Sepsis: Precision-Based Medicine for Pregnancy and the Puerperium
Abstract
:1. Introduction
2. Maternal Sepsis
2.1. The Global Picture
2.2. Global Action
2.3. Features of the Host and Common Pathogens
2.4. Pathophysiology of Sepsis
2.5. Precision Medicine
2.5.1. Modifying Early Warning Scores for the Obstetric Patient
2.5.2. Animal Research Models of Pregnancy
2.5.3. The Next Phase: Personalised Medicine for the Obstetric Patient
2.6. Immunology in the Obstetric Patient
2.7. The Cardiovascular System and the Obstetric Patient
2.8. Potential Targets for Bench to Bedside Diagnostics
2.8.1. Tools for Improved Antimicrobial Stewardship
2.8.2. “Omics Studies”—Biomarkers for the Obstetric Patient
2.9. Ethical Considerations
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Knight, M.; Tuffnell, D.; Jayakody, H.; Shakespeare, J.; Kenyon, S.; Kurinczuk, J.J. (Eds.) MBRRACE-UK: Saving Lives, Improving Mothers’ Care—Lessons. Learned to Inform Maternity Care from the UK and Ireland Confidential Enquiries. into Maternal Deaths and Morbidity 2014-16; National Perinatal Epidemiology Unit: Oxford, UK, 2018. [Google Scholar]
- Plante, L.A.; Pacheco, L.D.; Louis, J.M. SMFM Consult Series #47: Sepsis during pregnancy and the puerperium. Am. J. Obstet. Gynecol. 2019, 220, B2–B10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, J.R.; Sibai, B.M. Severe sepsis and septic shock in pregnancy. Obstet. Gynecol. 2012, 120, 689–706. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. World Health Organisation: Health topics/Fact sheets/Sepsis. Available online: https://www.who.int/news-room/fact-sheets/detail/sepsis (accessed on 26 October 2019).
- Say, L.; Chou, D.; Gemmill, A.; Tunçalp, Ö.; Moller, A.B.; Daniels, J.; Gülmezoglu, A.M.; Temmerman, M.; Alkema, L. Global causes of maternal death: A WHO systematic analysis. Lancet Glob Health 2014, 2, e323–e333. [Google Scholar] [CrossRef]
- Black, R.E.; Levin, C.; Walker, N.; Chou, D.; Liu, L.; Temmerman, M.; Group, D.R.A. Reproductive, maternal, newborn, and child health: Key messages from Disease Control Priorities 3rd Edition. Lancet 2016, 388, 2811–2824. [Google Scholar] [CrossRef]
- Kidson, K.M.; Henderson, W.R.; Hutcheon, J.A. Case Fatality and Adverse Outcomes Are Reduced in Pregnant Women with Severe Sepsis or Septic Shock Compared with Age-Matched Comorbid-Matched Nonpregnant Women. Crit. Care Med. 2018, 46, 1775–1782. [Google Scholar] [CrossRef] [PubMed]
- Soma-Pillay, P.; Nelson-Piercy, C.; Tolppanen, H.; Mebazaa, A. Physiological changes in pregnancy. Cardiovasc. J. Afr. 2016, 27, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Varner, M.W. Medical conditions of the puerperium. Clin. Perinatol. 1998, 25, 403–416. [Google Scholar] [CrossRef]
- Knowles, S.J.; O’Sullivan, N.P.; Meenan, A.M.; Hanniffy, R.; Robson, M. Maternal sepsis incidence, aetiology and outcome for mother and fetus: A prospective study. BJOG 2015, 122, 663–671. [Google Scholar] [CrossRef]
- Cantwell, R.; Clutton-Brock, T.; Cooper, G.; Dawson, A.; Drife, J.; Garrod, D.; Harper, A.; Hulbert, D.; Lucas, S.; McClure, J.; et al. Saving Mothers’ Lives: Reviewing maternal deaths to make motherhood safer: 2006-2008. The Eighth Report of the Confidential Enquiries into Maternal Deaths in the United Kingdom. BJOG 2011, 118 (Suppl. 1), 1–203. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence (NICE). Sepsis: Recognition, diagnosis and early management: NICE (2017). BJU Int. 2018, 121, 497–514. [Google Scholar] [CrossRef] [PubMed]
