Clinical Use and Molecular Action of Corticosteroids in the Pediatric Age
Abstract
:1. Introduction
2. Corticosteroids: Molecular Basis
2.1. The Glucocorticoid Receptor
2.2. Glucocorticoid-Receptor-Mediated Therapeutic Effects
2.3. Glucocorticoid Receptor-Mediated Adverse Effects
3. Rheumatological Disorders
3.1. Juvenile Idiopathic Arthritis
3.2. Pediatric Vasculitis
3.3. Juvenile Dermatomyositis
3.4. Scleroderma
3.5. Systemic Lupus Erythematosus
3.6. Rheumatic Fever
4. Uveitis
5. Respiratory Disorders
6. Gastrointestinal Disorders
7. Haematologic Disorders
8. Endocrinological Disorders
9. Neurological Disorders
10. Nephrological Disorders
11. Dermatologic Disorders
Author Contributions
Funding
Conflicts of Interest
References
- Evans, R.M. The steroid and thyroid hormone receptor superfamily. Science 1988, 240, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Ashwell, J.D.; Lu, F.W.; Vacchio, M.S. Glucocorticoids in T cell development and function. Annu. Rev. Immunol. 2000, 18, 309–345. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Anti-inflammatory actions of glucocorticoids: Molecular mechanisms. Clin. Sci. (Lond.) 1998, 94, 557–572. [Google Scholar] [CrossRef]
- Cain, D.W.; Cidlowski, J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 2017, 17, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Oray, M.; Abu Samra, K.; Ebrahimiadib, N.; Meese, H.; Foster, C.S. Long-term side effects of glucocorticoids. Expert Opin. Drug Saf. 2016, 15, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Kirkgoz, T.; Guran, T. Primary adrenal insufficiency in children: Diagnosis and management. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 397–424. [Google Scholar] [CrossRef]
- Liu, D.; Ahmet, A.; Ward, L.; Krishnamoorthy, P.; Mandelcorn, E.D.; Leigh, R.; Brown, J.P.; Cohen, A.; Kim, H. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin. Immunol. 2013, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Nicolaides, N.C.; Pavlaki, A.N.; Maria Alexandra, M.A. Glucocorticoid Therapy and Adrenal Suppression; Endotext, L.J., De, G., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Hollenberg, S.M.; Weinberger, C.; Ong, E.S.; Cerelli, G.; Oro, A.; Lebo, R.; Thompson, E.B.; Rosenfeld, M.G.; Evans, R.M. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 1985, 318, 635–641. [Google Scholar] [CrossRef]
- Oakley, R.H.; Sar, M.; Cidlowski, J.A. The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. J. Biol. Chem. 1996, 271, 9550–9559. [Google Scholar] [CrossRef]
- Nicolaides, N.C.; Galata, Z.; Kino, T.; Chrousos, G.P.; Charmandari, E. The human glucocorticoid receptor: Molecular basis of biologic function. Steroids 2010, 75, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pujols, L.; Mullol, J.; Roca-Ferrer, J.; Torrego, A.; Xaubet, A.; Cidlowski, J.A.; Picado, C. Expression of glucocorticoid receptor alpha- and beta-isoforms in human cells and tissues. Am. J. Physiol. Cell Physiol. 2002, 283, C1324–C1331. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cidlowski, J.A. The human glucocorticoid receptor: One gene, multiple proteins and diverse responses. Steroids 2005, 70, 407–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duma, D.; Jewell, C.M.; Cidlowski, J.A. Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modification. J. Steroid Biochem. Mol. Biol. 2006, 102, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Kino, T.; Manoli, I.; Kelkar, S.; Wang, Y.; Su, Y.A.; Chrousos, G.P. Glucocorticoid receptor (GR) beta has intrinsic, GRalpha-independent transcriptional activity. Biochem. Biophys. Res. Commun. 2009, 381, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Perera, L.; Krahn, J.M.; Jewell, C.M.; Moon, A.F.; Cidlowski, J.A.; Pedersen, L.C. Probing Dominant Negative Behavior of Glucocorticoid Receptor beta through a Hybrid Structural and Biochemical Approach. Mol. Cell. Biol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Lewis-Tuffin, L.J.; Cidlowski, J.A. The physiology of human glucocorticoid receptor beta (hGRbeta) and glucocorticoid resistance. Ann. N. Y. Acad. Sci. 2006, 1069, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.C.; Oakley, R.H.; Jewell, C.M.; Cidlowski, J.A. Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative beta isoform: A mechanism for the generation of glucocorticoid resistance. Proc. Natl. Acad. Sci. USA 2001, 98, 6865–6870. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Thompson, E.B. Gene regulation by the glucocorticoid receptor: Structure: Function relationship. J. Steroid Biochem. Mol. Biol. 2005, 94, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Pratt, W.B.; Galigniana, M.D.; Morishima, Y.; Murphy, P.J. Role of molecular chaperones in steroid receptor action. Essays Biochem. 2004, 40, 41–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratt, W.B. The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J. Biol. Chem. 1993, 268, 21455–21458. [Google Scholar] [PubMed]
- Jonat, C.; Rahmsdorf, H.J.; Park, K.K.; Cato, A.C.; Gebel, S.; Ponta, H.; Herrlich, P. Antitumor promotion and antiinflammation: Down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 1990, 62, 1189–1204. [Google Scholar] [CrossRef]
- Heck, S.; Kullmann, M.; Gast, A.; Ponta, H.; Rahmsdorf, H.J.; Herrlich, P.; Cato, A.C. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J. 1994, 13, 4087–4095. [Google Scholar] [CrossRef] [PubMed]
- Liberman, A.C.; Antunica-Noguerol, M.; Ferraz-de-Paula, V.; Palermo-Neto, J.; Castro, C.N.; Druker, J.; Holsboer, F.; Perone, M.J.; Gerlo, S.; De Bosscher, K.; et al. Compound A, a dissociated glucocorticoid receptor modulator, inhibits T-bet (Th1) and induces GATA-3 (Th2) activity in immune cells. PLoS ONE 2012, 7, e35155. [Google Scholar] [CrossRef] [PubMed]
