Chondroitin-Sulfate-A-Coated Magnetite Nanoparticles: Synthesis, Characterization and Testing to Predict Their Colloidal Behavior in Biological Milieu
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorption of CSA on MNP
2.2. Size and Magnetic Property of Magnetic Core in CSA@MNP
2.3. Binding of CSA on MNPs
2.4. The Effect of CSA Adsorption on the Charge State and Aggregation of MNPs
2.5. Salt Induced Aggregation of CSA@MNP at pH ~6.3
2.6. Chemical Stability of MNP Coated with CSA
2.7. Testing Toxicity of CSA@MNP
3. Materials and Methods
3.1. Materials
3.2. Adsorption Experiment
3.3. Transmission Electron Microscopy (TEM)
3.4. Magnetic Measurement (VSM)
3.5. Infrared Spectroscopy (FTIR-ATR)
3.6. X-ray Photoelectron Spectroscopy (XPS)
3.7. Dynamic Light Scattering (DLS)
3.8. Electrophoresis Experiments
3.9. Coagulation Kinetics Experiments
3.10. Iron Dissolution Experiments
3.11. Anti-Proliferative Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MNP | magnetite nanoparticle |
MF | magnetic fluid |
CSA | chondroitin-sulfate-A, chondroitin-4-sulfate |
CSC | chondroitin-6-sulfate |
CSA@MNP | CSA coated MNP |
CS | Chondroitin-sulfate |
CPCl | cetylpyridinium chloride |
TEM | transmission electron microscopy |
VSM | vibrating sample magnetometer |
FTIR-ATR | Fourier transform infrared spectroscopy - attenuated total reflectance |
XPS | X-ray photoelectron spectroscopy |
DLS | dynamic light scattering |
ICP | inductively coupled plasma |
ICP-MS | inductively coupled plasma mass spectrometry |
MRI | magnetic resonance imaging |
TG | thermogravimetry |
ROS | reactive oxygen species |
CCC | critical coagulation concentration |
MTT | a colorimetric assay for assessing cell metabolic activity |
References
- Revia, R.A.; Zhang, M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances. Mater. Today 2016, 19, 157–168. [Google Scholar] [CrossRef]
- Chatterjee, K.; Sarkar, S.; Rao, K.J.; Paria, S. Core/shell nanoparticles in biomedical applications. Adv. Colloid Interfaces Sci. 2014, 209, 8–39. [Google Scholar] [CrossRef]
- Ladj, R.; Bitar, A.; Eissa, M.M.; Fessi, H.; Mugnier, Y.; Le Dantec, R.; Elaissari, A. Polymer encapsulation of inorganic nanoparticles for biomedical applications. Int. J. Pharm. 2013, 458, 230–241. [Google Scholar] [PubMed]
- Kumar, C.S.S.R.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 789–808. [Google Scholar] [PubMed] [Green Version]
- Saei, A.A.; Yazdani, M.; Lohse, S.E.; Bakhtiary, Z.; Serpooshan, V.; Ghavami, M.; Asadian, M.; Mashaghi, S.; Dreaden, E.C.; Mashaghi, A.; et al. Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity. Chem. Mater. 2017, 29, 6578–6595. [Google Scholar] [CrossRef]
- Amstad, E.; Textora, M.; Reimhult, E. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale 2011, 3, 2819–2843. [Google Scholar] [PubMed] [Green Version]
- Figuerola, A.; Di Corato, R.; Manna, L.; Pellegrino, T. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharm. Res. 2010, 62, 126–143. [Google Scholar]
- Borbath, T.; Bica, D.; Potencz, I.; Vekas, L.; Boros, T. Magnetic nanofluids and magnetic composite fluids in rotating seal systems. Iop, C. Ser. Earth Env. 2010, 12, 012105. [Google Scholar] [CrossRef]
- Jain, T.K.; Richey, J.; Strand, M.; Leslie-Pelecky, D.L.; Flask, C.A.; Labhasetwar, V. Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging. Biomaterials 2008, 29, 4012–4021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munnier, E.; Cohen-Jonathan, S.; Linassier, C.; Douziech-Eyrolles, L.; Marchais, H.; Soucé, M.; Hervé, K.; Dubois, P.; Chourpa, I. Novel method of doxorubicin–SPION reversible association for magnetic drug targeting. Int. J. Pharm. 2008, 363, 170–176. [Google Scholar]
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef] [PubMed]
- Odenbach, S. Ferrofluids-magnetically controlled suspensions. Colloid. Surf. A 2003, 217, 171–178. [Google Scholar] [CrossRef]
- Zahn, M. Magnetic fluid and nanoparticle applications to nanotechnology. J. Nanopart. Res. 2001, 3, 73–78. [Google Scholar] [CrossRef]
- Ochonski, W. Dynamic sealing with magnetic fluids. Wear 1989, 130, 261–268. [Google Scholar] [CrossRef]