- Royal College of Obstetricans & Gynaecologists (RCOG). Bacterial Sepsis in Pregnancy (Greentop Guideline No. 64a); RCOG: London, UK, 2012. [Google Scholar]
- Royal College of Obstetricans & Gynaecologists (RCOG). Bacterial Sepsis Following Pregnancy (Greentop Guideline No. 64b); RCOG: London, UK, 2012. [Google Scholar]
- Bauer, M.E.; Bateman, B.T.; Bauer, S.T.; Shanks, A.M.; Mhyre, J.M. Maternal sepsis mortality and morbidity during hospitalization for delivery: Temporal trends and independent associations for severe sepsis. Anesth. Analg. 2013, 117, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Kramer, H.M.C.; Schutte, J.M.; Zwart, J.J.; Schuitemaker, N.W.E.; Steegers, E.A.P.; Van Roosmalen, J. Maternal mortality and severe morbidity from sepsis in the Netherlands. Acta Obstet. Gynecol. Scand. 2009, 88, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Acosta, C.D.; Harrison, D.A.; Rowan, K.; Lucas, D.N.; Kurinczuk, J.J.; Knight, M. Maternal morbidity and mortality from severe sepsis: A national cohort study. BMJ Open 2016, 6, e012323. [Google Scholar] [CrossRef]
- Acosta, C.D.; Kurinczuk, J.J.; Lucas, D.N.; Tuffnell, D.J.; Sellers, S.; Knight, M.; System, U.K.O.S. Severe maternal sepsis in the UK, 2011-2012: A national case-control study. PLoS Med. 2014, 11, e1001672. [Google Scholar] [CrossRef]
- Sappenfield, E.; Jamieson, D.J.; Kourtis, A.P. Pregnancy and susceptibility to infectious diseases. Infect. Dis. Obstet. Gynecol. 2013, 2013, 752852. [Google Scholar] [CrossRef]
- Kourtis, A.P.; Read, J.S.; Jamieson, D.J. Pregnancy and infection. N. Engl. J. Med. 2014, 370, 2211–2218. [Google Scholar] [CrossRef]
- Bonet, M.; Nogueira Pileggi, V.; Rijken, M.J.; Coomarasamy, A.; Lissauer, D.; Souza, J.P.; Gulmezoglu, A.M. Towards a consensus definition of maternal sepsis: Results of a systematic review and expert consultation. Reprod. Health 2017, 14, 67. [Google Scholar] [CrossRef]
- Knight, M.; Chiocchia, V.; Partlett, C.; Rivero-Arias, O.; Hua, X.; Hinshaw, K.; Tuffnell, D.; Linsell, L.; Juszczak, E. ANODE Collaborative Group. Prophylactic antibiotics in the prevention of infection after operative vaginal delivery (ANODE): A multicentre randomised controlled trial. Lancet 2019, 393, 2395–2403. [Google Scholar] [CrossRef]
- Cornelissen, L.; Woodd, S.; Shakur-Still, H.; Fawole, B.; Noor, S.; Etuk, S.; Akintan, A.L.; Chaudhri, R.; Roberts, I. Secondary analysis of the WOMAN trial to explore the risk of sepsis after invasive treatments for postpartum hemorrhage. Int. J. Gynaecol. Obstet. 2019, 146, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutscher, M.; Lewis, M.; Zell, E.R.; Taylor, T.H.; Van Beneden, C.; Schrag, S.; Team, A.B.C.S. Incidence and severity of invasive Streptococcus pneumoniae, group A Streptococcus, and group B Streptococcus infections among pregnant and postpartum women. Clin. Infect. Dis. 2011, 53, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Leonard, A.; Wright, A.; Saavedra-Campos, M.; Lamagni, T.; Cordery, R.; Nicholls, M.; Domoney, C.; Sriskandan, S.; Balasegaram, S. Severe group a streptococcal infections in mothers and their newborns in London and the South East, 2010–2016: Assessment of risk and audit of public health management. BJOG 2019, 126, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Yudin, M.H. Risk management of seasonal influenza during pregnancy: Current perspectives. Int. J. Womens Health 2014, 6, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.W.; Barno, A. Deaths from Asian influenza associated with pregnancy. Am. J. Obstet. Gynecol. 