- Petrillo, M.G.; Fettucciari, K.; Montuschi, P.; Ronchetti, S.; Cari, L.; Migliorati, G.; Mazzon, E.; Bereshchenko, O.; Bruscoli, S.; Nocentini, G.; et al. Transcriptional regulation of kinases downstream of the T cell receptor: Another immunomodulatory mechanism of glucocorticoids. BMC Pharmacol. Toxicol. 2014, 15, 35. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.T.; Wilcox, H.M.; Lai, Z.; Berg, L.J. Signaling through Itk promotes T helper 2 differentiation via negative regulation of T-bet. Immunity 2004, 21, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Slade, J.D.; Hepburn, B. Prednisone-induced alterations of circulating human lymphocyte subsets. J. Lab. Clin. Med. 1983, 101, 479–487. [Google Scholar] [PubMed]
- Barnes, P.J. Corticosteroids, IgE, and atopy. J. Clin. Investig. 2001, 107, 265–266. [Google Scholar] [CrossRef] [Green Version]
- Vandevyver, S.; Dejager, L.; Tuckermann, J.; Libert, C. New insights into the anti-inflammatory mechanisms of glucocorticoids: An emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology 2013, 154, 993–1007. [Google Scholar] [CrossRef]
- Frijters, R.; Fleuren, W.; Toonen, E.J.; Tuckermann, J.P.; Reichardt, H.M.; van der Maaden, H.; van Elsas, A.; van Lierop, M.J.; Dokter, W.; de Vlieg, J.; et al. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor. BMC Genom. 2010, 11, 359. [Google Scholar] [CrossRef]
- Ehrchen, J.; Steinmüller, L.; Barczyk, K.; Tenbrock, K.; Nacken, W.; Eisenacher, M.; Nordhues, U.; Sorg, C.; Sunderkotter, C.; Roth, J. Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 2007, 109, 1265–1274. [Google Scholar] [CrossRef]
- Mukherjee, A.B.; Zhang, Z.; Chilton, B.S. Uteroglobin: A steroid-inducible immunomodulatory protein that founded the Secretoglobin superfamily. Endocr. Rev. 2007, 28, 707–725. [Google Scholar] [CrossRef] [PubMed]
- Young, J.D.; Lawrence, A.J.; MacLean, A.G.; Leung, B.P.; McInnes, I.B.; Canas, B.; Pappin, D.J.; Stevenson, R.D. Thymosin beta 4 sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids. Nat. Med. 1999, 5, 1424–1427. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, C.; Akdis, M.; Holopainen, P.; Woolley, N.J.; Hense, G.; Ruckert, B.; Mantel, P.Y.; Menz, G.; Akdis, C.A.; Blaser, K.; et al. Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma. J. Allergy Clin. Immunol. 2004, 114, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Verhoef, C.M.; van Roon, J.A.; Vianen, M.E.; Lafeber, F.P.; Bijlsma, J.W. The immune suppressive effect of dexamethasone in rheumatoid arthritis is accompanied by upregulation of interleukin 10 and by differential changes in interferon gamma and interleukin 4 production. Ann. Rheum. Dis. 1999, 58, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Re, F.; Muzio, M.; De Rossi, M.; Polentarutti, N.; Giri, J.G.; Mantovani, A.; Colotta, F. The type II “receptor” as a decoy target for interleukin 1 in polymorphonuclear leukocytes: Characterization of induction by dexamethasone and ligand binding properties of the released decoy receptor. J. Exp. Med. 1994, 179, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Levine, S.J.; Benfield, T.; Shelhamer, J.H. Corticosteroids induce intracellular interleukin-1 receptor antagonist type I expression by a human airway epithelial cell line. Am. J. Respir. Cell Mol. Biol. 1996, 15, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Deroo, B.J.; Archer, T.K. Glucocorticoid receptor activation of the I kappa B alpha promoter within chromatin. Mol. Biol. Cell. 2001, 12, 3365–3374. [Google Scholar] [CrossRef] [PubMed]
- Das, H.; Kumar, A.; Lin, Z.; Patino, W.D.; Hwang, P.M.; Feinberg, M.W.; Majumder, P.K. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc. Natl. Acad. Sci. USA 2006, 103, 6653–6658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayroldi, E.; Cannarile, L.; Migliorati, G.; Nocentini, G.; Delfino, D.V.; Riccardi, C. Mechanisms of the anti-inflammatory effects of glucocorticoids: Genomic and nongenomic interference with MAPK signaling pathways. FASEB J. 2012, 26, 4805–4820. [Google Scholar] [CrossRef] [PubMed]
- Smoak, K.A.; Cidlowski, J.A. Mechanisms of glucocorticoid receptor signaling during inflammation. Mech. Ageing Dev. 2004, 125, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Glass, C.K.; Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol. 2010, 10, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, H.M.; Kaestner, K.H.; Tuckermann, J.; Kretz, O.; Wessely, O.; Bock, R.; Gass, P.; Schmid, W.; Herrlich, P.; Angel, P.; et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 1998, 93, 531–541. [Google Scholar] [CrossRef]
- Dahlman-Wright, K.; Grandien, K.; Nilsson, S.; Gustafsson, J.A.; Carlstedt-Duke, J. Protein-protein interactions between the DNA-binding domains of nuclear receptors: Influence on DNA-binding. J. Steroid Biochem. Mol. Biol. 1993, 45, 239–250. [Google Scholar] [CrossRef]
- Dahlman-Wright, K.; Wright, A.; Gustafsson, J.A.; Carlstedt-Duke, J. Interaction of the glucocorticoid receptor DNA-binding domain with DNA as a dimer is mediated by a short segment of five amino acids. J. Biol. Chem. 1991, 266, 3107–3112. [Google Scholar] [PubMed]
- Adams, M.; Meijer, O.C.; Wang, J.; Bhargava, A.; Pearce, D. Homodimerization of the glucocorticoid receptor is not essential for response element binding: Activation of the phenylethanolamine N-methyltransferase gene by dimerization-defective mutants. Mol. Endocrinol. 2003, 17, 2583–2592. [Google Scholar] [CrossRef] [PubMed]
- Rogatsky, I.; Wang, J.C.; Derynck, M.K.; Nonaka, D.F.; Khodabakhsh, D.B.; Haqq, C.M.; Darimont, B.D.; Garabedian, M.J.; Yamamoto, K.R. Target-specific utilization of transcriptional regulatory surfaces by the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 2003, 100, 13845–13850. [Google Scholar] [CrossRef] [Green Version]
- Liden, J.; Delaunay, F.; Rafter, I.; Gustafsson, J.; Okret, S. A new function for the C-terminal zinc finger of the glucocorticoid receptor. Repression of RelA transactivation. J. Biol. Chem. 1997, 272, 21467–21472. [Google Scholar] [CrossRef]
