Proteomic Biomarkers of Retinal Inflammation in Diabetic Retinopathy
Abstract
:1. Introduction
2. Use of Proteomics Technologies for Biomarker Discovery in Diabetic Retinopathy
3. Proteomic Changes in Biofluids Associated with Diabetic Retinopathy
3.1. Serum
3.2. Vitreous Humor
3.3. Aqueous Humor
3.4. Tears
4. Post-Translational Modifications as Biomarkers of Diabetic Retinopathy
5. Limitations
6. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kempen, J.H.; O’Colmain, B.J.; Leske, M.C.; Haffner, S.M.; Klein, R.; Moss, S.E.; Taylor, H.R.; Hamman, R.F. The prevalence of diabetic retinopathy among adults in the United States. Arch. Ophthalmol. 2004, 122, 552–563. [Google Scholar] [PubMed]
- Simo-Servat, O.; Hernandez, C.; Simo, R. Usefulness of the vitreous fluid analysis in the translational research of diabetic retinopathy. Mediat. Inflamm. 2012, 2012, 872978. [Google Scholar] [CrossRef] [PubMed]
- Loukovaara, S.; Nurkkala, H.; Tamene, F.; Gucciardo, E.; Liu, X.; Repo, P.; Lehti, K.; Varjosalo, M. Quantitative proteomics analysis of vitreous humor from diabetic retinopathy patients. J. Proteome Res. 2015, 14, 5131–5143. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Feng, L.; Hu, J.; Xie, C.; Wang, F. Differentiating vitreous proteomes in proliferative diabetic retinopathy using high-performance liquid chromatography coupled to tandem mass spectrometry. Exp. Eye Res. 2013, 108, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, J.P.; Santos, F.M.; Rocha, A.S.; Castro-de-Sousa, J.P.; Queiroz, J.A.; Passarinha, L.A.; Tomaz, C.T. Vitreous humor in the pathologic scope: Insights from proteomic approaches. Proteom. Clin. Appl. 2015, 9, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Fong, D.S.; Aiello, L.; Gardner, T.W.; King, G.L.; Blankenship, G.; Cavallerano, J.D.; Ferris, F.L., 3rd; Klein, R.; The American Diabetes Association. Retinopathy in diabetes. Diabetes Care 2004, 27 (Suppl. S1), 84–87. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yang, C.; Tao, Y.; Zhou, H.; Wang, Y. Recent technological developments in proteomics shed new light on translational research on diabetic microangiopathy. FEBS J. 2013, 280, 5668–5681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Standards of medical care in diabetes–2012. Diabetes Care 2012, 35 (Suppl. S1), 11–63. [CrossRef] [PubMed]
- Zhang, S.Y.; Li, B.Y.; Li, X.L.; Cheng, M.; Cai, Q.; Yu, F.; Wang, W.D.; Tan, M.; Yan, G.; Hu, S.L.; et al. Effects of phlorizin on diabetic retinopathy according to isobaric tags for relative and absolute quantification-based proteomics in db/db mice. Mol. Vis. 2013, 19, 812–821. [Google Scholar]
- Liu, Y.P.; Hu, S.W.; Wu, Z.F.; Mei, L.X.; Lang, P.; Lu, X.H. Proteomic analysis of human serum from diabetic retinopathy. Int. J. Ophthalmol. 2011, 4, 616–622. [Google Scholar]
- Gardner, T.W.; Sundstrom, J.M. A proposal for early and personalized treatment of diabetic retinopathy based on clinical pathophysiology and molecular phenotyping. Vis. Res. 2017, 139, 153–160. [Google Scholar] [CrossRef] [PubMed]
- El-Asrar, A.M. Role of inflammation in the pathogenesis of diabetic retinopathy. Middle East Afr. J. Ophthalmol. 2012, 19, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Balaiya, S.; Zhou, Z.; Chalam, K.V. Characterization of Vitreous and Aqueous Proteome in Humans With Proliferative Diabetic Retinopathy and Its Clinical Correlation. Proteom. Insights 2017, 8, 1178641816686078. [Google Scholar] [CrossRef] [PubMed]
- Klaassen, I.; Van Noorden, C.J.; Schlingemann, R.O. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog. Retin. Eye Res. 2013, 34, 19–48. [Google Scholar] [CrossRef] [PubMed]
- Kita, T.; Clermont, A.C.; Murugesan, N.; Zhou, Q.; Fujisawa, K.; Ishibashi, T.; Aiello, L.P.; Feener, E.P.J.D. Plasma kallikrein-kinin system as a VEGF-independent mediator of diabetic macular edema. Diabetes 2015, 64, 3588–3599. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.-B.; Chen, X.; Timothy, N.; Aiello, L.P.; Feener, E.P. Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J. Proteome 2008, 7, 2516–2525. [Google Scholar] [CrossRef] [PubMed]
- Csosz, E.; Boross, P.; Csutak, A.; Berta, A.; Toth, F.; Poliska, S.; Torok, Z.; Tozser, J. Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. J. Proteom. 2012, 75, 2196–2204. [Google Scholar] [CrossRef]
- Farhangkhoee, H.; Khan, Z.A.; Kaur, H.; Xin, X.; Chen, S.; Chakrabarti, S. Vascular endothelial dysfunction in diabetic cardiomyopathy: Pathogenesis and potential treatment targets. Pharmacol. Ther. 2006, 111, 384–399. [Google Scholar] [CrossRef]
- Krentz, A.J.; Clough, G.; Byrne, C.D. Interactions between microvascular and macrovascular disease in diabetes: Pathophysiology and therapeutic implications. Diabetes Obes. Metab. 2007, 9, 781–791. [Google Scholar] [CrossRef]
- Wang, H.; Feng, L.; Hu, J.W.; Xie, C.L.; Wang, F. Characterisation of the vitreous proteome in proliferative diabetic retinopathy. Proteome Sci. 2012, 10, 15. [Google Scholar] [CrossRef]
- Lattanzio, R.; Brancato, R.; Pierro, L.; Bandello, F.; Iaccher, B.; Fiore, T.; Maestranzi, G. Macular thickness measured by optical coherence tomography (OCT) in diabetic patients. Eur. J. Ophthalmol. 2002, 12, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Velez, G.; Tang, P.H.; Cabral, T.; Cho, G.Y.; Machlab, D.A.; Tsang, S.H.; Bassuk, A.G.; Mahajan, V.B. Personalized proteomics for precision health: Identifying biomarkers of vitreoretinal disease. Transl. Vis. Sci. Technol. 2018, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Chew, E.; Duh, E.J.; Sobrin, L.; Sun, J.K.; VanderBeek, B.L.; Wykoff, C.C.; Gardner, T.W. Diabetic retinopathy: A position statement by the American Diabetes Association. Diabetes Care 2017, 40, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Wong, T.Y.; Sabanayagam, C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2015, 2, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, D.V.; Wang, X.; Vedula, S.S.; Marrone, M.; Sleilati, G.; Hawkins, B.S.; Frank, R.N. Blood pressure control for diabetic retinopathy. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef] [PubMed]
