Feeding Stimulates Sphingosine-1-Phosphate Mobilization in Mouse Hypothalamus
Abstract
:1. Introduction
2. Results
2.1. Feeding Increases SA1P and S1P Levels in Mouse Hypothalamus
2.2. Effects of Feeding On Hypothalamic Sphingolipid Metabolism
2.3. Effects of Feeding Status on Expression of Sphingolipid-Metabolizing Enzymes
2.4. Feeding Regulates S1pr1 Transcription in Hypothalamus
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Diet
4.3. Chemicals
4.4. Experimental Design: Effects of Food Deprivation and Refeeding
4.5. Tissue Collection
4.6. Lipid Extraction
4.7. LC/MS-MS Analyses
4.8. mRNA Isolation, cDNA Synthesis, and Quantitative Real-time PCR
4.9. Statistical Analyses
Author Contributions
Funding
Conflicts of Interest
Abbreviations
S1P | sphingosine-1-phosphate |
SA1P | sphinganine-1-phosphate |
S1PR1 | sphingosine-1-phosphate receptor 1 |
SO | sphingosine |
SA | sphinganine |
Sptlc2 | serine palmitoyltransferase long chain base subunit 2 |
Lass1 | longevity assurance gene 1 |
Sphk1 | sphingosine kinase 1 |
Sphk2 | sphingosine kinase 2 |
AgRP | agouti-related protein |
α-MSH | α-melanocyte-stimulating hormone |
LC/MS | liquid chromatography/mass spectrometry |
FF | free feeding |
FD | food deprivation |
RF 1h | 1 h refeeding |
RF 6h | 6 h refeeding |
TFA | trifluoroacetic acid |
MRM | multiple reaction monitoring |
SEM | standard error of the mean |
Gapdh | glyceraldehyde 3-phosphate dehydrogenase |
Hprt | hypoxanthine phosphoribosyltransferase |
References
- Morton, G.J.; Cummings, D.E.; Baskin, D.G.; Barsh, G.S.; Schwartz, M.W. Central nervous system control of food intake and body weight. Nature 2006, 443, 289. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H.; Lee, D.K.; Jo, Y.H. Cholinergic neurons in the dorsomedial hypothalamus regulate food intake. Mol. Metab. 2017, 6, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Horvath, T.L. Molecular and cellular regulation of hypothalamic melanocortin neurons controlling food intake and energy metabolism. Mol. Psychiatry 2014, 19, 752. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H.; Lee, D.K.; Liu, S.M.; Chua, S.C.; Schwartz, G.J.; Jo, Y.H. Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake. PLoS Biol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Crespo, C.S.; Cachero, A.P.; Jiménez, L.P.; Barrios, V.; Ferreiro, E.A. Peptides and food intake. Front. Endocrinol. (Lausanne). 2014, 16, e2004399. [Google Scholar]
- Krashes, M.J.; Koda, S.; Ye, C.P.; Rogan, S.C.; Adams, A.C.; Cusher, D.S.; Maratos-Flier, E.; Roth, B.L.; Lowell, B.B. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 2011, 121, 1424–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’agostino, G.; Diano, S. Alpha-melanocyte stimulating hormone: Production and degradation. J. Mol. Med. 2010, 88, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Hannun, Y.A.; Obeid, L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 175. [Google Scholar] [CrossRef]
- Silva, V.R.R.; Micheletti, T.O.; Pimentel, G.D.; Katashima, C.K.; Lenhare, L.; Morari, J.; Mendes, M.C.S.; Razolli, D.S.; Rocha, G.Z.; de Souza, C.T.; et al. Hypothalamic S1P/S1PR1 axis controls energy homeostasis. Nat. Commun. 2014, 5, 4859. [Google Scholar] [CrossRef] [Green Version]
- Hanada, K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2003, 1632, 16–30. [Google Scholar] [CrossRef]
- Mullen, T.D.; Hannun, Y.A.; Obeid, L.M. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem. J. 2012, 441, 789–802. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Sugiura, M.; Nava, V.E.; Edsall, L.C.; Kono, K.; Poulton, S.; Milstien, S.; Kohama, T.; Spiegel, S. Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J. Biol. Chem. 2000, 275, 19513–19520. [Google Scholar] [CrossRef]
- Bryan, L.; Kordula, T.; Spiegel, S.; Milstien, S. Regulation and functions of sphingosine kinases in the brain. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2008, 1781, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Park, S.W.; Kim, M.; Chen, S.W.C.; Brown, K.M.; D’Agati, V.D.; Lee, H.T. Sphinganine-1-phosphate protects kidney and liver after hepatic ischemia and reperfusion in mice through S1P 1 receptor activation. Lab. Investig. 2010, 90, 1209. [Google Scholar] [CrossRef]