- Tuckermann, J.P.; Reichardt, H.M.; Arribas, R.; Spanbroek, R.; Neumann, A.; Illing, A.; Clausen, B.E.; Stride, B.; Forster, I.; Habenicht, A.J.; et al. The DNA binding-independent function of the glucocorticoid receptor mediates repression of AP-1-dependent genes in skin. J. Cell Biol. 1999, 147, 1365–1370. [Google Scholar] [CrossRef]
- Dietzel, F.; Boettger, M.K.; Dahlke, K.; Holzer, J.; Lehmann, F.; Gajda, M.; Brauer, R.; Schaible, H.G.; Kaiser, W.A.; Hilger, I. Assessment of rat antigen-induced arthritis and its suppression during glucocorticoid therapy by use of hemicyanine dye probes with different molecular weight in near-infrared fluorescence optical imaging. Investig. Radiol. 2013, 48, 729–737. [Google Scholar] [CrossRef]
- Kleiman, A.; Hübner, S.; Rodriguez Parkitna, J.M.; Neumann, A.; Hofer, S.; Weigand, M.A.; Bauer, M.; Schmid, W.; Schutz, G.; Libert, C.; et al. Glucocorticoid receptor dimerization is required for survival in septic shock via suppression of interleukin-1 in macrophages. FASEB J. 2012, 26, 722–729. [Google Scholar] [CrossRef]
- Tuckermann, J.P.; Kleiman, A.; Moriggl, R.; Spanbroek, R.; Neumann, A.; Illing, A.; Clausen, B.E.; Stride, B.; Forster, I.; Habenicht, A.J.; et al. Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy. J. Clin. Investig. 2007, 117, 1381–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Raalte, D.H.; Ouwens, D.M.; Diamant, M. Novel insights into glucocorticoid-mediated diabetogenic effects: Towards expansion of therapeutic options? Eur. J. Clin. Investig. 2009, 39, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Jewell, C.M.; Scoltock, A.B.; Hamel, B.L.; Yudt, M.R.; Cidlowski, J.A. Complex human glucocorticoid receptor dim mutations define glucocorticoid induced apoptotic resistance in bone cells. Mol. Endocrinol. 2012, 26, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Galigniana, M.D.; Piwien-Pilipuk, G.J. Inhibition of glucocorticoid receptor binding by nitric oxide. Mol. Pharmacol. 1999, 55, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Silverman, M.N.; Sternberg, E.M. Glucocorticoid regulation of inflammation and its functional correlates: From HPA axis to glucocorticoid receptor dysfunction. Ann. N. Y. Acad. Sci. 2012, 1261, 55–63. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Abdel-Rehim, A.S.; Farres, M.N.; Muhammed, H.S. Influence of glucocorticoid receptor gene NR3C1 646 C>G polymorphism on glucocorticoid resistance in asthmatics: A preliminary study. Cent. Eur. J. Immunol. 2015, 40, 325–330. [Google Scholar] [CrossRef]
- Petty, R.E.; Southwood, T.R.; Manners, P.; Baum, J.; Glass, D.N.; Goldenberg, J.; He, X.; Maldonado-Cocco, J.; Orozco-Alcala, J.; Prieur, A.M.; et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: Second revision, Edmonton, 2001. J Rheumatol. 2004, 31, 390–392. Available online: http://www.ncbi.nlm.nih.gov/pubmed/14760812 (accessed on 16 October 2018).
- Guzman, J.; Oen, K.; Tucker, L.B.; Huber, A.M.; Shiff, N.; Boire, G.; Scuccimarri, R.; Berard, R.; Tse, S.M.; Morishita, K.; et al. The outcomes of juvenile idiopathic arthritis in children managed with contemporary treatments: Results from the ReACCh-Out cohort. Ann. Rheum. Dis. 2015, 74, 1854–1860. [Google Scholar] [CrossRef]
- Vannucci, G.; Cantarini, L.; Giani, T.; Marrani, E.; Moretti, D.; Pagnini, I.; Simonini, G.; Cimaz, R. Glucocorticoids in the management of systemic juvenile idiopathic arthritis. Pediatr. Drugs 2013, 15. [Google Scholar] [CrossRef]
- Ruperto, N.; Brunner, H.I.; Quartier, P.; Constantin, T.; Wulffraat, N.; Horneff, G.; Brik, R.; McCann, L.; Kasapcopur, O.; Rutkowska-Sak, L.; et al. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 2012, 367, 2396–2406. [Google Scholar] [CrossRef]
- Zamora-Legoff, J.A.; Krause, M.L.; Crowson, C.S.; Muskardin, T.W.; Mason, T.; Matteson, E.L. Treatment of patients with juvenile idiopathic arthritis (JIA) in a population-based cohort. Clin. Rheumatol. 2016, 35, 1493–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beukelman, T.; Patkar, N.M.; Saag, K.G.; Tolleson-Rinehart, S.; Cron, R.Q.; DeWitt, E.M.; Ilowite, N.T.; Kimura, Y.; Laxer, R.M.; Lovell, D.J.; et al. American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: Initiation and safety monitoring of therapeutic agents for the treatment of arthritis and systemic features. Arthritis Care Res. 2011, 63, 465–482. [Google Scholar] [CrossRef] [PubMed]
- Ravelli, A.; Davì, S.; Bracciolini, G.; Pistorio, A.; Consolaro, A.; van Dijkhuizen, E.H.P.; Lattanzi, B.; Filocamo, G.; Verazza, S.; Gerloni, V.; et al. Intra-articular corticosteroids versus intra-articular corticosteroids plus methotrexate in oligoarticular juvenile idiopathic arthritis: A multicentre, prospective, randomised, open-label trial. Lancet 2017, 389, 909–916. [Google Scholar] [CrossRef]
- Shim, J.O.; Han, K.; Park, S.; Kim, G.H.; Ko, J.S.; Chung, J.Y. Ten-year Nationwide Population- based Survey on the Characteristics of Children with Henoch-Schӧnlein Purpura in Korea. J. Korean Med. Sci. 2018, 33, 1–10. [Google Scholar] [CrossRef]
- Hahn, D.; Hodson, E.M.; Willis, N.S.; Craig, J.C. Interventions for preventing and treating kidney disease in Henoch-Schönlein Purpura (HSP). Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef] [Green Version]
- Delbet, J.D.; Hogan, J.; Aoun, B.; Stoica, I.; Salomon, R.; Decramer, S.; Brocheriou, I.; Deschenes, G.; Ulinski, T. Clinical outcomes in children with Henoch–Schönlein purpura nephritis without crescents. Pediatr Nephrol. 2017, 32, 1193–1199. [Google Scholar] [CrossRef]
- Kato, H.; Koike, S.; Yokoyama, T. Kawasaki disease: Effect of treatment on coronary artery involvement. Pediatrics 1979, 63, 175–179. Available online: http://www.ncbi.nlm.nih.gov/pubmed/440805 (accessed on 16 October 2018).