- Soukup, D.; Moise, S.; Céspedes, E.; Dobson, J.; Telling, N.D. In situ measurement of magnetization relaxation of internalized nanoparticles in live cells. ACS Nano 2015, 9, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Corato, R.D.; Béalle, G.; Kolosnjaj-Tabi, J.; Espinosa, A.; Clément, O.; Silva, A.K.A.; Ménager, C.; Wilhelm, C. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano 2015, 9, 2904–2916. [Google Scholar] [CrossRef] [PubMed]
- Lartigue, L.; Hugounenq, P.; Alloyeau, D.; Clarke, S.P.; Lévy, M.; Bacri, J.C.; Bazzi, R.; Brougham, D.F.; Wilhelm, C.; Gazeau, F. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 2012, 6, 10935–10949. [Google Scholar] [CrossRef]
- Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R167–R181. [Google Scholar] [CrossRef] [Green Version]
- Tóth, I.Y.; Illés, E.; Bauer, R.A.; Nesztor, D.; Szekeres, M.; Zupkó, I.; Tombácz, E. Designed polyelectrolyte shell on magnetite nanocore for dilution-resistant biocompatible magnetic fluids. Langmuir 2012, 28, 16638–16646. [Google Scholar] [CrossRef]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander-Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef]
- Tombácz, E.; Tóth, I.Y.; Nesztor, D.; Illés, E.; Hajdú, A.; Szekeres, M.; Vékás, L. Adsorption of organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance. Colloid. Surf. A 2013, 435, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Szekeres, M.; Tóth, I.Y.; Illés, E.; Hajdú, A.; Zupkó, I.; Farkas, K.; Oszlánczi, G.; Tiszlavicz, L.; Tombácz, E. Chemical and colloidal stability of carboxylated core-shell magnetite nanoparticles designed for biomedical applications. Int. J. Mol. Sci. 2013, 14, 14550–14574. [Google Scholar] [CrossRef] [PubMed]
- Bica, D.; Vékás, L.; Avdeev, M.V.; Marinica, O.; Socoliuc, V.; Balasoiu, M.; Garamus, V.M. Sterically stabilized water based magnetic fluids: Synthesis, structure and properties. J. Magn. Magn. Mat. 2007, 311, 17–21. [Google Scholar] [CrossRef]
- Avdeev, M.V.; Feoktystov, A.V.; Kopcansky, P.; Lancz, G.; Garamus, V.M.; Willumeit, R.; Timko, M.; Koneracka, M.; Zavisova, V.; Tomasovicova, N.; et al. Structure of water-based ferrofluids with sodium oleate and polyethylene glycol stabilization by small-angle neutron scattering: Contrast-variation experiments. J. Appl. Cryst. 2010, 43, 959–969. [Google Scholar] [CrossRef]
- Mahdavi, H.; Ahmad, M.B.; Haron, M.J.; Namvar, F.; Nadi, B.; Rahman, M.Z.A.; Amin, J. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 2013, 18, 7533–7548. [Google Scholar] [CrossRef] [PubMed]
- Masoudi, A.; Hosseini, H.R.M.; Shokrgozar, M.A.; Ahmadi, R.; Oghabian, M.A. The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. Int. J. Pharm. 2012, 433, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Amici, J.; Celasco, E.; Allia, P.; Tiberto, P.; Sangermano, M. Poly(ethylene glycol)-coated magnetite nanoparticles: Preparation and characterization. Macromol. Chem. Physic. 2001, 212, 411–416. [Google Scholar] [CrossRef]
- Hunter, R.J. Foundations of Colloid Science; Oxford University Press: New York, NY, USA, 2001; Volume I, pp. 582–637. [Google Scholar]
- Ramos-Tejada, M.M.; Ontiveros, A.; Viota, J.L.; Durán, J.D.G. Interfacial and rheological properties of humic acid/hematite suspensions. J. Colloid Interf. Sci. 2003, 268, 85–95. [Google Scholar] [CrossRef]
- Aoyagi, M.; Sato, H.; Yagi, K.; Fukuda, N.; Nishimoto, S. Redox reactions of nitrite ions on the surface of colloidal magnetite particles coated with chondroitin sulfate. Colloid Polym. Sci. 2001, 279, 46–52. [Google Scholar] [CrossRef]
- Lin, C.L.; Lee, C.F.; Chiu, W.Y. Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid. J. Colloid Interf. Sci. 2005, 291, 411–420. [Google Scholar] [CrossRef]
- Sipos, P. Manufacturing of size controlled magnetite nanoparticles potentially suitable for the preparation of aqueous magnetic fluids. Rom. Rep. Phys. 2006, 58, 269–272. [Google Scholar]
- Nanocrystalline magnetic iron oxide particles-method for preparation and use in medical diagnostics and therapy. US 5427767 A, 1995. Available online: http://www.google.com/patents/US5427767 (accessed on 16 June 2019).