1959, 78, 1172–1175. [Google Scholar] [CrossRef]
- Moore, K.A.; Fowkes, F.J.I.; Wiladphaingern, J.; Wai, N.S.; Paw, M.K.; Pimanpanarak, M.; Carrara, V.I.; Raksuansak, J.; Simpson, J.A.; White, N.J.; et al. Mediation of the effect of malaria in pregnancy on stillbirth and neonatal death in an area of low transmission: Observational data analysis. BMC Med. 2017, 15, 98. [Google Scholar] [CrossRef]
- Pilmis, B.; Jullien, V.; Sobel, J.; Lecuit, M.; Lortholary, O.; Charlier, C. Antifungal drugs during pregnancy: An updated review. J. Antimicrob. Chemother. 2015, 70, 14–22. [Google Scholar] [CrossRef]
- Sobel, J.D. Vulvovaginal candidosis. Lancet 2007, 369, 1961–1971. [Google Scholar] [CrossRef]
- Singh, N.; Perfect, J.R. Immune reconstitution syndrome and exacerbation of infections after pregnancy. Clin. Infect. Dis. 2007, 45, 1192–1199. [Google Scholar] [CrossRef]
- Giakoumelou, S.; Wheelhouse, N.; Cuschieri, K.; Entrican, G.; Howie, S.E.; Horne, A.W. The role of infection in miscarriage. Hum. Reprod. Update 2016, 22, 116–133. [Google Scholar] [CrossRef]
- Goldenberg, R.L.; McClure, E.M.; Saleem, S.; Reddy, U.M. Infection-related stillbirths. Lancet 2010, 375, 1482–1490. [Google Scholar] [CrossRef]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef]
- Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and septic shock. Lancet 2018, 392, 75–87. [Google Scholar] [CrossRef]
- Conway-Morris, A.; Wilson, J.; Shankar-Hari, M. Immune Activation in Sepsis. Crit. Care Clin. 2018, 34, 29–42. [Google Scholar] [CrossRef]
- Bonet, M.; Souza, J.P.; Abalos, E.; Fawole, B.; Knight, M.; Kouanda, S.; Lumbiganon, P.; Nabhan, A.; Nadisauskiene, R.; Brizuela, V.; et al. The global maternal sepsis study and awareness campaign (GLOSS): Study protocol. Reprod. health 2018, 15, 16. [Google Scholar] [CrossRef]
- Joseph, J.; Sinha, A.; Paech, M.; Walters, B.N. Sepsis in pregnancy and early goal-directed therapy. Obstet. Med. 2009, 2, 93–99. [Google Scholar] [CrossRef]
- Bowyer, L.; Robinson, H.L.; Barrett, H.; Crozier, T.M.; Giles, M.; Idel, I.; Lowe, S.; Lust, K.; Marnoch, C.A.; Morton, M.R.; et al. SOMANZ guidelines for the investigation and management sepsis in pregnancy. Aust. N. Z. J. Obstet. Gynaecol. 2017, 57, 540–551. [Google Scholar] [CrossRef] [Green Version]
- Nathan, H.L.; Seed, P.T.; Hezelgrave, N.L.; De Greeff, A.; Lawley, E.; Anthony, J.; Steyn, W.; Hall, D.R.; Chappell, L.C.; Shennan, A.H. Shock index thresholds to predict adverse outcomes in maternal hemorrhage and sepsis: A prospective cohort study. Acta Obstet. Gynecol. Scand. 2019, 98, 1178–1186. [Google Scholar] [CrossRef]
- Sankar, P.L.; Parker, L.S. The Precision Medicine Initiative’s All of Us Research Program: An agenda for research on its ethical, legal, and social issues. Genet. Med. 2017, 19, 743–750. [Google Scholar] [CrossRef]