- Chen, S.; Dong, Y.; Kiuchi, M.G.; Wang, J.; Li, R.; Ling, Z.; Zhou, T.; Wang, Z.; Martinek, M.; Purerfellner, H.; et al. Coronary Artery Complication in Kawasaki Disease and the Importance of Early Intervention: A Systematic Review and Meta-analysis. JAMA Pediatr. 2016, 170, 1156–1163. [Google Scholar] [CrossRef]
- Wardle, A.J.; Connolly, G.M.; Seager, M.J.; Tulloh, R.M. Corticosteroids for the treatment of Kawasaki disease in children. Cochrane Database Syst. Rev. 2017, 1. [Google Scholar] [CrossRef]
- Yang, T.-J.; Lin, M.-T.; Lu, C.-Y.; Chen, J.M.; Lee, P.I.; Huang, L.M.; Wu, M.H.; Chang, L.Y. The prevention of coronary arterial abnormalities in Kawasaki disease: A meta-analysis of the corticosteroid effectiveness. J. Microbiol. Immunol. Infect. 2018, 51, 321–331. [Google Scholar] [CrossRef]
- Research Committee of the Japanese Society of Pediatric Cardiology, Cardiac Surgery Committee for Development of Guidelines for Medical Treatment of Acute Kawasaki Disease. Guidelines for medical treatment of acute Kawasaki disease: Report of the Research Committee of the Japanese Society of Pediatric Cardiology and Cardiac Surgery (2012 revised version). Pediatr. Int. 2014, 56, 135–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakob, A.; von Kries, R.; Horstmann, J.; Hufnagel, M.; Stiller, B.; Berner, R.; Schachinger, E.; Meyer, K.; Obermeier, V. Failure to Predict High-Risk Kawasaki Disease Patients in a Population-Based Study Cohort in Germany. Pediatr. Infect. Dis. J. 2018, 37, 1. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriou, D.; Levin, M.; Shingadia, D.; Tulloh, R.; Klein, N.J.; Brogan, P.A. Management of Kawasaki disease. Arch. Dis. Child. 2014, 99, 74–83. [Google Scholar] [CrossRef] [PubMed]
- McCrindle, B.W.; Rowley, A.H.; Newburger, J.W.; Burns, J.C.; Bolger, A.F.; Gewitz, M.; Baker, A.L.; Jackson, M.A.; Takahashi, M.; Shah, P.B.; et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals From the American Heart Association. Circulation 2017, 135, e927–e999. [Google Scholar] [CrossRef] [PubMed]
- Huber, A.M. Juvenile Idiopathic Inflammatory Myopathies. Pediatr. Clin. N. Am. 2018, 65, 739–756. [Google Scholar] [CrossRef] [PubMed]
- Kishi, T.; Bayat, N.; Ward, M.M.; Huber, A.M.; Wu, L.; Mamyrova, G.; Targoff, I.N.; Warren-Hicks, W.J.; Miller, F.W.; Rider, L.G.; Childhood Myositis Heterogeneity Study Group. Medications Received by Patients with Juvenile Dermatomyositis. Semin. Arthritis Rheum. 2018. [Google Scholar] [CrossRef] [PubMed]
- Enders, F.B.; Bader-Meunier, B.; Baildam, E.; Constantin, T.; Dolezalova, P.; Feldman, B.M.; Lahdenne, P.; Magnusson, B.; Nistala, K.; Ozen, S.; et al. Consensus-based recommendations for the management of juvenile dermatomyositis. Ann. Rheum. Dis. 2017, 76, 329–340. [Google Scholar] [CrossRef]
- Hinze, C.H.; Speth, F.; Oommen, P.T.; Haas, J.-P. Current management of juvenile dermatomyositis in Germany and Austria: An online survey of pediatric rheumatologists and pediatric neurologists. Pediatr. Rheumatol. 2018, 16, 38. [Google Scholar] [CrossRef]
- Ruperto, N.; Pistorio, A.; Oliveira, S.; Zulian, F.; Cuttica, R.; Ravelli, A.; Fischbach, M.; Magnusson, B.; Sterba, G.; Avcin, T.; et al. Prednisone versus prednisone plus ciclosporin versus prednisone plus methotrexate in new-onset juvenile dermatomyositis: A randomised trial. Lancet 2016, 387, 671–678. [Google Scholar] [CrossRef]
- Stevens, B.E.; Torok, K.S.; Li, S.C.; Hershey, N.; Curran, M.; Higgins, G.C.; Moore, K.F.; Egla Rabinovich, C.; Dodson, S.; Stevens, A.M.; et al. Clinical characteristics and factors associated with disability and impaired quality of life in children with juvenile systemic sclerosis. Arthritis Care Res. 2018. [Google Scholar] [CrossRef]
- Martini, G.; Foeldvari, I.; Russo, R.; Cuttica, R.; Eberhard, A.; Ravelli, A.; Lehman, T.J.; de Oliveira, S.K.; Susic, G.; Lyskina, G.; et al. Systemic sclerosis in childhood: Clinical and immunologic features of 153 patients in an international database. Arthritis Rheum. 2006, 54, 3971–3978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torok, K.S. Pediatric scleroderma: Systemic or localized forms. Pediatr. Clin. N. Am. 2012, 59, 381–405. [Google Scholar] [CrossRef] [PubMed]
- Marrani, E.; Foeldvari, I.; Lopez, J.A.; Cimaz, R.; Simonini, G. Comparing ultraviolet light A photo(chemo)therapy with Methotrexate protocol in childhood localized scleroderma: Evidence from systematic review and meta-analysis approach. Semin. Arthritis Rheum. 2018. [Google Scholar] [CrossRef] [PubMed]
- Zulian, F.; Martini, G.; Vallongo, C.; Vittadello, F.; Falcini, F.; Patrizi, A.; Alessio, M.; La Torre, F.; Podda, R.A.; Gerloni, V.; et al. Methotrexate treatment in juvenile localized scleroderma: A randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2011, 63, 1998–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorn, G.W.; Forsham, P.H.; Frawley, T.F.; Jr, S.R.H.; Roche, M.; Staehelin, D.; Wilson, D.L. Medical progress: The clinical usefulness of ACTH and cortisone. N. Engl. J. Med. 1950, 242, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Thorn, G.W.; Bayles, T.B.; Massell, B.F.; Forsham, P.H.; Hill, S.R., Jr.; Smith, S., III; Warren, J.E. Studies on the relation of pituitary-adrenal function to rheumatic disease. N. Engl. J. Med. 1949, 241, 529–537. [Google Scholar] [CrossRef]