- Lemarchanda, C.; Grefa, R.; Couvreu, P. Polysaccharide-decorated nanoparticles. Eur. J. Pharm. Biopharm. 2004, 58, 327–341. [Google Scholar] [CrossRef]
- Jun, Y.; Lee, J.H.; Cheon, J. Nanoparticle contrast agents for molecular magnetic resonance imaging. In Nanobiotechnology II: More Concepts and Applications; Mirkin, C.A., Niemeye, C.M., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp. 321–346. [Google Scholar]
- Bae, K.H.; Park, M.; Do, M.J.; Lee, N.; Ryu, J.H.; Kim, G.W.; Kim, C.; Park, T.G.; Hyeon, T. Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 2012, 6, 5266–5273. [Google Scholar] [CrossRef] [PubMed]
- Stephen, Z.R.; Kievit, F.M.; Veiseh, O.; Chiarelli, P.A.; Fang, C.; Wang, K.; Hatzinger, S.J.; Ellenbogen, R.G.; Silber, J.R.; Zhang, M. Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O6-benzylguanine to brain tumors. ACS Nano 2014, 8, 10383–10395. [Google Scholar] [CrossRef] [PubMed]
- Mallick, N.; Anwar, M.; Asfer, M.; Mehdi, S.H.; Rizvi, M.M.A.; Panda, A.K.; Talegaonkar, S.; Ahmad, F.J. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride. Carbohydr. Polym. 2016, 151, 546–556. [Google Scholar] [CrossRef]
- Lauder, R.M. Chondroitin sulphate: A complex molecule with potential impacts on a wide range of biological systems. Complement. Med. 2009, 17, 56–62. [Google Scholar] [CrossRef]
- Bathe, M.; Rutledge, G.C.; Grodzinsky, A.J.; Tidor, B. A coarse-grained molecular model for glycosaminoglycans: Application to chondroitin, chondroitin sulfate, and hyaluronic acid. Biophys. J. 2005, 88, 3870–3887. [Google Scholar] [CrossRef]
- Cleland, R.L. Electrophoretic mobility of wormlike chains. I. experiment: Hyaluronate and chondroitin 4-sulfate. Macromolecules 1991, 24, 4386–4390. [Google Scholar] [CrossRef]
- Wang, H.; Loganathan, D.; Linhardt, R.J. Determination of the pKa of glucuronic acid and the carboxy groups of heparin by 13C-nuclear-magnetic-resonance spectroscopy. Biochem. J. 1991, 278, 689–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asimakopoulou, A.P.; Theocharis, A.D.; Tzanakakis, G.N.; Karamanos, N.K. The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. Vivo (AthensGreece) 2008, 22, 385–389. [Google Scholar]
- Kir’yanov, N.A.; Vasyukov, S.V.; Sukhanov, Y.S. Preparations based on salts of chondroitin sulfate for treating iron-deficiency anemia. Pharm. Chem. J. 1992, 26, 480–483. [Google Scholar] [CrossRef]
- Dainippon Pharmaceutical Co., Ltd. Overcoming challenges in a changing world. Annual report 2001. Available online: http://www.ds-pharma.com/ir/library/annual/pdf/2001/annual_report2001_mp.pdf (accessed on 16 June 2019).