- Duley, L.; Gülmezoglu, A.M.; Henderson-Smart, D.J.; Chou, D. Magnesium sulphate and other anticonvulsants for women with pre-eclampsia. Cochrane Database Syst. Rev. 2010. [Google Scholar] [CrossRef]
- Doyle, L.W.; Crowther, C.A.; Middleton, P.; Marret, S.; Rouse, D. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst. Rev. 2009. [Google Scholar] [CrossRef] [PubMed]
- Corey, L.; Valente, A.; Wade, K. Personalized Medicine in Gynecologic Cancer: Fact or Fiction? Obstet. Gynecol. Clin. N. Am. 2019, 46, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Pujade-Lauraine, E.; Hilpert, F.; Weber, B.; Reuss, A.; Poveda, A.; Kristensen, G.; Sorio, R.; Vergote, I.; Witteveen, P.; Bamias, A.; et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: The AURELIA open-label randomized phase III trial. J. Clin. Oncol. 2014, 32, 1302–1308. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G. (Ed.) The Confidential Enquiry into Maternal and Child Health (CEMACH). Saving Mothers’ Lives: Reviewing maternal Deaths to Make Motherhood Safer 2003–2005. The Seventh Report on Confidential Enquiries into Maternal Deaths in the United Kingdom; CEMACH: London, UK, 2007. [Google Scholar]
- Singh, S.; McGlennan, A.; England, A.; Simons, R. A validation study of the CEMACH recommended modified early obstetric warning system (MEOWS). Anaesthesia 2012, 67, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Albright, C.M.; Ali, T.N.; Lopes, V.; Rouse, D.J.; Anderson, B.L. The Sepsis in Obstetrics Score: A model to identify risk of morbidity from sepsis in pregnancy. Am. J. Obstet. Gynecol. 2014, 211, 39-e1–39-e8. [Google Scholar] [CrossRef]
- Zöllner, J.; Howe, L.G.; Edey, L.F.; O’Dea, K.P.; Takata, M.; Gordon, F.; Leiper, J.; Johnson, M.R. The response of the innate immune and cardiovascular systems to LPS in pregnant and nonpregnant mice. Biol. Reprod. 2017, 97, 258–272. [Google Scholar] [CrossRef]
- Zöllner, J.; Lambden, S.; Nasri, N.M.; Leiper, J.; Johnson, M.R. Rapid onset of severe septic shock in the pregnant mouse†. Biol. Reprod. 2019, 100, 505–513. [Google Scholar] [CrossRef]
- Singer, M. Personalizing Sepsis Care. Crit. Care Clin. 2018, 34, 153–160. [Google Scholar] [CrossRef]
- Kay, A.W.; Bayless, N.L.; Fukuyama, J.; Aziz, N.; Dekker, C.L.; Mackey, S.; Swan, G.E.; Davis, M.M.; Blish, C.A. Pregnancy Does Not Attenuate the Antibody or Plasmablast Response to Inactivated Influenza Vaccine. J. Infect. Dis. 2015, 212, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Katz, J.; Englund, J.A.; Steinhoff, M.C.; Khatry, S.K.; Shrestha, L.; Kuypers, J.; Mullany, L.C.; Chu, H.Y.; LeClerq, S.C.; Kozuki, N.; et al. Impact of Timing of Influenza Vaccination in Pregnancy on Transplacental Antibody Transfer, Influenza Incidence, and Birth Outcomes: A Randomized Trial in Rural Nepal. Clin. Infect. Dis. 2018, 67, 334–340. [Google Scholar] [CrossRef]
- Billington, W.D. The immunological problem of pregnancy: 50 years with the hope of progress. A tribute to Peter Medawar. J. Reprod. Immunol. 2003, 60, 1–11. [Google Scholar] [CrossRef]
- Graham, C.; Chooniedass, R.; Stefura, W.P.; Becker, A.B.; Sears, M.R.; Turvey, S.E.; Mandhane, P.J.; Subbarao, P.; HayGlass, K.T.; Investigators, C.S. In vivo immune signatures of healthy human pregnancy: Inherently inflammatory or anti-inflammatory? PLoS ONE 2017, 12, e0177813. [Google Scholar] [CrossRef] [PubMed]