- Fullerton, B.; Jeitler, K.; Seitz, M.; Horvath, K.; Berghold, A.; Siebenhofer, A. Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Wong, T.Y. Current epidemiology of diabetic retinopathy and diabetic macular edema. Curr. Diabetes Rep. 2012, 12, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Cheung, N.; Wong, T.Y. Obesity and eye diseases. Surv. Ophthalmol. 2007, 52, 180–195. [Google Scholar] [CrossRef]
- Frank, R.N. Diabetic retinopathy and systemic factors. Middle East Afr. J. Ophthalmol. 2015, 22, 151–156. [Google Scholar] [CrossRef]
- Long, M.; Wang, C.; Liu, D. Glycated hemoglobin A1C and vitamin D and their association with diabetic retinopathy severity. Nutr. Diabetes 2017, 7, e281. [Google Scholar] [CrossRef]
- El Rami, H.; Barham, R.; Sun, J.K.; Silva, P.S. Evidence-Based Treatment of Diabetic Retinopathy. Semin. Ophthalmol. 2017, 32, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Massin, P.; Bandello, F.; Garweg, J.G.; Hansen, L.L.; Harding, S.P.; Larsen, M.; Mitchell, P.; Sharp, D.; Wolf-Schnurrbusch, U.E.; Gekkieva, M.; et al. Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): A 12-month, randomized, controlled, double-masked, multicenter phase II study. Diabetes Care 2010, 33, 2399–2405. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Han, C.; Zhao, M.; Yu, J.; Bai, L.; Yao, Y.; Gao, S.; Cao, H.; Zheng, Z. Change of ranibizumab-induced human vitreous protein profile in patients with proliferative diabetic retinopathy based on proteomics analysis. Clin. Proteom. 2018, 15, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osaadon, P.; Fagan, X.; Lifshitz, T.; Levy, J. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye 2014, 28, 510. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Zhang, T.; Jiang, R.; Chang, Q.; Zhang, Y.; Huang, X.; Gao, X.; Jin, H.; Xu, G. Vitreous Fibronectin and Fibrinogen Expression Increased in Eyes with Proliferative Diabetic Retinopathy After Intravitreal Anti-VEGF Therapy. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5783–5791. [Google Scholar] [CrossRef] [PubMed]
- Simo, R.; Sundstrom, J.M.; Antonetti, D.A. Ocular Anti-VEGF therapy for diabetic retinopathy: The role of VEGF in the pathogenesis of diabetic retinopathy. Diabetes Care 2014, 37, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.; Bandello, F.; Schmidt-Erfurth, U.; Lang, G.E.; Massin, P.; Schlingemann, R.O.; Sutter, F.; Simader, C.; Burian, G.; Gerstner, O.; et al. The RESTORE study: Ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 2011, 118, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Zechmeister-Koss, I.; Huic, M. Vascular endothelial growth factor inhibitors (anti-VEGF) in the management of diabetic macular oedema: A systematic review. Br. J. Ophthalmol. 2012, 96, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Hernández, C.; Garcia-Ramírez, M.; Simó, R. Overexpression of hemopexin in the diabetic eye: A new pathogenic candidate for diabetic macular edema. Diabetes Care 2013, 36, 2815–2821. [Google Scholar] [CrossRef]
- Cai, S.; Bressler, N.M. Aflibercept, bevacizumab or ranibizumab for diabetic macular oedema: Recent clinically relevant findings from DRCR. net Protocol T. Curr. Opin. Ophthalmol. 2017, 28, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Q.; Gillies, M.C.; Wong, T.Y. Management of diabetic retinopathy: A systematic review. JAMA 2007, 298, 902–916. [Google Scholar] [CrossRef] [PubMed]
- Simo, R.; Hernandez, C. Intravitreous anti-VEGF for diabetic retinopathy: Hopes and fears for a new therapeutic strategy. Diabetologia 2008, 51, 1574. [Google Scholar] [CrossRef] [PubMed]
- Brand, C.S. Management of retinal vascular diseases: A patient-centric approach. Eye 2012, 26, S1. [Google Scholar] [CrossRef] [PubMed]
- Elman, M.J.; Aiello, L.P.; Beck, R.W.; Bressler, N.M.; Bressler, S.B.; Edwards, A.R.; Ferris, F.L., 3rd; Friedman, S.M.; Glassman, A.R.; Miller, K.M.; et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 2010, 117, 1064–1077.e35. [Google Scholar] [CrossRef] [PubMed]
- Ip, M.S.; Domalpally, A.; Hopkins, J.J.; Wong, P.; Ehrlich, J.S. Long-term effects of ranibizumab on diabetic retinopathy severity and progression. Arch. Ophthalmol. 2012, 130, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Ren, X.; Wei, H.; Zhao, L.; Zhang, X.; Liu, J.; Su, C.; Tan, L.; Li, X. Intravitreal conbercept (KH902) for surgical treatment of severe proliferative diabetic retinopathy. Retina 2016, 36, 938–943. [Google Scholar] [CrossRef]
- Bressler, S.B.; Beaulieu, W.T.; Glassman, A.R.; Gross, J.G.; Jampol, L.M.; Melia, M.; Peters, M.A.; Rauser, M.E. Factors Associated with Worsening Proliferative Diabetic Retinopathy in Eyes Treated with Panretinal Photocoagulation or Ranibizumab. Ophthalmology 2017, 124, 431–439. [Google Scholar] [CrossRef]
- Parikh, R.N.; Traband, A.; Kolomeyer, A.M.; VanderBeek, B.L.; Kim, B.J.; Maguire, A.M.; Brucker, A.J. Intravitreal bevacizumab for the treatment of vitreous hemorrhage due to proliferative diabetic retinopathy. Am. J. Ophthalmol. 2017, 176, 194–202. [Google Scholar] [CrossRef]
- Ahmadieh, H.; Shoeibi, N.; Entezari, M.; Monshizadeh, R. Intravitreal bevacizumab for prevention of early postvitrectomy hemorrhage in diabetic patients: A randomized clinical trial. Ophthalmology 2009, 116, 1943–1948. [Google Scholar] [CrossRef]