- Nutan, F.; Ortega-Loayza, A.G. Cutaneous Lupus: A Brief Review of Old and New Medical Therapeutic Options. J. Investig. Dermatol. Symp. Proc. 2017, 18, S64–S68. [Google Scholar] [CrossRef]
- Groot, N.; de Graeff, N.; Avcin, T.; Bader-Meunier, B.; Brogan, P.; Dolezalova, P.; Feldman, B.; Kone-Paut, I.; Lahdenne, P.; Marks, S.D.; et al. European evidence-based recommendations for diagnosis and treatment of childhood-onset systemic lupus erythematosus: The SHARE initiative. Ann. Rheum. Dis. 2017, 76, 1788–1796. [Google Scholar] [CrossRef]
- Groot, N.; de Graeff, N.; Marks, S.D.; Brogan, P.; Avcin, T.; Bader-Meunier, B.; Dolezalova, P.; Feldman, B.M.; Kone-Paut, I.; Lahdenne, P.; et al. European evidence-based recommendations for the diagnosis and treatment of childhood-onset lupus nephritis: The SHARE initiative. Ann. Rheum. Dis. 2017, 76, 1965–1973. [Google Scholar] [CrossRef]
- Karthikeyan, G.; Guilherme, L. Acute rheumatic fever. Lancet 2018, 392, 161–174. [Google Scholar] [CrossRef]
- Cilliers, A.; Adler, A.J.; Saloojee, H. Anti-inflammatory treatment for carditis in acute rheumatic fever. Cochrane Database Syst. Rev. 2015, 5, CD003176. [Google Scholar] [CrossRef] [PubMed]
- Human, D.G.; Hill, I.D.; Fraser, C.B. Treatment choice in acute rheumatic carditis. Arch. Dis. Child. 1984, 59, 410–413. [Google Scholar] [CrossRef]
- Walker, A.R.; Tani, L.Y.; Thompson, J.A.; Firth, S.D.; Veasy, L.G.; Bale, J.F., Jr. Rheumatic chorea: Relationship to systemic manifestations and response to corticosteroids. J. Pediatr. 2007, 151, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Paz, J.A.; Silva, C.A.; Marques-Dias, M.J. Randomized double-blind study with prednisone in Sydenham’s chorea. Pediatr. Neurol. 2006, 34, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Cantarini, L.; Simonini, G.; Frediani, B.; Pagnini, I.; Galeazzi, M.; Cimaz, R. Treatment strategies for childhood noninfectious chronic uveitis: An update. Expert Opin. Investig. Drugs 2012, 21, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Heiligenhaus, H.; Michels, C.; Schumacher, C. Evidence-based, interdisciplinary guidelines for anti-inflammatory treatment of uveitis associated with juvenile idiopathic arthritis. Rheumatol. Int. 2012, 32, 1121–1133. [Google Scholar] [CrossRef]
- Rowe, B.H.; Spooner, C.; Ducharme, F.M.; Bretzlaff, J.A.; Bota, G.W. Early emergency department treatment of acute asthma with systemic corticosteroids. Cochrane Database Syst. Rev. 2001, 1, CD002178. [Google Scholar] [CrossRef]
- Hendeles, L. Selecting a systemic corticosteroid for acute asthma in young children. J. Pediatr. 2003, 142, S40–S44. [Google Scholar] [CrossRef]
- Paniagua, S.; Lopez, R.; Munoz, N.; Tames, M.; Mojica, E.; Arana-Arri, E.; Mintegi, S.; Benito, J. Randomized Trial of Dexamethasone Versus Prednisone for Children with Acute Asthma Exacerbations. J. Pediatr. 2017, 191, 190–196.e1. [Google Scholar] [CrossRef]
- Foster, S.J.; Cooper, M.N.; Oosterhof, S.; Borland, M.L. Oral prednisolone in preschool children with virus-associated wheeze: A prospective, randomized, double-blind, placebo-controlled trial. Lancet Respir. Med. 2018, 6, 97–106. [Google Scholar] [CrossRef]
- Ortiz-Alvarez, O. Acute management of croup in the emergency department. Paediatr. Child Health. 2017, 22, 166–173. [Google Scholar] [CrossRef]
- Cheng, K.; Ashby, D.; Smyth, R.L. Oral steroids for long-term use in cystic fibrosis. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, T.; Hempstead, S.E.; Brady, C.; Cannon, C.L.; Clark, K.; Condren, M.E.; Guill, M.F.; Guillerman, R.P.; Leone, C.G.; Maguiness, K.; et al. Clinical Practice Guidelines From the Cystic Fibrosis Foundation for Preschoolers With Cystic Fibrosis. Pediatrics 2016, 137, e20151784. [Google Scholar] [CrossRef] [PubMed]
- Faubion, W.A. The natural history of corticosteroid therapy for inflammatory bowel disease: A population-based study. Gastroenterology 2001, 121, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Ruemmele, F.M.; Orlanski-Meyer, E.; Griffiths, A.M.; de Carpi, J.M.; Bronsky, J.; Veres, G.; Aloi, M.; Strisciuglio, C.; Braegger, C.P.; et al. Management of paediatric ulcerative colitis, Part 2: Acute severe colitis; an evidence-based consensus guideline from ECCO and ESPGHAN. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 292–310. [Google Scholar] [CrossRef]
- Turner, D.; Mack, D.; Leleiko, N.; Walters, T.D.; Uusoue, K.; Leach, S.T.; Day, A.S.; Crandall, W.; Silverberg, M.S.; Markowitz, J.; et al. Severe pediatric ulcerative colitis: A prospective multicenter study of outcomes and predictors of response. Gastroenterology 2010, 138, 2282–2291. [Google Scholar] [CrossRef] [PubMed]
- Truelove, S.C.; Witts, L.J. Cortisone in ulcerative colitis; final report on a therapeutic trial. Br. Med. J. 1955, 29, 1041–1048. [Google Scholar] [CrossRef]