- Aqueous preparation containing ashark-derived chondroitin iron sulfate colloid, EP 1 433 482 B1. Available online: https://data.epo.org/publication-server/rest/v1.0/publication-dates/20061220/patents/EP1433482NWB1/document.pdf (accessed on 16 June 2019).
- Martínez, A.M.; Benito, M.; Pérez, E.; Teijón, J.M.; Blanco, M.D. The role of anionic polysaccharides in the preparation of nanomedicines with anticancer applications. Curr. Pharm. Des. 2016, 22, 3364–3379. [Google Scholar] [CrossRef]
- Rivera, L.M.R.; Paterno, L.G.; Chaves, N.L.; Gregurec, D.; Báo, S.N.; Moya, S.E.; Jain, M.; Azevedo, R.B.; Morais, P.C.; Soler, M.A.G. Biocompatible superparamagnetic carriers of chondroitin sulfate. Mater. Res. Express 2019, 6, 066106. [Google Scholar] [CrossRef] [Green Version]
- Tóth, I.Y.; Illés, E.; Szekeres, M.; Tombácz, E. Preparation and characterization of chondroitin-sulfate-A coated magnetite nanoparticles for biomedical applications. J. Magn. Magn. Mater. 2015, 380, 168–174. [Google Scholar] [CrossRef]
- Nel, A.E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Tombacz, E.; Farkas, K.; Foldesi, I.; Szekeres, M.; Illes, E.; Toth, I.Y.; Nesztor, D.; Szabo, T. Polyelectrolyte coating on superparamagnetic iron oxide nanoparticles as interface between magnetic core and biorelevant media. Interface Focus 2016, 6, 20160068. [Google Scholar] [CrossRef]
- Illés, E.; Tombácz, E. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J. Colloid Interf. Sci. 2006, 295, 115–123. [Google Scholar] [CrossRef]
- Almond, A.; Sheehaman, J.K. Glycosaminoglycan conformation: Do aqueous molecular dynamics simulations agree with X-ray fiber diffraction? Glycobiology 2000, 10, 329–338. [Google Scholar] [CrossRef]
- Sterk, H.; Braun, M.; Schmut, O.; Feichtinger, H. Investigation of the hyaluronic acid-copper complex by N.M.R. spectroscopy. Carbohyd. Res. 1985, 145, 1–11. [Google Scholar] [CrossRef]
- Nagy, L.; Burger, K.; Kürti, J.; Korecz, L.; Kiricsi, I. Iron(III) complexes of sugar-type ligands. Inorg. Chim. Acta 1986, 124, 55–59. [Google Scholar] [CrossRef]
- Liu, Q.; Laskowski, J.S. The interactions between dextrin and metal hydroxides in aqueous solutions. J. Colloid Interface Sci. 1989, 130, 101–111. [Google Scholar] [CrossRef]
- Sipos, P.; Pierre, T.G.; Tombácz, E.; Webb, J. Rod-like iron(III) oxyhydroxide particles in iron(III)-polysaccharide solutions. J. Inorg. Biochem. 1995, 58, 129–138. [Google Scholar] [CrossRef]
- Garnjanagoonchorn, W.; Wongekalak, L.; Engkagul, A. Determination of chondroitin sulfate from different sources of cartilage. Chem. Eng. Process. 2007, 46, 465–471. [Google Scholar] [CrossRef]
- Lima, M.A.; Rudd, T.R.; de Farias, E.H.C.; Ebner, L.F.; Gesteira, T.F.; de Souza, L.M.; Mendes, A.; Córdula, C.R.; Martins, J.R.M.; Hoppensteadt, D.; et al. A new approach for heparin standardization: Combination of scanning UV spectroscopy, nuclear magnetic resonance and principal component analysis. PLoS ONE 2011, 6, e15970. [Google Scholar] [CrossRef] [PubMed]
- Roach, J.D.; Premjee, M.M.; Buddhavarapu, S.; Hassib, A. A study of the partitioning of haloacetates into cetylpyridinium chloride micelles using semiequilibrium dialysis and ultrafiltration. J. Colloid Interf. Sci. 2013, 394, 293–300. [Google Scholar] [CrossRef]