- Yeh, P.T.; Yang, C.H.; Yang, C.M. Intravitreal bevacizumab injection for recurrent vitreous haemorrhage after diabetic vitrectomy. Acta Ophthalmol. 2011, 89, 634–640. [Google Scholar] [CrossRef]
- Yeh, P.-T.; Yang, C.-M.; Lin, Y.-C.; Chen, M.-S.; Yang, C.-H. Bevacizumab pretreatment in vitrectomy with silicone oil for severe diabetic retinopathy. Retina 2009, 29, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, M.S.; Contreras, I.; Noval, S. Anti-angiogenic drugs as an adjunctive therapy in the surgical treatment of diabetic retinopathy. Curr. Diabetes Rev. 2009, 5, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Demir, M.; Oba, E.; Can, E.; Kara, O.; Cinar, S. Effect of bevacizumab injection before vitrectomy on intravitreal hemorrhage in pseudophakic patients with proliferative diabetic retinopathy. Ophthalmol. Eye Dis. 2013, 5, OED–S12352. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Zou, C.; Cao, H.; Zhao, M.; Yu, S.; Qiu, Q.; Xu, X.; Zheng, Z. Preoperative intravitreal injection of ranibizumab for patients with severe proliferative diabetic retinopathy contributes to a decreased risk of postoperative neovascular glaucoma. Acta Ophthalmol. 2016, 94, 414–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, B.; Zhang, Y.; Zeng, Q.; Han, Q.; Zhang, L.; Liu, M.; Li, X. Intravitreal injection of ranibizumab and CTGF shRNA improves retinal gene expression and microvessel ultrastructure in a rodent model of diabetes. Int. J. Mol. Sci. 2014, 15, 1606–1624. [Google Scholar] [CrossRef] [PubMed]
- Skeie, J.M.; Mahajan, V.B. Proteomic interactions in the mouse vitreous-retina complex. PLoS ONE 2013, 8, e82140. [Google Scholar] [CrossRef]
- Kim, K.; Kim, Y. Preparing multiple-reaction monitoring for quantitative clinical proteomics. Expert Rev. Proteom. 2009, 6, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Kadiyala, C.S.; Zheng, L.; Du, Y.; Yohannes, E.; Kao, H.Y.; Miyagi, M.; Kern, T.S. Acetylation of retinal histones in diabetes increases inflammatory proteins: Effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J. Biol. Chem. 2012, 287, 25869–25880. [Google Scholar] [CrossRef]
- Nguyen-Khuong, T.; Everest-Dass, A.V.; Kautto, L.; Zhao, Z.; Willcox, M.D.; Packer, N.H. Glycomic characterization of basal tears and changes with diabetes and diabetic retinopathy. Glycobiology 2015, 25, 269–283. [Google Scholar] [CrossRef]
- Fu, Q.; Chen, Z.; Zhang, S.; Parker, S.J.; Fu, Z.; Tin, A.; Liu, X.; Van Eyk, J.E. Multiple and selective reaction monitoring using triple quadrupole mass spectrometer: Preclinical large cohort analysis. In Quantitative Proteomics by Mass Spectrometry; Springer: Berlin/Heidelberg, Germany, 2016; pp. 249–264. [Google Scholar]
- Jay, N.L.; Gillies, M.J.C.; Ophthalmology, E. Proteomic analysis of ophthalmic disease. Clin. Exp. Ophthalmol. 2012, 40, 755–763. [Google Scholar] [CrossRef]
- Garcia-Ramirez, M.; Canals, F.; Hernandez, C.; Colome, N.; Ferrer, C.; Carrasco, E.; Garcia-Arumi, J.; Simo, R. Proteomic analysis of human vitreous fluid by fluorescence-based difference gel electrophoresis (DIGE): A new strategy for identifying potential candidates in the pathogenesis of proliferative diabetic retinopathy. Diabetologia 2007, 50, 1294–1303. [Google Scholar] [CrossRef] [PubMed]
- Shitama, T.; Hayashi, H.; Noge, S.; Uchio, E.; Oshima, K.; Haniu, H.; Takemori, N.; Komori, N.; Matsumoto, H. Proteome Profiling of Vitreoretinal Diseases by Cluster Analysis. Proteom. Clin. Appl. 2008, 2, 1265–1280. [Google Scholar] [CrossRef]
- Hernández, C.; García-Ramírez, M.; Colomé, N.; Villarroel, M.; Corraliza, L.; García-Pacual, L.; Casado, J.; Canals, F.; Simó, R. New pathogenic candidates for diabetic macular edema detected by proteomic analysis. Diabetes Care 2010, 33, e92. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.-Y.; Tsai, M.-L.; Wang, C.-Y.; Chen, A.; Chou, Y.-C.; Hsia, C.-W.; Wu, Y.-F.; Chen, H.-M.; Huang, T.-H.; Chen, P.-H. Proteomic analysis and identification of aqueous humor proteins with a pathophysiological role in diabetic retinopathy. J. Proteom. 2012, 75, 2950–2959. [Google Scholar] [CrossRef] [PubMed]
- Srividya, G.; Jain, M.; Mahalakshmi, K.; Gayathri, S.; Raman, R.; Angayarkanni, N. A novel and less invasive technique to assess cytokine profile of vitreous in patients of diabetic macular oedema. Eye 2018, 32, 820–829. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Kim, J.H.; Jun, H.O.; Yu, Y.S.; Min, B.H.; Park, K.H.; Kim, K.-W. Protective effect of Clusterin from oxidative stress–induced apoptosis in human retinal pigment epithelial cells. Investig. Ophthalmol. Vis. Sci. 2010, 51, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Torok, Z.; Peto, T.; Csosz, E.; Tukacs, E.; Molnar, A.; Maros-Szabo, Z.; Berta, A.; Tozser, J.; Hajdu, A.; Nagy, V.; et al. Tear fluid proteomics multimarkers for diabetic retinopathy screening. BMC Ophthalmol. 2013, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Torok, Z.; Peto, T.; Csosz, E.; Tukacs, E.; Molnar, A.M.; Berta, A.; Tozser, J.; Hajdu, A.; Nagy, V.; Domokos, B.; et al. Combined Methods for Diabetic Retinopathy Screening, Using Retina Photographs and Tear Fluid Proteomics Biomarkers. J. Diabetes Res. 2015, 2015, 623619. [Google Scholar] [CrossRef] [PubMed]
- Ohman, T.; Tamene, F.; Goos, H.; Loukovaara, S.; Varjosalo, M. Systems pathology analysis identifies neurodegenerative nature of age-related vitreoretinal interface diseases. Aging Cell 2018, 17, e12809. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, Q.; Lu, P. Quantitative proteomics analysis of vitreous body from type 2 diabetic patients with proliferative diabetic retinopathy. BMC Ophthalmol. 2018, 18, 151. [Google Scholar] [CrossRef]