- Turner, D.; Griffiths, A.M. Acute severe ulcerative colitis in children: A systematic review. Inflamm. Bowel Dis. 2011, 17, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Choshen, S.; Finnamore, H.; Auth, M.K.; Bdolah-Abram, T.; Shteyer, E.; Mack, D.; Hyams, J.; Leleiko, N.; Griffiths, A.; Turner, D. Corticosteroid Dosing in Pediatric Acute Severe Ulcerative Colitis: A Propensity Score Analysis. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 58–64. [Google Scholar] [CrossRef]
- Hyams, J.; Markowitz, J.; Lerer, T.; Griffiths, A.; Mack, D.; Bousvaros, A.; Otley, A.; Evans, J.; Pfefferkorn, M.; Rosh, J.; et al. The natural history of corticosteroid therapy for ulcerative colitis in children. Clin. Gastroenterol. Hepatol. 2006, 4, 1118–1123. [Google Scholar] [CrossRef]
- De Iudicibus, S.; Franca, R.; Martelossi, S.; Ventura, A.; Decorti, G. Molecular mechanism of glucocorticoid resistance in inflammatory bowel disease. World J. Gastroenterol. 2011, 17, 1095–1108. [Google Scholar] [CrossRef] [PubMed]
- Ruemmele, F.M.; Veres, G.; Kolho, K.L.; Griffiths, A.; Levine, A.; Escher, J.C.; Amil Dias, J.; Barabino, A.; Braegger, C.P.; Bronsky, J.; et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J. Crohn’s Colitis 2014, 8, 1179–1207. [Google Scholar] [CrossRef] [PubMed]
- Mieli-Vergani, G.; Vergani, D.; Baumann, U.; Czubkowski, P.; Debray, D.; Dezsofi, A.; Fischler, B.; Gupte, G.; Hierro, L.; Indolfi, G.; et al. Diagnosis and Management of Paediatric Autoimmune Liver Disease: ESPGHAN Hepatology Committee Position Statement. JPGN 2018, 66, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Nixon, C.P.; Sweeney, J.D. Autoimmune Cytopenias: Diagnosis & Management. R. Isl. Med. J. 2016, 99, 36–40. [Google Scholar]
- Diagnosis and management of newly diagnosed childhood autoimmune haemolytic anaemia. Recommendations from the Red Cell Study Group of the Paediatric Haemato-Oncology Italian Association. Blood Transfus. 2017, 15, 259–267. [CrossRef]
- Aladjidi, N.; Leverger, G.; Leblanc, T.; Picat, M.Q.; Michel, G.; Bertrand, Y.; Bader-Meunier, B.; Robert, A.; Nelken, B.; Gandemer, V.; et al. New insights into childhood autoimmune hemolytic anemia: A French national observational study of 265 children. Haematologica 2011, 96, 655–663. [Google Scholar] [CrossRef] [PubMed]
- De Mattia, D.; Del Principe, D.; Del Vecchio, G.C.; Jankovic, M.; Arrighini, A.; Giordano, P.; Menichelli, A.; Mori, P.; Zecca, M.; Pession, A. Acute childhood idiopathic thrombocytopenic purpura: AIEOP consensus guidelines for diagnosis and treatment. Haematologica 2000, 85, 420–424. [Google Scholar] [CrossRef]
- Giannini, C.; Mohn, A. Systemic Corticosteroids for Inflammatory Disorders in Pediatrics; Cimaz, R., Ed.; Adis (Springer): Basel, Switzerland, 2015; pp. 135–155. [Google Scholar]
- Patti, G.; Guzzeti, C.; Di Iorgi, N.; Maria Allegri, A.E.; Napoli, F.; Loche, S.; Maghnie, M. Central adrenal insufficiency in children and adolescents. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 425–444. [Google Scholar] [CrossRef]
- Hahner, S.; Allolio, B. Therapeutic management of adrenal insufficiency. Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 167–179. [Google Scholar] [CrossRef]
- Alkatib, A.A.; Cosma, M.; Elamin, M.B.; Maier, L.; Wudy, S.A.; Hartmann, M.F.; Heinrich, U. A systematic review and meta-analysis of randomized placebo-controlled trials of DHEA treatment effects on quality of life in women with adrenal insufficiency. J. Clin. Endocrinol. Metab. 2009, 94, 3676–3681. [Google Scholar] [CrossRef]
- Binder, G.; Weber, S.M.; Ehrismann, M.; Zaiser, N.; Meisner, C.; Ranke, M.B.; Maier, L.; Wudy, S.A.; Hartmann, M.F.; Heinrich, U.; et al. Effects of dehydroepiandrosterone therapy on pubic hair growth and psychological well being in adolescent girls and young women with central adrenal insufficiency: A double-blind, randomized, placebo-controlled phase III trial. J. Clin. Endocrinol. Metab. 2009, 94, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Waldman, E.T.; Gorman, M.P.; Rensel, M.R.; Austin, T.E.; Hertz, D.P.; Kuntz, N.L.; Network of Pediatric Multiple Sclerosis Centers of Excellence of National Multiple Sclerosis Society. Management of Pediatric Central Nervous System Demyelinating Disorders: Consensus of United States Neurologists. J Child Neurol. 2011, 26, 675–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, R.A.R.; Gunn, A.A.; van Doorn, P.A. Corticosteroids for Guillain-Barré syndrome. Cochrane Database Syst. Rev. 2016, 10, CD001446. [Google Scholar] [CrossRef] [PubMed]
- Mooneyham, G.C.; Gallentine, W.; Van Mater, H. Evaluation and Management of Autoimmune Encephalitis A Clinical Overview for the Practicing Child Psychiatrist. Child Adolesc. Psychiatr. Clin. N. Am. 2018, 27, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Burkett, J.G.; Ailani, J. An Up to Date Review of Pseudotumor Cerebri Syndrome. Curr. Neurol. Neurosci. Rep. 2018, 18, 33. [Google Scholar] [CrossRef] [PubMed]
