; Xu, T.W. A strategy to construct alkali-stable anion. exchange membranes bearing ammonium groups via flexible spacers. J. Mater. Chem. A 2015, 3, 15015–15019. [Google Scholar] [CrossRef]
- Pan, J.; Zhu, L.; Han, J.J.; Hickner, M.A. Mechanically Tough and Chemically Stable Anion Exchange. Membranes from Rigid-Flexible Semi-Interpenetrating Networks. Chem. Mater. 2015, 27, 6689–6698. [Google Scholar] [CrossRef]
- Shen, K.Z.; Zhang, Z.P.; Zhang, H.B.; Pang, J.H.; Jiang, Z.H. Poly(arylene ether ketone) carrying hyperquaternized pendants: Preparation, stability and conductivity. J. Power Sources 2015, 287, 439–447. [Google Scholar] [CrossRef]
- Li, S.S.; Gan, R.J.; Li, L.; Li, L.D.; Zhang, F.X.; He, G.H. Highly branched side chain grafting for enhanced conductivity and robustness of anion exchange membranes. Ionics 2018, 24, 189–199. [Google Scholar] [CrossRef]
- Opsteen, J.A.; Van Hest, J.C.M. Modular synthesis of ABC type block copolymers by “click” chemistry. J. Polym. Sci. Part A Polym. Chem. 2010, 45, 2913–2924. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, P.; Wang, Y.; Zheng, C.; Liang, W.; Xu, T. In-situ crosslinking of anion exchange membrane bearing unsaturated moieties for electrodialysis. Sep. Purif. Technol. 2015, 156, 226–233. [Google Scholar] [CrossRef]
Membrane Sample | Structure | Titrated IEC (mmol g−1) | σOH– | Water Uptake (wt%) | LSR (%) | σOH–/IEC | σOH–/(100*Water uptake) | σOH–/(100*LSR) | Reference |
---|---|---|---|---|---|---|---|---|---|
C-HBM-1.78 a | Crosslinking, Dense functionalization | 1.78 | 44.5 | 40.1 | 1.4 | 25.0 | 1.1 | 33.0 | This work |
ImPES-1.0 a | Side chain type | 1.83 | 42.7 | 83.9 | 21.7 | 23.3 | 0.5 | 2.0 | [36] |
OBuTMA-AAEPs-1.2(OH−) b | 1.87 | 30.0 | 62.0 | 14.7 | 16.0 | 0.5 | 2.0 | [37] | |
gQAPPO a | 1.78 | 27.0 | 40.0 | 13.2 | 15.2 | 0.7 | 2.0 | [38] | |
CBQAPPO-4 b | Crosslinking | 2.37 | 43.0 | 110.0 | 15.0 | 18.1 | 0.4 | 2.9 | [33] |
J10-PPO c | 2.08 | 24.0 | 228.0 | 32.0 | 11.5 | 0.1 | 0.8 | [4] | |
SIPN-95-2 a | 1.75 | 35.5 | 213.1 | 37.5 | 20.3 | 0.2 | 1.0 | [39] | |
ABA-QA-3 a | Block | 1.81 | 44.0 | 86.3 | 20.0 | 24.3 | 0.5 | 2.2 | [10] |
SEBS-CH2-QA-1.5 a | 1.23 | 30.2 | 47.5 | 29.6 | 24.6 | 0.6 | 1.0 | [17] | |
PAEK-QTPM-30 c | 1.58 | 13.0 | 88.6 | 27.5 | 8.2 | 0.2 | 0.5 | [40] | |
12-CQP-2 b | Dense functionalization | 1.40 | 25.4 | 10.7 | 4.0 | 18.1 | 2.4 | 6.4 | [16] |
ImOH-HBPSf-40 a | 2.16 | 31.0 | 143.9 | 36.3 | 14.4 | 0.2 | 0.9 | [41] | |
QPAEN-0.4 a | 1.78 | 47.3 | 34.2 | 11.2 | 26.6 | 1.4 | 4.2 | [28] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Q.; Zhu, X.; Yang, Z. Highly Conductive and Water-Swelling Resistant Anion Exchange Membrane for Alkaline Fuel Cells. Int. J. Mol. Sci. 2019, 20, 3470. https://doi.org/10.3390/ijms20143470
Ge Q, Zhu X, Yang Z. Highly Conductive and Water-Swelling Resistant Anion Exchange Membrane for Alkaline Fuel Cells. International Journal of Molecular Sciences. 2019; 20(14):3470. https://doi.org/10.3390/ijms20143470
Chicago/Turabian StyleGe, Qianqian, Xiang Zhu, and Zhengjin Yang. 2019. "Highly Conductive and Water-Swelling Resistant Anion Exchange Membrane for Alkaline Fuel Cells" International Journal of Molecular Sciences 20, no. 14: 3470. https://doi.org/10.3390/ijms20143470
APA StyleGe, Q., Zhu, X., & Yang, Z. (2019). Highly Conductive and Water-Swelling Resistant Anion Exchange Membrane for Alkaline Fuel Cells. International Journal of Molecular Sciences, 20(14), 3470. https://doi.org/10.3390/ijms20143470