- Schori, C.; Trachsel, C.; Grossmann, J.; Zygoula, I.; Barthelmes, D.; Grimm, C. The Proteomic Landscape in the Vitreous of Patients With Age-Related and Diabetic Retinal Disease. Investig. Ophthalmol. Vis. Sci. 2018, 59, AMD31–AMD40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Kim, S.J.; Yu, H.G.; Yu, J.; Park, K.S.; Jang, I.-J.; Kim, Y. Verification of biomarkers for diabetic retinopathy by multiple reaction monitoring. J. Proteome Res. 2010, 9, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Purohit, S.; Sharma, A.; Hopkins, D.; Steed, L.; Bode, B.; Anderson, S.W.; Caldwell, R.; She, J.X. Elevated Serum Levels of Soluble TNF Receptors and Adhesion Molecules Are Associated with Diabetic Retinopathy in Patients with Type-1 Diabetes. Mediat. Inflamm. 2015, 2015, 279393. [Google Scholar] [CrossRef] [PubMed]
- Funatsu, H.; Yamashita, T.; Yamashita, H. Vitreous fluid biomarkers. Adv. Clin. Chem. 2006, 42, 111–166. [Google Scholar]
- Zhang, X.; Bao, S.; Hambly, B.D.; Gillies, M.C. Vascular endothelial growth factor-A: A multifunctional molecular player in diabetic retinopathy. Int. J. Biochem. Cell Biol. 2009, 41, 2368–2371. [Google Scholar] [CrossRef]
- Yoshimura, T.; Sonoda, K.H.; Sugahara, M.; Mochizuki, Y.; Enaida, H.; Oshima, Y.; Ueno, A.; Hata, Y.; Yoshida, H.; Ishibashi, T. Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS ONE 2009, 4, e8158. [Google Scholar] [CrossRef]
- Loukovaara, S.; Robciuc, A.; Holopainen, J.M.; Lehti, K.; Pessi, T.; Liinamaa, J.; Kukkonen, K.T.; Jauhiainen, M.; Koli, K.; Keski-Oja, J.; et al. Ang-2 upregulation correlates with increased levels of MMP-9, VEGF, EPO and TGFbeta1 in diabetic eyes undergoing vitrectomy. Acta Ophthalmol. 2013, 91, 531–539. [Google Scholar] [CrossRef]
- Mohan, N.; Monickaraj, F.; Balasubramanyam, M.; Rema, M.; Mohan, V. Imbalanced levels of angiogenic and angiostatic factors in vitreous, plasma and postmortem retinal tissue of patients with proliferative diabetic retinopathy. J. Diabetes Its Complicat. 2012, 26, 435–441. [Google Scholar] [CrossRef]
- Fong, A.H.; Lai, T.Y. Long-term effectiveness of ranibizumab for age-related macular degeneration and diabetic macular edema. Clin. Interv. Aging 2013, 8, 467–483. [Google Scholar] [Green Version]
- Mahajan, V.B.; Skeie, J.M. Translational vitreous proteomics. Proteom. Clin. Appl. 2014, 8, 204–208. [Google Scholar] [CrossRef]
- Kim, K.; Kim, S.J.; Han, D.; Jin, J.; Yu, J.; Park, K.S.; Yu, H.G.; Kim, Y. Verification of multimarkers for detection of early stage diabetic retinopathy using multiple reaction monitoring. J. Proteome Res. 2013, 12, 1078–1089. [Google Scholar] [CrossRef] [PubMed]
- Polat, S.B.; Ugurlu, N.; Yulek, F.; Simavli, H.; Ersoy, R.; Cakir, B.; Erel, O. Evaluation of serum fibrinogen, plasminogen, alpha2-anti-plasmin, and plasminogen activator inhibitor levels (PAI) and their correlation with presence of retinopathy in patients with type 1 DM. J. Diabetes Res. 2014, 2014, 317292. [Google Scholar] [CrossRef] [PubMed]
- Sasongko, M.B.; Wong, T.Y.; Jenkins, A.J.; Nguyen, T.T.; Shaw, J.E.; Wang, J.J. Circulating markers of inflammation and endothelial function, and their relationship to diabetic retinopathy. Diabet. Med. J. Br. Diabet. Assoc. 2015, 32, 686–691. [Google Scholar] [CrossRef]
- Yang, H.S.; Woo, J.E.; Lee, S.J.; Park, S.H.; Woo, J.M. Elevated plasma pentraxin 3 levels are associated with development and progression of diabetic retinopathy in Korean patients with type 2 diabetes mellitus. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5989–5997. [Google Scholar] [CrossRef] [PubMed]
- Meleth, A.D.; Agron, E.; Chan, C.C.; Reed, G.F.; Arora, K.; Byrnes, G.; Csaky, K.G.; Ferris, F.L., 3rd; Chew, E.Y. Serum inflammatory markers in diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2005, 46, 4295–4301. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Saxena, S.; Khanna, V.K.; Shukla, R.K.; Meyer, C.H. Status of serum VEGF and ICAM-1 and its association with external limiting membrane and inner segment-outer segment junction disruption in type 2 diabetes mellitus. Mol. Vis. 2013, 19, 1760–1768. [Google Scholar]
- Doganay, S.; Evereklioglu, C.; Er, H.; Turkoz, Y.; Sevinc, A.; Mehmet, N.; Savli, H. Comparison of serum NO, TNF-alpha, IL-1beta, sIL-2R, IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus. Eye 2002, 16, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Kaviarasan, K.; Jithu, M.; Arif Mulla, M.; Sharma, T.; Sivasankar, S.; Das, U.N.; Angayarkanni, N. Low blood and vitreal BDNF, LXA4 and altered Th1/Th2 cytokine balance are potential risk factors for diabetic retinopathy. Metab. Clin. Exp. 2015, 64, 958–966. [Google Scholar] [CrossRef]
- Rajab, H.A.; Baker, N.L.; Hunt, K.J.; Klein, R.; Cleary, P.A.; Lachin, J.; Virella, G.; Lopes-Virella, M.F. The predictive role of markers of Inflammation and endothelial dysfunction on the course of diabetic retinopathy in type 1 diabetes. J. Diabetes Its Complicat. 2015, 29, 108–114. [Google Scholar] [CrossRef]
- Ogata, N.; Matsuoka, M.; Matsuyama, K.; Shima, C.; Tajika, A.; Nishiyama, T.; Wada, M.; Jo, N.; Higuchi, A.; Minamino, K.; et al. Plasma concentration of pigment epithelium-derived factor in patients with diabetic retinopathy. J. Clin. Endocrinol. Metab. 2007, 92, 1176–1179. [Google Scholar] [CrossRef]
- Cavusoglu, A.C.; Bilgili, S.; Alaluf, A.; Dogan, A.; Yilmaz, F.; Aslanca, D.; Karaca, B.; Yuksel, B.; Topaloglu, E. Vascular endothelial growth factor level in the serum of diabetic patients with retinopathy. Ann. Ophthalmol. 2007, 39, 205–208. [Google Scholar] [CrossRef]
- Ozturk, B.T.; Bozkurt, B.; Kerimoglu, H.; Okka, M.; Kamis, U.; Gunduz, K. Effect of serum cytokines and VEGF levels on diabetic retinopathy and macular thickness. Mol. Vis. 2009, 15, 1906–1914. [Google Scholar] [PubMed]