- Lorch, M.; Teach, S.J. Facial Nerve Palsy. Pediatr. Emerg. Care 2010, 26, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Babl, F.E.; Mackay, M.T.; Borland, M.L.; Herd, D.W.; Kochar, A.; Hort, J.; Rao, A.; Cheek, J.A.; Furyk, J.; Barrow, L.; et al. Bell’s Palsy in Children (BellPIC): Protocol for a multicentre, placebo-controlled randomized trial. BMC Pediatr. 2017, 17, 53. [Google Scholar] [CrossRef]
- Noone, D.G.; Iijima, K.; Parekh, R. Idiopathic nephrotic syndrome in children. Lancet 2018, 392, 61–74. [Google Scholar] [CrossRef]
- Hofstra, J.M.; Fervenza, F.C.; Wetzels, J.F.M. Treatment of idiopathic membranous nephropathy. Nat. Rev. Nephrol. 2013, 9, 443–458. [Google Scholar] [CrossRef]
- Hodson, E.M.; Willis, N.S.; Craig, J.C. Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst. Rev. 2007, 4, CD001533. [Google Scholar] [CrossRef]
- Teeninga, N.; Kist-van Holthe, J.E.; van Rijswijk, N.; de Mos, N.I.; Hop, W.C.; Wetzels, J.F.; van der Heijden, A.J.; Nauta, J. Extending prednisolone treatment does not reduce relapses in childhood nephrotic syndrome. J. Am. Soc. Nephrol. 2013, 24, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, N.; Nakanishi, K.; Sako, M.; Oba, M.S.; Mori, R.; Ota, E.; Ishikura, K.; Hataya, H.; Honda, M.; Ito, S.; et al. A multicenter randomized trial indicates initial prednisolone treatment for childhood nephrotic syndrome for two months is not inferior to six-month treatment. Kidney Int. 2015, 87, 225–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, A.; Saha, A.; Kumar, M.; Sharma, S.; Afzal, K.; Mehta, A.; Kalaivani, M.; Hari, P.; Bagga, A. Extending initial prednisolone treatment in a randomized control trial from 3 to 6 months did not significantly influence the course of illness in children with steroid-sensitive nephrotic syndrome. Kidney Int. 2015, 87, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Pasini, A.; Benetti, E.; Conti, G.; Ghio, L.; Lepore, M.; Massella, L.; Molino, D.; Peruzzi, L.; Emma, F.; Fede, C.; et al. The Italian Society for Pediatr. Nephrol. (SINePe) consensus document on the management of nephrotic syndrome in children: Part I-Diagnosis and treatment of the first episode and the first relapse. Ital. J. Pediatr. 2017, 43, 41. [Google Scholar] [CrossRef] [PubMed]
- Becherucci, F.; Mazzinghi, B.; Provenzano, A.; Murer, L.; Giglio, S.; Romagnani, P. Lessons from genetics: Is it time to revise the therapeutic approach to children with steroid-resistant nephrotic syndrome? J. Nephrol. 2016, 29, 543–550. [Google Scholar] [CrossRef]
- Liu, J.; Wan, Z.; Song, Q.; Li, Z.; He, Y.; Tang, Y.; Xie, W.; Xie, Y.; Zhang, J. NR3C1 gene polymorphisms are associated with steroid resistance in patients with primary nephrotic syndrome. Pharmacogenomics 2018, 19, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Han, S.S.; Xu, Y.Q.; Lu, Y.; Gu, X.C.; Wang, Y. A PRISMA-compliant meta-analysis of MDR1 polymorphisms and idiopathic nephrotic syndrome: Susceptibility and steroid responsiveness. Medicine 2017, 96, e7191. [Google Scholar] [CrossRef]
- Turolo, S.; Edefonti, A.; Lepore, M.; Ghio, L.; Cuzzoni, E.; Decorti, G.; Pasini, A.; Materassi, M.; Malaventura, C.; Pugliese, F.; et al. SXR rs3842689: A prognostic factor for steroid sensitivity or resistance in pediatric idiopathic nephrotic syndrome. Pharmacogenomics 2016, 17, 1227–1233. [Google Scholar] [CrossRef]
- Ma, Z.; Gao, X.; Zhao, W.; Li, Y.; Li, C.; Li, C. Relationship between expression of Pad1 homologue and multidrug resistance of idiopathic nephrotic syndrome. Pediatr. Int. 2009, 51, 732–735. [Google Scholar] [CrossRef]
- Guan, F.; Peng, J.; Wang, L.; Yan, X.B.; Dong, C.; Jiang, X.H. Histone deacetylase-2 expression and activity in children with nephrotic syndrome with different glucocorticoid response. Pediatr. Nephrol. 2017, 33, 269–276. [Google Scholar] [CrossRef]
- Zuberbier, T.; Aberer, W.; Asero, R.; Abdul Latiff, A.H.; Baker, D.; Ballmer-Weber, B.; Bernstein, J.A.; Bindslev-Jensen, C.; Brzoza, Z.; Buense Bedrikow, R.; et al. The EAACI/GA²LEN/EDF/WAO guideline for the definition, classification, diagnosis and management of urticaria. Allergy 2018, 73, 1393–1414. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, A.; Barbarot, S.; Bieber, T.; Christen-Zaech, S.; Deleuran, M.; Fink-Wagner, A.; Gieler, U.; Girolomoni, G.; Lau, S.; Muraro, A.; et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: Part I. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 657–682. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, A.; Barbarot, S.; Bieber, T.; Christen-Zaech, S.; Deleuran, M.; Fink-Wagner, A.; Gieler, U.; Girolomoni, G.; Lau, S.; Muraro, A.; et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: Part II. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 850–878. [Google Scholar] [CrossRef] [PubMed]
- Giavina-Bianchi, M.; Giavina-Bianchi, P. Systemic Treatment for Severe Atopic Dermatitis. J. Dermatol. Treat. 2018. [Google Scholar] [CrossRef] [PubMed]