- Delgado, A.; Martínez-Cartro, M. Therapeutic Potential of the Modulation of Sphingosine-1-Phosphate Receptors. Curr. Med. Chem. 2016, 23, 242–264. [Google Scholar] [CrossRef]
- Gillard, B.K.; Clement, R.G.; Marcus, D.M. Variations among cell lines in the synthesis of sphingolipids in de novo and recycling pathways. Glycobiology 1998, 8, 885–890. [Google Scholar] [CrossRef]
- Marchesini, N.; Hannun, Y.A. Acid and neutral sphingomyelinases: Roles and mechanisms of regulation. Biochem. Cell Biol. 2004, 82, 27–44. [Google Scholar] [CrossRef]
- Tettamanti, G. Ganglioside/glycosphingolipid turnover: New concepts. Glycoconj. J. 2003, 20, 301–317. [Google Scholar] [CrossRef]
- Picard, A.; Moullé, V.S.; Le Foll, C.; Cansell, C.; Véret, J.; Coant, N.; Le Stunff, H.; Migrenne, S.; Luquet, S.; Cruciani-Guglielmacci, C.; et al. Physiological and pathophysiological implications of lipid sensing in the brain. Diabetes Obes. Metab. 2014, 16, 49–55. [Google Scholar] [CrossRef]
- Le Stunff, H.; Coant, N.; Migrenne, S.; Magnan, C. Targeting lipid sensing in the central nervous system: New therapy against the development of obesity and type 2 diabetes. Expert Opin. Ther. Targets 2013, 17, 545–555. [Google Scholar] [CrossRef]
- Cruciani-Guglielmacci, C.; López, M.; Campana, M.; le Stunff, H. Brain ceramide metabolism in the control of energy balance. Front. Physiol. 2017, 8, 787. [Google Scholar] [CrossRef]
- Campana, M.; Bellini, L.; Rouch, C.; Rachdi, L.; Coant, N.; Butin, N.; Bandet, C.L.; Philippe, E.; Meneyrol, K.; Kassis, N.; et al. Inhibition of central de novo ceramide synthesis restores insulin signaling in hypothalamus and enhances β-cell function of obese Zucker rats. Mol. Metab. 2018, 8, 23–36. [Google Scholar] [CrossRef]
- Contreras, C.; González-García, I.; Martínez-Sánchez, N.; Seoane-Collazo, P.; Jacas, J.; Morgan, D.A.; Serra, D.; Gallego, R.; Gonzalez, F.; Casals, N.; et al. Central ceramide-induced hypothalamic lipotoxicity and ER stress regulate energy balance. Cell Rep. 2014, 9, 366–377. [Google Scholar] [CrossRef]
- Borg, M.L.; Omran, S.F.; Weir, J.; Meikle, P.J.; Watt, M.J. Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice. J. Physiol. 2012, 590, 4377–4389. [Google Scholar] [CrossRef] [Green Version]
- Car, H.; Zendzian-Piotrowska, M.; Prokopiuk, S.; Fiedorowicz, A.; Sadowska, A.; Kurek, K.; Sawicka, D. Ceramide profiles in the brain of rats with diabetes induced by streptozotocin. FEBS J. 2012, 279, 1943–1952. [Google Scholar] [CrossRef]
- Basit, A.; Piomelli, D.; Armirotti, A. Rapid evaluation of 25 key sphingolipids and phosphosphingolipids in human plasma by LC-MS/MS. Anal. Bioanal. Chem. 2015, 407, 5189–5198. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
FF | FD | RF 1h | RF 6h | |
---|---|---|---|---|
(pmol/mg tissue) | (pmol/mg tissue) | (pmol/mg tissue) | (pmol/mg tissue) | |
Ceramide (d18:1/20:0) | 4.20 ± 0.37 | 4.37 ± 0.46 | 4.01 ± 0.27 | 3.98 ± 0.36 |
Ceramide (d18:1/22:0) | 2.65 ± 0.16 | 2.74 ± 0.17 | 2.51 ± 0.12 | 2.51 ± 0.14 |
Ceramide (d18:1/24:0) | 1.24 ± 0.04 | 1.23 ± 0.01 | 1.13 ± 0.04 | 1.25 ± 0.06 |
Dihydroceramide (d18:0/16:0) | 0.13 ± 0.012 | 0.12 ± 0.01 | 0.11 ± 0.01 | 0.12 ± 0.01 |
Dihydroceramide (d18:1/24:0) | 0.19 ± 0.01 | 0.18 ± 0.01 | 0.17 ± 0.01 | 0.19 ± 0.03 |
Dihydroceramide (d18:0/24:1) | 0.31 ± 0.02 | 0.27 ± 0.01 | 0.27 ± 0.03 | 0.26 ± 0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vozella, V.; Realini, N.; Misto, A.; Piomelli, D. Feeding Stimulates Sphingosine-1-Phosphate Mobilization in Mouse Hypothalamus. Int. J. Mol. Sci. 2019, 20, 4008. https://doi.org/10.3390/ijms20164008
Vozella V, Realini N, Misto A, Piomelli D. Feeding Stimulates Sphingosine-1-Phosphate Mobilization in Mouse Hypothalamus. International Journal of Molecular Sciences. 2019; 20(16):4008. https://doi.org/10.3390/ijms20164008
Chicago/Turabian StyleVozella, Valentina, Natalia Realini, Alessandra Misto, and Daniele Piomelli. 2019. "Feeding Stimulates Sphingosine-1-Phosphate Mobilization in Mouse Hypothalamus" International Journal of Molecular Sciences 20, no. 16: 4008. https://doi.org/10.3390/ijms20164008
APA StyleVozella, V., Realini, N., Misto, A., & Piomelli, D. (2019). Feeding Stimulates Sphingosine-1-Phosphate Mobilization in Mouse Hypothalamus. International Journal of Molecular Sciences, 20(16), 4008. https://doi.org/10.3390/ijms20164008