- Du, J.H.; Li, X.; Li, R.; Xu, L.; Ma, R.R.; Liu, S.F.; Zhang, Z.; Sun, H.Z. Elevation of serum apelin-13 associated with proliferative diabetic retinopathy in type 2 diabetic patients. Int. J. Ophthalmol. 2014, 7, 968–973. [Google Scholar] [PubMed]
- Joussen, A.M.; Poulaki, V.; Le, M.L.; Koizumi, K.; Esser, C.; Janicki, H.; Schraermeyer, U.; Kociok, N.; Fauser, S.; Kirchhof, B.; et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2004, 18, 1450–1452. [Google Scholar] [CrossRef] [PubMed]
- Gerhardinger, C.; Costa, M.B.; Coulombe, M.C.; Toth, I.; Hoehn, T.; Grosu, P. Expression of acute-phase response proteins in retinal Muller cells in diabetes. Investig. Ophthalmol. Vis. Sci. 2005, 46, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Funatsu, H.; Yamashita, H.; Sakata, K.; Noma, H.; Mimura, T.; Suzuki, M.; Eguchi, S.; Hori, S. Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmology 2005, 112, 806–816. [Google Scholar] [CrossRef] [PubMed]
- Krady, J.K.; Basu, A.; Allen, C.M.; Xu, Y.; LaNoue, K.F.; Gardner, T.W.; Levison, S.W. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 2005, 54, 1559–1565. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, J.H.; Park, J.A.; Lee, S.W.; Kim, W.J.; Yu, Y.S.; Kim, K.W. Blood-neural barrier: Intercellular communication at glio-vascular interface. J. Biochem. Mol. Biol. 2006, 39, 339–345. [Google Scholar] [CrossRef]
- Antonetti, D.A.; Klein, R.; Gardner, T.W. Diabetic retinopathy. N. Engl. J. Med. 2012, 366, 1227–1239. [Google Scholar] [CrossRef]
- Monteiro, R.; Vitorino, R.; Domingues, P.; Radhouani, H.; Carvalho, C.; Poeta, P.; Torres, C.; Igrejas, G. Proteome of a methicillin-resistant Staphylococcus aureus clinical strain of sequence type ST398. J. Proteom. 2012, 75, 2892–2915. [Google Scholar] [CrossRef]
- Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [CrossRef] [PubMed]
- Gutman, S.; Kessler, L.G. The US Food and Drug Administration perspective on cancer biomarker development. Nat. Rev. Cancer 2006, 6, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Hagan, S.; Martin, E.; Enriquez-de-Salamanca, A. Tear fluid biomarkers in ocular and systemic disease: Potential use for predictive, preventive and personalised medicine. EPMA J. 2016, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Pusparajah, P.; Lee, L.H.; Abdul Kadir, K. Molecular Markers of Diabetic Retinopathy: Potential Screening Tool of the Future? Front. Physiol. 2016, 7, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Kern, T.S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res. 2011, 30, 343–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christiansen, M.S.; Hommel, E.; Magid, E.; Feldt-Rasmussen, B. Orosomucoid in urine is a powerful predictor of cardiovascular mortality in normoalbuminuric patients with type 2 diabetes at five years of follow-up. Diabetologia 2005, 48, 386–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, N.; Shankernarayan, N.P.; Dharmalingam, K. alpha1-acid glycoprotein as a putative biomarker for monitoring the development of the type II reactional stage of leprosy. J. Med. Microbiol. 2010, 59 Pt 4, 400–407. [Google Scholar] [CrossRef]
- Caseiro, A.; Ferreira, R.; Quintaneiro, C.; Pereira, A.; Marinheiro, R.; Vitorino, R.; Amado, F. Protease profiling of different biofluids in type 1 diabetes mellitus. Clin. Biochem. 2012, 45, 1613–1619. [Google Scholar] [CrossRef] [PubMed]
- Ipek, E.; Yolcu, M.; Yildirim, E.; Altinkaynak, K.; Ozbek Sebin, S.; Kalkan, K.; Gulcu, O.; Ermis, E.; Ozturk, M. A Novel Marker of Inflammation: Azurocidin in Patients with ST Segment Elevation Myocardial Infarction. Int. J. Mol. Sci. 2018, 19, 3797. [Google Scholar] [CrossRef]
- Skondra, D.; Noda, K.; Almulki, L.; Tayyari, F.; Frimmel, S.; Nakazawa, T.; Kim, I.K.; Zandi, S.; Thomas, K.L.; Miller, J.W. Characterization of azurocidin as a permeability factor in the retina: Involvement in VEGF-induced and early diabetic blood-retinal barrier breakdown. Investig. Ophthalmol. Vis. Sci. 2008, 49, 726–731. [Google Scholar] [CrossRef]
- Lam, T.C.; Chun, R.K.; Li, K.K.; To, C.H.; Optometry, E. Application of proteomic technology in eye research: A mini review. Clin. Exp. 2008, 91, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Murthy, K.R.; Goel, R.; Subbannayya, Y.; Jacob, H.K.; Murthy, P.R.; Manda, S.S.; Patil, A.H.; Sharma, R.; Sahasrabuddhe, N.A.; Parashar, A. Proteomic analysis of human vitreous humor. Clin. Proteom. 2014, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Funaki, H.; Sawaguchi, S.; Yaoeda, K.; Koyama, Y.; Yaoita, E.; Funaki, S.; Shirakashi, M.; Oshima, Y.; Shukunami, C.; Hiraki, Y. Expression and localization of angiogenic inhibitory factor, chondromodulin-I, in adult rat eye. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1193–1200. [Google Scholar]
- Halfter, W.; Dong, S.; Dong, A.; Eller, A.; Nischt, R. Origin and turnover of ECM proteins from the inner limiting membrane and vitreous body. Eye 2008, 22, 1207. [Google Scholar] [CrossRef] [PubMed]
- Davuluri, G.; Espina, V.; Petricoin, E.F.; Ross, M.; Deng, J.; Liotta, L.A.; Glaser, B.M. Activated VEGF receptor shed into the vitreous in eyes with wet AMD: A new class of biomarkers in the vitreous with potential for predicting the treatment timing and monitoring response. Arch. Ophthalmol. 2009, 127, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Ecker, S.M.; Pfahler, S.M.; Hines, J.C.; Lovelace, A.S.; Glaser, B.M. Sequential in-office vitreous aspirates demonstrate vitreous matrix metalloproteinase 9 levels correlate with the amount of subretinal fluid in eyes with wet age-related macular degeneration. Mol. Vis. 2012, 18, 1658. [Google Scholar] [PubMed]