- Mor, G.; Cardenas, I. The immune system in pregnancy: A unique complexity. Am. J. Reprod. Immunol. 2010, 63, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Sacks, G.; Sargent, I.; Redman, C. An innate view of human pregnancy. Immunol. Today 1999, 20, 114–118. [Google Scholar] [CrossRef]
- Shah, N.M.; Herasimtschuk, A.A.; Boasso, A.; Benlahrech, A.; Fuchs, D.; Imami, N.; Johnson, M.R. Changes in T Cell and Dendritic Cell Phenotype from Mid to Late Pregnancy Are Indicative of a Shift from Immune Tolerance to Immune Activation. Front. Immunol. 2017, 8, 1138. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.M.; Imami, N.; Johnson, M.R. Progesterone Modulation of Pregnancy-Related Immune Responses. Front. Immunol. 2018, 9, 1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, J.H.; Ertelt, J.M.; Xin, L.; Way, S.S. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 2012, 490, 102–106. [Google Scholar] [CrossRef]
- Zenclussen, M.L.; Thuere, C.; Ahmad, N.; Wafula, P.O.; Fest, S.; Teles, A.; Leber, A.; Casalis, P.A.; Bechmann, I.; Priller, J.; et al. The persistence of paternal antigens in the maternal body is involved in regulatory T-cell expansion and fetal-maternal tolerance in murine pregnancy. Am. J. Reprod. Immunol. 2010, 63, 200–208. [Google Scholar] [CrossRef]
- Kay, A.W.; Fukuyama, J.; Aziz, N.; Dekker, C.L.; Mackey, S.; Swan, G.E.; Davis, M.M.; Holmes, S.; Blish, C.A. Enhanced natural killer-cell and T-cell responses to influenza A virus during pregnancy. Proc. Natl. Acad. Sci. USA. 2014, 111, 14506–14511. [Google Scholar] [CrossRef] [Green Version]
- Forbes, R.L.; Wark, P.A.; Murphy, V.E.; Gibson, P.G. Pregnant women have attenuated innate interferon responses to 2009 pandemic influenza A virus subtype H1N1. J. Infect. Dis. 2012, 206, 646–653. [Google Scholar] [CrossRef]
- Wang, S.M.; Tsai, M.H.; Lei, H.Y.; Wang, J.R.; Liu, C.C. The regulatory T cells in anti-influenza antibody response post influenza vaccination. Hum. Vaccines Immunother. 2012, 8, 1243–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arck, P.; Hansen, P.J.; Mulac Jericevic, B.; Piccinni, M.P.; Szekeres-Bartho, J. Progesterone during pregnancy: Endocrine-immune cross talk in mammalian species and the role of stress. Am. J. Reprod. Immunol. 2007, 58, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Laskarin, G.; Tokmadzic, V.S.; Strbo, N.; Bogovic, T.; Szekeres-Bartho, J.; Randic, L.; Podack, E.R.; Rukavina, D. Progesterone induced blocking factor (PIBF) mediates progesterone induced suppression of decidual lymphocyte cytotoxicity. Am. J. Reprod. Immunol. 2002, 48, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Lissauer, D.; Eldershaw, S.A.; Inman, C.F.; Coomarasamy, A.; Moss, P.A.; Kilby, M.D. Progesterone promotes maternal-fetal tolerance by reducing human maternal T-cell polyfunctionality and inducing a specific cytokine profile. Eur. J. Immunol. 2015, 45, 2858–2872. [Google Scholar] [CrossRef]
- Lei, B.; Mace, B.; Dawson, H.N.; Warner, D.S.; Laskowitz, D.T.; James, M.L. Anti-inflammatory effects of progesterone in lipopolysaccharide-stimulated BV-2 microglia. PLoS ONE 2014, 9, e103969. [Google Scholar] [CrossRef]