- Song, H.Y.; Oh, S.W.; Moon, S.D.; Kang, Y.S. Spectroscopic study on the precipitation of sodium alkyl sulfate with cetylpyridinium chloride. J. Colloid Interf. Sci. 2007, 314, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Tóth, I.Y.; Szekeres, M.; Turcu, R.; Sáringer, S.; Illés, E.; Nesztor, D.; Tombácz, E. Mechanism of in-situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core-shell magnetite nanoparticles. Langmuir 2014, 30, 15451–15461. [Google Scholar] [CrossRef]
- Sanchez, R.D.; Rivas, J.; Vaqueiro, P.; López-Quintela, M.A.; Caeiro, D. Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol-gel method. J. Magn. Magn. Mater. 2002, 247, 92–98. [Google Scholar] [CrossRef]
- Merce, A.L.R.; Carrera, L.C.M.; Romanholi, L.K.S.; Recio, M.A.L. Aqueous and solid complexes of iron(III) with hyaluronic acid: Potentiometric titrations and infrared spectroscopy studies. J. Inorg. Biochem. 2002, 89, 212–218. [Google Scholar] [CrossRef]
- Krishnamurti, G.S.R.; Huang, P.M. Influence of citrate on the kinetics of Fe(II) oxidation and the formation of iron oxyhydroxides. Clay. Clay Min. 1991, 39, 28–34. [Google Scholar] [CrossRef]
- Li, Y.-S.; Church, J.S.; Woodhead, A.L. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J. Magn. Magn. Mater. 2012, 324, 1543–1550. [Google Scholar] [CrossRef]
- Tian, H.; Chen, Y.; Ding, C.; Li, G. Interaction study in homogeneous collagen/chondroitin sulfate blends by two-dimensional infrared spectroscopy. Carbohyd. Polym. 2012, 89, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; He, D.; Liu, F.; Liu, R. Preparation and characterization of hydroxyapatite/chondroitin sulfate composites by biomimetic synthesis. Mater. Chem. Phys. 2008, 112, 838–843. [Google Scholar] [CrossRef]
- Uchisawa, H.; Okuzaki, B.; Ichita, J.; Matsue, H. Binding between calcium ions and chondroitin sulfate chains of salmon nasal cartilage glycosaminoglycan. Int. Congr. Ser. 2001, 1223, 205–220. [Google Scholar] [CrossRef]
- Wang, K.; Dan, N.; Xiao, S.; Ye, Y.; Dan, W. Preparation and characterization of collagen–chitosan–chondroitin sulfate composite membranes. J. Membr. Biol. 2012, 245, 707–716. [Google Scholar]
- Yuan, S.; Xiong, G.; Roguin, A.; Teoh, S.H.; Choong, C. Amelioration of blood compatibility and endothelialization of polycaprolactone substrates by surface-initiated atom transfer radical polymerization. Chapter 7. In Advances in Biomaterials Science and Biomedical Applications; Pignatello, R., Ed.; IntechOpen: London, UK, 2013; pp. 177–205. [Google Scholar]
- Elimelech, M.; Gregory, J.; Jia, X.; Williams, R.A. Particle Deposition and Aggregation: Measurement, Modelling and Simulation; Butterworths: Oxford, UK, 1995; pp. 263–289. [Google Scholar]
- Shaw, D.J. Introduction to Colloid and Surface Chemistry, 4th ed.; Butterworth: Burlington, NJ, USA, 1992; pp. 210–241. [Google Scholar]
- Valko, M.; Morris, H.; Cronin, M.T.D. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.M. Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy. IEEE T. Magn. 2010, 46, 2523–2558. [Google Scholar] [CrossRef] [PubMed]
- Soenen, S.J.H.; Himmelreich, U.; Nuytten, N.; Pisanic II, T.R.; Ferrari, A.; de Cuyper, M. Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small 2010, 6, 2136–2145. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2003; pp. 172–177. [Google Scholar]
- Enzymatic assay of chondroitinase ABC (EC 4.2.2.4.). Available online: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Enzyme_Assay/c2905enz.pdf (accessed on 16 June 2019).