- Yenihayat, F.; Ozkan, B.; Kasap, M.; Karabas, V.L.; Guzel, N.; Akpinar, G.; Pirhan, D. Vitreous IL-8 and VEGF levels in diabetic macular edema with or without subretinal fluid. Int. Ophthalmol. 2019, 39, 821–828. [Google Scholar] [CrossRef] [PubMed]
- El Asrar, A.M.A.; Maimone, D.; Morse, P.H.; Gregory, S.; Reder, A.T. Cytokines in the vitreous of patients with proliferative diabetic retinopathy. Am. J. Ophthalmol. 1992, 114, 731–736. [Google Scholar] [CrossRef]
- Arend, W.P. Interleukin-1 receptor antagonist. In Advances in Immunology; Elsevier: Amsterdam, The Netherlands, 1993; Volume 54, pp. 167–227. [Google Scholar]
- Carmo, A.; Cunha-Vaz, J.G.; Carvalho, A.P.; Lopes, M.C. L-arginine transport in retinas from streptozotocin diabetic rats: Correlation with the level of IL-1 beta and NO synthase activity. Vis. Res. 1999, 39, 3817–3823. [Google Scholar] [CrossRef]
- Arend, W.P.; Gabay, C. Physiologic role of interleukin-1 receptor antagonist. Arthritis Res. Ther. 2000, 2, 245. [Google Scholar] [CrossRef] [PubMed]
- Demircan, N.; Safran, B.G.; Soylu, M.; Ozcan, A.A.; Sizmaz, S. Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye 2006, 20, 1366–1369. [Google Scholar] [CrossRef] [PubMed]
- Gerhardinger, C.; Liu, Y.; Dagher, Z. Overexpression of IL-1 receptor antagonist in the rat retina by AAV2-mediated gene transfer prevents capillary loss in experimental diabetes. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5764. [Google Scholar]
- Stahel, M.; Becker, M.; Graf, N.; Michels, S. Systemic interleukin 1β inhibition in proliferative diabetic retinopathy: A prospective open-label study using Canakinumab. Retina 2016, 36, 385. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, M.; West, K.; Crabb, J.W.; Kinoshita, S.; Kamei, M. Proteomic analysis of vitreous from diabetic macular edema. Exp. Eye Res. 2005, 81, 176–182. [Google Scholar] [CrossRef]
- Carreon, T.; van der Merwe, E.; Fellman, R.L.; Johnstone, M.; Bhattacharya, S.K. Aqueous outflow—A continuum from trabecular meshwork to episcleral veins. Prog. Retin. Eye Res. 2017, 57, 108–133. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, U.R.; Madden, B.J.; Charlesworth, M.C.; Fautsch, M.P. Proteome analysis of human aqueous humor. Investig. Ophthalmol. Vis. Sci. 2010, 51, 4921–4931. [Google Scholar] [CrossRef]
- Grus, F.H.; Joachim, S.C.; Pfeiffer, N. Proteomics in ocular fluids. Proteom. Clin. Appl. 2007, 1, 876–888. [Google Scholar] [CrossRef]
- Kliuchnikova, A.A.; Samokhina, N.I.; Ilina, I.Y.; Karpov, D.S.; Pyatnitskiy, M.A.; Kuznetsova, K.G.; Toropygin, I.Y.; Kochergin, S.A.; Alekseev, I.B.; Zgoda, V.G.; et al. Human aqueous humor proteome in cataract, glaucoma, and pseudoexfoliation syndrome. Proteomics 2016, 16, 1938–1946. [Google Scholar] [CrossRef]
- Funke, S.; Perumal, N.; Bell, K.; Pfeiffer, N.; Grus, F.H. The potential impact of recent insights into proteomic changes associated with glaucoma. Expert Rev. Proteom. 2017, 14, 311–334. [Google Scholar] [CrossRef]
- Kaeslin, M.A.; Killer, H.E.; Fuhrer, C.A.; Zeleny, N.; Huber, A.R.; Neutzner, A. Changes to the Aqueous Humor Proteome during Glaucoma. PLoS ONE 2016, 11, e0165314. [Google Scholar] [CrossRef]
- Izzotti, A.; Longobardi, M.; Cartiglia, C.; Sacca, S.C. Proteome alterations in primary open angle glaucoma aqueous humor. J. Proteome Res. 2010, 9, 4831–4838. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Lu, Q.; Xue, P.; Zhang, H.; Dong, Z.; Yang, F.; Wang, N. Proteomic analysis of aqueous humor from patients with myopia. Mol. Vis. 2008, 14, 370–377. [Google Scholar] [PubMed]
- Semba, R.D.; Enghild, J.J.; Venkatraman, V.; Dyrlund, T.F.; Van Eyk, J.E. The Human Eye Proteome Project: Perspectives on an emerging proteome. Proteomics 2013, 13, 2500–2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.W.; Kang, J.W.; Ahn, J.; Lee, E.K.; Cho, K.C.; Han, B.N.; Hong, N.Y.; Park, J.; Kim, K.P. Proteomic analysis of the aqueous humor in age-related macular degeneration (AMD) patients. J. Proteome Res. 2012, 11, 4034–4043. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Xue, P.; Wang, N.; Dong, Z.; Lu, Q.; Yang, F. Proteomic analysis of aqueous humor from patients with primary open angle glaucoma. Mol. Vis. 2010, 16, 2839–2846. [Google Scholar] [PubMed]
- Sharma, S.; Bollinger, K.E.; Kodeboyina, S.K.; Zhi, W.; Patton, J.; Bai, S.; Edwards, B.; Ulrich, L.; Bogorad, D.; Sharma, A. Proteomic Alterations in Aqueous Humor From Patients With Primary Open Angle Glaucoma. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2635–2643. [Google Scholar] [CrossRef] [PubMed]
- Freddo, T.F. A contemporary concept of the blood-aqueous barrier. Prog. Retin. Eye Res. 2013, 32, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.W.; Short, S.P.; Williams, C.S. Selenoproteins and oxidative stress-induced inflammatory tumorigenesis in the gut. Cell. Mol. Life Sci. 2017, 74, 607–616. [Google Scholar] [CrossRef]
- Qi, F.; Zhou, Y.; Xiao, Y.; Tao, J.; Gu, J.; Jiang, X.; Xu, G.-Y. Promoter demethylation of cystathionine-β-synthetase gene contributes to inflammatory pain in rats. PAIN® 2013, 154, 34–45. [Google Scholar] [CrossRef]
- de Souza, G.A.; Godoy, L.M.; Mann, M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol. 2006, 7, R72. [Google Scholar] [CrossRef]
- Li, N.; Wang, N.; Zheng, J.; Liu, X.M.; Lever, O.W.; Erickson, P.M.; Li, L. Characterization of human tear proteome using multiple proteomic analysis techniques. J. Proteome Res. 2005, 4, 2052–2061. [Google Scholar] [CrossRef] [PubMed]