- Forte, W.C.; Sumita, J.M.; Rodrigues, A.G.; Liuson, D.; Tanaka, E. Rebound phenomenon to systemic corticosteroid in atopic dermatitis. Allergol. Immunopathol. 2005, 33, 307–311. [Google Scholar] [CrossRef]
- Fortina, A.B.; Bardazzi, F.; Berti, S.; Carnevale, C.; Di Lernia, V.; El Hachem, M.; Neri, I.; Gelmetti, C.M.; Lora, V.; Mazzatenta, C.; et al. Treatment of severe psoriasis in children: Recommendations of an Italian expert group. Eur. J. Pediatr. 2017, 176, 1339–1354. [Google Scholar] [CrossRef] [PubMed]
- Mrowietz, U.; Domm, S. Systemic steroids in the treatment of psoriasis: What is fact, what is fiction? J. Eur. Acad. Dermatol. Venereol. 2013, 27, 1022–1025. [Google Scholar] [CrossRef]
- Peloquin, L.; Castelo-Soccio, L. Alopecia Areata: An Update on Treatment Options for Children. Paediatr. Drugs 2017, 19, 411–422. [Google Scholar] [CrossRef]
- Iorizzo, M.; Tosti, A. Treatments options for alopecia. Expert Opin. Pharmacother. 2015, 16, 2343–2354. [Google Scholar] [CrossRef]
- Sharma, V.K.; Gupta, S. Twice weekly 5 mg dexamethasone oral pulse in the treatment of extensive alopecia areata. J. Dermatol. 1999, 26, 562–565. [Google Scholar] [CrossRef]
- Van Driessche, F.; Silverberg, N. Current Management of Pediatric Vitiligo. Paediatr. Drugs 2015, 17, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Rath, N.; Kar, H.K.; Sabhnani, S. An open labeled, comparative clinical study on efficacy and tolerability of oral mini pulse of steroid (OMP) alone, OMP with PUVA and broad / narrow band UVB phototherapy in progressive vitiligo. Indian J. Dermatol. Venereol Leprol. 2008, 74, 357–360. [Google Scholar] [PubMed]
- Lara-Corrales, I.; Pope, E. Autoimmune blistering diseases in children. Semin. Cutan. Med. Surg. 2010, 29, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Lings, K.; Bygum, A. Linear IgA bullous dermatosis: A retrospective study of 23 patients in Denmark. Acta Derm-Venereol. 2015, 95, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Antiga, E.; Caproni, M. The diagnosis and treatment of dermatitis herpetiformis. Clin. Cosmet. Investig. Dermatol. 2015, 8, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, D.; Petronic-Rosic, V. Dermatitis herpetiformis. Part II. Diagnosis, management, and prognosis. J. Am. Acad. Dermatol. 2011, 64, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Léauté-Labrèze, C.; Harper, J.I.; Hoeger, P.H. Infantile haemangioma. Lancet 2017, 390, 85–94. [Google Scholar] [CrossRef]
- Stillo, F.; Baraldini, V.; Dalmonte, P.; El Hachem, M.; Mattassi, R.; Vercellio, G.; Amato, B.; Bellini, C.; Bergui, M.; Bianchini, G.; et al. Vascular Anomalies Guidelines by the Italian Society for the study of Vascular Anomalies (SISAV). Int. Angiol. 2015, 34, 1–45. [Google Scholar]
Rheumatologic disorders |
Juvenile idiopathic arthritis |
Pediatric Vasculitis |
Dermatomyositis |
Scleroderma |
Systemic lupus erythematosus |
Rheumatic fever |
Uveitis |
Gastrointestinal disorders |
Ulcerative colitis |
Crohn disease |
Autoimmune hepatitis |
Respiratory diseases |
Asthma |
Viral wheezing |
Croup |
Cystic fibrosis |
Hematological disorders |
Autoimmune cytopenia |
Endocrinological disorders |
Adrenal insufficiency |
Neurological disorders |
Demyelinating disorders |
Autoimmune encephalitis |
Idiopathic intracranial hypertension |
Idiopathic facial palsy |
Nephrological disorders |
Nephrotic syndrome |
Dermatologic disorders |
Chronic urticaria |
Atopic dermatitis |
Alopecia areata |
Vitiligo |
IgA linear bullous dermatosis |
Herpetiformis dermatitis |
Infantile Hemangioma |
Hormone | Dose Range | Daily Doses | Monitoring |
---|---|---|---|
Hydrocortisone | 15–25 mg/day | Two-three | Clinical assessment |
Prednisone | 5–7.5 mg/day | Two times | Clinical assessment |
Fludrocortisone | 0.05–0.2 mg/day | Once | Electrolytes, blood pressure, plasma renin activity |
DHEA | 25–50 mg/day | Once | Serum DHEAS, androstenedione and free androgen index |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, G.; Petrillo, M.G.; Giani, T.; Marrani, E.; Filippeschi, C.; Oranges, T.; Simonini, G.; Cimaz, R. Clinical Use and Molecular Action of Corticosteroids in the Pediatric Age. Int. J. Mol. Sci. 2019, 20, 444. https://doi.org/10.3390/ijms20020444
Ferrara G, Petrillo MG, Giani T, Marrani E, Filippeschi C, Oranges T, Simonini G, Cimaz R. Clinical Use and Molecular Action of Corticosteroids in the Pediatric Age. International Journal of Molecular Sciences. 2019; 20(2):444. https://doi.org/10.3390/ijms20020444
Chicago/Turabian StyleFerrara, Giovanna, Maria Grazia Petrillo, Teresa Giani, Edoardo Marrani, Cesare Filippeschi, Teresa Oranges, Gabriele Simonini, and Rolando Cimaz. 2019. "Clinical Use and Molecular Action of Corticosteroids in the Pediatric Age" International Journal of Molecular Sciences 20, no. 2: 444. https://doi.org/10.3390/ijms20020444
APA StyleFerrara, G., Petrillo, M. G., Giani, T., Marrani, E., Filippeschi, C., Oranges, T., Simonini, G., & Cimaz, R. (2019). Clinical Use and Molecular Action of Corticosteroids in the Pediatric Age. International Journal of Molecular Sciences, 20(2), 444. https://doi.org/10.3390/ijms20020444