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
MNP | CSA | CSA@MNP | Δν * | |
---|---|---|---|---|
Fe–O (≡Fe–OH) | 548 | 559 | 11 | |
C = O (–COOH) | - | - | - | |
C–O (sym., –COO−) | 1375 | 1379 | 4 | |
C–O (asym., –COO−) | 1612 | 1630 | 18 | |
C–O–S (–O–SO3−) | 856 | 856 | 0 | |
S = O (–O–SO3−) | 1260 | 1260 | 0 |
Peak Name | Position (eV) | fwhm (eV) | Atomic Conc (%) |
---|---|---|---|
Fe2+ 2p3/2 | 710.46 | 3.410 | 5.629 |
Fe3+ 2p3/2 | 712.98 | 6.000 | 7.950 |
Fe2+ 2p1/2 | 723.66 | 3.882 | 5.450 |
Fe3+ 2p1/2 | 725.78 | 6.000 | 7.697 |
Fe3+ satellite 2p3/2 | 719.92 | 4.075 | 1.184 |
Fe2+ satellite 2p3/2 | 718.19 | 4.374 | 1.038 |
Fe3+ satellite 2p1/2 | 733.06 | 4.627 | 1.507 |
Fe2+ satellite 2p1/2 | 729.03 | 4.649 | 0.690 |
C 1s; C‒C, C‒H | 284.61 | 2.147 | 6.221 |
C 1s; C‒O, C‒N | 285.90 | 3.121 | 9.037 |
C 1s; N‒C = O, C‒O(‒SO3‒) | 288.29 | 2.218 | 2.935 |
C 1s; O‒C = O | 289.48 | 1.929 | 0.794 |
O 1s; Fe‒O, In‒O | 529.49 | 1.746 | 11.066 |
O 1s; C‒O | 530.51 | 2.802 | 20.488 |
O 1s; O‒C = O, N‒C = O, ‒SO3‒ | 532.43 | 3.838 | 13.709 |
O 1s; H2O | 536.11 | 2.356 | 2.342 |
N 1s; N‒H | 399.67 | 2.814 | 1.717 |
S 2p3/2; ‒SO3‒ | 169.95 | 2.230 | 0.271 |
S 2p1/2; ‒SO3‒ | 168.77 | 1.909 | 0.277 |
CSA-Loading (mmol/g) | pH of IEP | pH-Range of Aggregation |
---|---|---|
0.00 | ~8 | ~5 ‒ ~10 |
0.05 | ~6 | ~3 ‒ ~10 |
0.10 | ~4 | < ~5 |
0.20 | < 3 | < ~3.5 |
0.40 | < 3 | < ~3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóth, I.Y.; Illés, E.; Szekeres, M.; Zupkó, I.; Turcu, R.; Tombácz, E. Chondroitin-Sulfate-A-Coated Magnetite Nanoparticles: Synthesis, Characterization and Testing to Predict Their Colloidal Behavior in Biological Milieu. Int. J. Mol. Sci. 2019, 20, 4096. https://doi.org/10.3390/ijms20174096
Tóth IY, Illés E, Szekeres M, Zupkó I, Turcu R, Tombácz E. Chondroitin-Sulfate-A-Coated Magnetite Nanoparticles: Synthesis, Characterization and Testing to Predict Their Colloidal Behavior in Biological Milieu. International Journal of Molecular Sciences. 2019; 20(17):4096. https://doi.org/10.3390/ijms20174096
Chicago/Turabian StyleTóth, Ildikó Y., Erzsébet Illés, Márta Szekeres, István Zupkó, Rodica Turcu, and Etelka Tombácz. 2019. "Chondroitin-Sulfate-A-Coated Magnetite Nanoparticles: Synthesis, Characterization and Testing to Predict Their Colloidal Behavior in Biological Milieu" International Journal of Molecular Sciences 20, no. 17: 4096. https://doi.org/10.3390/ijms20174096
APA StyleTóth, I. Y., Illés, E., Szekeres, M., Zupkó, I., Turcu, R., & Tombácz, E. (2019). Chondroitin-Sulfate-A-Coated Magnetite Nanoparticles: Synthesis, Characterization and Testing to Predict Their Colloidal Behavior in Biological Milieu. International Journal of Molecular Sciences, 20(17), 4096. https://doi.org/10.3390/ijms20174096