- Csutak, A.; Silver, D.M.; Tozser, J.; Steiber, Z.; Bagossi, P.; Hassan, Z.; Berta, A. Plasminogen activator inhibitor in human tears after laser refractive surgery. J. Cataract Refract. Surg. 2008, 34, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Herber, S.; Grus, F.H.; Sabuncuo, P.; Augustin, A.J. Two-dimensional analysis of tear protein patterns of diabetic patients. Electrophoresis 2001, 22, 1838–1844. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, P.K.; Yoo, H.S.; Kim, C.W. Comparison of tear proteins between healthy and early diabetic retinopathy patients. Clin. Biochem. 2012, 45, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Sadygov, R.G. High mass accuracy phosphopeptide identification using tandem mass spectra. Int. J. Proteom. 2012, 2012, 104681. [Google Scholar] [CrossRef]
- Doll, S.; Burlingame, A.L. Mass spectrometry-based detection and assignment of protein posttranslational modifications. ACS Chem. Biol. 2015, 10, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Angi, M.; Kalirai, H.; Coupland, S.E.; Damato, B.E.; Semeraro, F.; Romano, M.R. Proteomic analyses of the vitreous humour. Mediat. Inflamm. 2012, 2012. [Google Scholar] [CrossRef]
- Ronsein, G.E.; Pamir, N.; von Haller, P.D.; Kim, D.S.; Oda, M.N.; Jarvik, G.P.; Vaisar, T.; Heinecke, J.W. Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics. J. Proteom. 2015, 113, 388–399. [Google Scholar] [CrossRef]
- Pagel, O.; Loroch, S.; Sickmann, A.; Zahedi, R.P. Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Rev. Proteom. 2015, 12, 235–253. [Google Scholar] [CrossRef] [Green Version]
- Ehrenkranz, J.R.; Lewis, N.G.; Kahn, C.R.; Roth, J. Phlorizin: A Review. Diabetes Metab. Res. Rev. 2005, 21, 31–38. [Google Scholar]
- Masumoto, S.; Akimoto, Y.; Oike, H.; Kobori, M. Dietary phloridzin reduces blood glucose levels and reverses Sglt1 expression in the small intestine in streptozotocin-induced diabetic mice. J. Agric. Food Chem. 2009, 57, 4651–4656. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Symbol | Fluid | Comparison | Detection Method | Ref. |
---|---|---|---|---|---|
α-1-acid glycoprotein | AGP | Serum; Plasma; VH; AH | DR/noDR; PDR/Healthy; PDR/NDM; PDR/Post-mortem | 2D-DIGE/MALDI-TOF-TOF MS; SDS-PAGE/LC-MS/MS; LC-MS/MS; MRM | [4,10,13,16,82] |
α-1-antichymotrypsin | SERPINA3 | Plasma;VH | DR/noDR; PDR/NDM; PDR/Post-mortem | SDS-PAGE/LC-MS/MS; LC-MS/MS; MRM | [4,16,82] |
α-1-antitrypsin | SERPINA1 | Plasma; VH | DR/noDR; NPDR/NDM; PDR/NDM; PDR/Post-mortem | 2D-DIGE/MALDI-TOF-TOF MS; SDS-PAGE/LC-MS/MS; LC-MS/MS; MRM | [4,16,63,82] |
α-2-antiplasmin | SERPINF2 | Plasma;VH | DME/NDM; NPDR/NDM; PDR/NDM | LC-MS/MS; ELISA | [15,83] |
α-2-HS-glycoprotein | AHSG | VH | DME/NDM; PDR/NDM | SDS-PAGE/LC-MS/MS; LC-MS/MS | [15,16] |
α-2-macroglobulin | A2M | Plasma; VH | DR/noDR; PDR/Post-mortem | LC-MS/MS; MRM | [4,82] |
Amyloid β A4 protein | APP | VH | PDR/NDM; PDR/noDR | SDS-PAGE/LC-MS/MS; LC-MS/MS | [13,16] |
Angiotensinogen | AGT | VH | PDR/NDM; PDR/noDR | SDS-PAGE/LC-MS/MS | [16] |
Antithrombin III | SERPINC1 | VH | PDR/NDM; PDR/Post-mortem | SDS-PAGE/LC-MS/MS; LC-MS/MS | [4,16] |
Apolipoprotein A-I | APOA1 | Plasma; VH; AH | DME/NDM; DR/noDR; NPDR/NDM; PDR/NDM; PDR/Post-mortem | 2D-DIGE/MALDI-TOF-TOF MS; SDS-PAGE/LC-MS/MS; LC-MS/MS; MRM | [4,13,15,16,63,65,82] |
Apolipoprotein A-II | APOA2 | Plasma; VH | DME/NDM; DR/noDR; PDR/NDM | SDS-PAGE/LC-MS/MS; LC-MS/MS; MRM | [13,15,16,82] |
Apolipoprotein A-IV | APOA4 | Plasma; VH; AH | DR/noDR; NPDR/NDM; PDR/NDM; PDR/Post-mortem | 2D-DIGE/MALDI-TOF-TOF MS LC-MS/MS; MRM | [4,13,63,82] |
Apolipoprotein C-I | APOC1 | Plasma; VH | DR/noDR;PDR/NDM; Anti-VEGF treated PDR/untreated PDR | LC-MS/MS; MRM | [33,82] |
Apolipoprotein C-III | APOC3 | VH | PDR/NDM | SDS-PAGE/LC-MS/MS | [16] |
Apolipoprotein E | APOE | VH | DME/NDM; PDR/Post-mortem | LC-MS/MS | [4,70] |
ATP-binding cassette subfamily F member 1 | ABCF1 | VH | DME/NDM | LC-MS/MS | [70] |
Basement membrane-specific heparan sulfate proteoglycan core protein | HSPG2 | VH | PDR/NDM | SDS-PAGE/LC-MS/MS | [16] |
β-2-microglobulin | B2M | VH | PDR/NDM | SDS-PAGE/LC-MS/MS | [16] |
β-crystallin A3 | CRYBA1 | VH | PDR/Post-mortem | 2D-DIGE/MALDI-TOF-TOF MS/MS; LC-MS/MS | [4,20] |
C-reactive protein | CRP | Serum; Plasma | DR/NDM; DR/noDR; NPDR/PDR | Multiplex Bead Array; ELISA | [74,84,85] |
C-C motif chemokine 5 | CCL13 | Serum | Severe DR/Mild DR | ELISA | [86] |
Chitinase-3-like protein 1 | CHI3L1 | VH | PDR/NDM | SDS-PAGE/LC-MS/MS | [16] |
Clusterin | CLU | VH | DME/NDM; PDR/NDM; PDR/Post-mortem | 2D-DIGE/MALDI-TOF-TOF MS/MS; 2D-DIGE/MALDI-TOF-TOF MS; LC-MS/MS | [4,20,39,64] |
Cofilin-1 | CFL1 | VH | PDR/Post-mortem | LC-MS/MS | [4] |
Complement C1 | C1 | VH | DME/NDM; PDR/NDM | 2D-DIGE/MALDI-TOF-TOF MS; LC-MS/MS | [39,70] |
Complement C3 | C3 | Plasma;VH | DME/NDM; DR/noDR NPDR/NDM; PDR/NDM; PDR/Post-mortem | 2D-DIGE/MALDI-TOF-TOF MS; SDS-PAGE/LC-MS/MS; LC-MS/MS; MRM | [4,15,16,63,82] |
Complement C4 | C4 | VH | DME/NDM; PDR/NDM; PDR/Post-mortem | 2D-DIGE/MALDI-TOF-TOF MS; LC-MS/MS | [4,39] |
Complement C7 | C7 | VH | DME/NDM | LC-MS/MS | [15] |
Complement C8 | C8 | VH | DME/NDM | LC-MS/MS | [15] |
Complement factor B | CFB | Plasma | DR/noDR | MRM | [82] |
Complement factor H | CFH | Plasma; VH | DME/NDM; DR/noDR | LC-MS/MS; MRM | [15,82] |
Complement factor I | CFI | VH | PDR/NDM; PDR/Post-mortem | 2D-DIGE/MALDI-TOF-TOF MS/MS; SDS-PAGE/LC-MS/MS; LC-MS/MS | [13,16,20] |
Estrogen receptor | ESR1 | VH | PDR/Post-mortem | LC-MS/MS | [4] |
Fibrinogen | FGA, FGB, FGG | VH | DME/NDM; NPDR/NDM; PDR/NDM; PDR/Post-mortem; Anti-VEGF treated PDR/untreated PDR | 2D-DIGE/MALDI-TOF-TOF MS; LC-MS/MS | [4,35,39,63] |
Fibronectin | FN1 | VH | Anti-VEGF treated PDR/untreated PDR | LC-MS/MS | [35] |
Gelsolin | GSN | VH | DME/PDR; PDR/NDM | 2D-DIGE/MALDI-TOF-TOF MS | [39] |
Guanylate-binding protein3 | GBP3 | VH | PDR/Post-mortem | LC-MS/MS | [4] |
Haptoglobin | HP | Serum; Plasma; VH | DME/NDM; DR/NDM; PDR/Healthy | 2D-DIGE/MALDI-TOF-TOF MS; LC-MS/MS; MRM | [10,15,73] |
Immunoglobulin α chain | IGHA1 | VH | PDR/Post-mortem | 2D-DIGE/MALDI-TOF-TOF MS/MS | [20] |
Immunoglobulin γ chain | IGHG1 | VH | PDR/NDM; PDR/Post-mortem | SDS-PAGE/LC-MS/MS; LC-MS/MS | [4,16] |
Immunogloulin heavy chain V-III region BRO | IGHV3-13 | VH | PDR/Post-mortem | 2D-DIGE/MALDI-TOF-TOF MS/MS | [20] |
Immunoglobulin κ chain | IGK | VH | PDR/NDM; PDR/Post-mortem | SDS-PAGE/LC-MS/MS; LC-MS/MS | [4,16] |
Immunoglobulin λ chain | IGH | VH | PDR/Post-mortem | 2D-DIGE/MALDI-TOF-TOF MS/MS | [20] |
Inter-α-trypsin inhibitor heavy chain family, member 4 | ITIH4 | VH | DME/NDM | LC-MS/MS | [15] |
Intercellular adhesion molecule 1 | ICAM1 | Serum | NPDR/NDM; NPDR/noDR; NPDR/PDR; PDR/NDM; PDR/noDR | Multiplex Bead Array; ELISA | [74,87] |
Interferon γ-induced protein 10 | CXCL10 | VH | DME/NDM | Multiplex Bead Array | [66] |
Interleukin-1 | IL1 | VH | DME/NDM | Multiplex Bead Array | [66] |
Interleukin-1 receptor antagonist | IL1RN | VH | DME/NDM; PDR/NDM | Multiplex Bead Array | [66] |
Interleukin-2 receptor | IL2R | Serum | NPDR/NDM; PDR/NPDR/noDR; NPDR/PDR; PDR/NDM; PDR/noDR | Chemiluminescent Immunometric Assay | [88] |
Interleukin-6 | IL6 | Plasma; VH | DME/NDM; nPDR/NDM; PDR/NDM | Multiplex Bead Array; ELISA | [66,89] |
Interleukin-6 receptor | IL6R | Serum | DR/noDR | Multiplex Bead Array | [74] |
Interleukin-8 | CXCL8 | Serum; VH | DME/NDM; NPDR/NDM; nPDR/noDR; NPDR/PDR; PDR/NDM; PDR/noDR | Multiplex Bead Array; Chemiluminescent Immunometric Assay | [66,88] |
Interleukin-10 | IL10 | VH | PDR/NDM | Multiplex Bead Array | [66] |
Interleukin-12 | IL12 | VH | PDR/NDM | Multiplex Bead Array | [66] |
Interleukin-13 | IL13 | VH | PDR/NDM | Multiplex Bead Array | [66] |
Keratin, type II cytoskeletal I | KRT1 | VH | PDR/NDM; Anti-VEGF treated PDR/untreated PDR | LC-MS/MS | [33] |
Kininogen 1 | KNG1 | VH | DME/NDM; PDR/NDM | LC-MS/MS | [13,15] |
Lactotransferrin | LTF | Tear | PDR/noDR | LC-MS/MS | [17] |
Leukocyte platelet-activating factor receptor | PTAFR | VH | PDR/Post-mortem | LC-MS/MS | [4] |
Macrophage inflammatory protein 1 | CCL3, CCL4 | VH | PDR/NDM | Multiplex Bead Array | [66] |
Metalloproteinase inhibitor 2 | TIMP2 | VH | PDR/NDM; Anti-VEGF treated PDR/untreated PDR | LC-MS/MS | [33] |
Monocyte chemoattractant protein-1 | CCL2 | VH | PDR/NDM | Multiplex Bead Array | [66] |
Monocyte differentiation antigen CD14 | CD14 | VH | PDR/NDM | SDS-PAGE/LC-MS/MS | [16] |
Nuclear receptor subfamily 1D2 | NR1D2 | VH | DME/NDM | LC-MS/MS | [70] |
Osteopontin | SPP1 | VH | Post-photocoagulation/Pre- photocoagulation | LC-MS/MS | [35] |
Pentraxin-related protein 3 | PTX3 | Plasma | DR/NDM; DR/noDR | ELISA | [85] |
Peptidyl-prolyl cis-trans isomerase a | PPIA | VH | PDR/Post-mortem | LC-MS/MS | [4] |
Peroxiredoxin 2 | PRDX2 | Plasma | DR/NDM | MRM | [73] |
Plasma protease C1 inhibitor | SERPING1 | Plasma; VH | DR/noDR; PDR/Post-mortem | LC-MS/MS; MRM | [4,82] |
Plasma serine protease inhibitor | SERPINA5 | VH | PDR/NDM; Anti-VEGF treated PDR/untreated PDR | LC-MS/MS | [33] |
Plasminogen activator inhibitor 1 | SERPINE1 | Serum | Dr/noDR | Protein Array | [90] |
Pigment epithelium-derived factor | PEDF | Plasma; VH | DR/NDM; DR/noDR; PDR/NDM; PDR/Post-mortem | 2D-DIGE/MALDI-TOF-TOF MS/MS; SDS-PAGE/LC-MS/MS; LC-MS/MS; MRM; ELISA | [4,16,82,91] |
Protein Dj-1 | PARK7 | VH | PDR/Post-mortem | LC-MS/MS | [4] |
Protein FAM3C | FAM3C | VH | DME/NDM | LC-MS/MS | [70] |
Prothrombin | F2 | Plasma; VH | DME/NDM; DR/noDR; PDR/NDM; PDR/Post-mortem | SDS-PAGE/LC-MS/MS; LC-MS/MS; MRM | [4,13,16,82] |
Retinoic acid receptor responder 2 | RARRES2 | VH | DME/NDM | LC-MS/MS | [15] |
Serum amyloid A protein | SAA | Serum;VH | DME/NDM; DR/noDR | LC-MS/MS; Multiplex Bead Array | [15,74] |
E-selectin | SELE | Serum | DR/noDR | Protein Array | [90] |
Soluble glycoprotein 130 | sgp130 | Serum | DR/noDR | Multiplex Bead Array | [74] |
Stromal cell-derived factor 1α | CXCL12 | Serum | Severe DR/Mild DR | ELISA | [86] |
Transthyretin | TTR | VH | DME/NDM; DME/PDR | 2D-DIGE/MALDI-TOF-TOF MS | [39] |
Tumor necrosis factor α | TNF | Serum | NPDR/NDM; NPDR/noDR; NPDR/PDR; PDR/NDM; PDR/noDR | Chemiluminescent Immunometric Assay | [88] |
Tumor necrosis factor receptor | TNFR | Serum | DR/noDR | Multiplex Bead Array | [74,88] |
Vascular cell adhesion protein 1 | VCAM1 | Serum | NPDR/NDM; NPDR/noDR; NPDR/PDR; PDR/NDM; PDR/noDR | Multiplex Bead Array; ELISA | [74,87] |
Vascular endothelial growth factor | VEGF | Serum; Plasma | NPDR/NDM; NPDR/noDR; PDR/NDM; PDR/noDR; NPDR/PDR | ELISA; Multiplex Bead Array | [87,92,93,94] |
Vascular endothelial growth factor receptor 1 | FLT1 | VH | Anti-VEGF treated PDR/untreated PDR | LC-MS/MS | [35] |
Vitronectin | VTN | Plasma; VH | DME/NDM; DR/noDR; PDR/NDM | LC-MS/MS; MRM | [13,15,82] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youngblood, H.; Robinson, R.; Sharma, A.; Sharma, S. Proteomic Biomarkers of Retinal Inflammation in Diabetic Retinopathy. Int. J. Mol. Sci. 2019, 20, 4755. https://doi.org/10.3390/ijms20194755
Youngblood H, Robinson R, Sharma A, Sharma S. Proteomic Biomarkers of Retinal Inflammation in Diabetic Retinopathy. International Journal of Molecular Sciences. 2019; 20(19):4755. https://doi.org/10.3390/ijms20194755
Chicago/Turabian StyleYoungblood, Hannah, Rebekah Robinson, Ashok Sharma, and Shruti Sharma. 2019. "Proteomic Biomarkers of Retinal Inflammation in Diabetic Retinopathy" International Journal of Molecular Sciences 20, no. 19: 4755. https://doi.org/10.3390/ijms20194755
APA StyleYoungblood, H., Robinson, R., Sharma, A., & Sharma, S. (2019). Proteomic Biomarkers of Retinal Inflammation in Diabetic Retinopathy. International Journal of Molecular Sciences, 20(19), 4755. https://doi.org/10.3390/ijms20194755