- Xue, X.T.; Kou, X.X.; Li, C.S.; Bi, R.Y.; Meng, Z.; Wang, X.D.; Zhou, Y.H.; Gan, Y.H. Progesterone attenuates temporomandibular joint inflammation through inhibition of NF-κB pathway in ovariectomized rats. Sci. Rep. 2017, 7, 15334. [Google Scholar] [CrossRef]
- Szekeres-Bartho, J.; Chaouat, G.; Kinsky, R. A progesterone-induced blocking factor corrects high resorption rates in mice treated with antiprogesterone. Am. J. Obstet. Gynecol. 1990, 163, 1320–1322. [Google Scholar] [CrossRef]
- Hansen, K.A.; Opsahl, M.S.; Nieman, L.K.; Baker, J.R.; Klein, T.A. Natural killer cell activity from pregnant subjects is modulated by RU 486. Am. J. Obstet. Gynecol. 1992, 166, 87–90. [Google Scholar] [CrossRef]
- Singh, N.; Herbert, B.; Sooranna, G.R.; Orsi, N.M.; Edey, L.; Dasgupta, T.; Sooranna, S.R.; Yellon, S.M.; Johnson, M.R. Is myometrial inflammation a cause or a consequence of term human labour? J. Endocrinol. 2017, 235, 69–83. [Google Scholar] [CrossRef]
- Vassiliadis, S.; Ranella, A.; Papadimitriou, L.; Makrygiannakis, A.; Athanassakis, I. Serum levels of pro- and anti-inflammatory cytokines in non-pregnant women, during pregnancy, labour and abortion. Mediat. Inflamm. 1998, 7, 69–72. [Google Scholar] [CrossRef]
- Jaiswal, M.K.; Agrawal, V.; Mallers, T.; Gilman-Sachs, A.; Hirsch, E.; Beaman, K.D. Regulation of apoptosis and innate immune stimuli in inflammation-induced preterm labor. J. Immunol. 2013, 191, 5702–5713. [Google Scholar] [CrossRef] [PubMed]
- Joerger-Messerli, M.S.; Hoesli, I.M.; Rusterholz, C.; Lapaire, O. Stimulation of monocytes by placental microparticles involves toll-like receptors and nuclear factor kappa-light-chain-enhancer of activated B cells. Front. Immunol. 2014, 5, 173. [Google Scholar] [CrossRef] [PubMed]
- Goulopoulou, S.; Matsumoto, T.; Bomfim, G.F.; Webb, R.C. Toll-like receptor 9 activation: A novel mechanism linking placenta-derived mitochondrial DNA and vascular dysfunction in pre-eclampsia. Clin. Sci. (Lond.) 2012, 123, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Siddiqui, J.; Remick, D.G. Mechanisms of mortality in early and late sepsis. Infect. Immun. 2006, 74, 5227–5235. [Google Scholar] [CrossRef]
- Okeke, E.B.; Okwor, I.; Mou, Z.; Jia, P.; Uzonna, J.E. CD4+CD25+ regulatory T cells attenuate lipopolysaccharide-induced systemic inflammatory responses and promotes survival in murine Escherichia coli infection. Shock 2013, 40, 65–73. [Google Scholar] [CrossRef]
- Murphy, T.J.; Ni Choileain, N.; Zang, Y.; Mannick, J.A.; Lederer, J.A. CD4+CD25+ regulatory T cells control innate immune reactivity after injury. J. Immunol. 2005, 174, 2957–2963. [Google Scholar] [CrossRef]
- Schober, L.; Radnai, D.; Schmitt, E.; Mahnke, K.; Sohn, C.; Steinborn, A. Term and preterm labor: Decreased suppressive activity and changes in composition of the regulatory T-cell pool. Immunol. cell Biol. 2012, 90, 935–944. [Google Scholar] [CrossRef]
- Frascoli, M.; Coniglio, L.; Witt, R.; Jeanty, C.; Fleck-Derderian, S.; Myers, D.E.; Lee, T.H.; Keating, S.; Busch, M.P.; Norris, P.J.; et al. Alloreactive fetal T cells promote uterine contractility in preterm labor via IFN-γ and TNF-α. Sci. Transl. Med. 2018, 10. [Google Scholar] [CrossRef]
- Kakihana, Y.; Ito, T.; Nakahara, M.; Yamaguchi, K.; Yasuda, T. Sepsis-induced myocardial dysfunction: Pathophysiology and management. J. Intensive Care 2016, 4, 22. [Google Scholar] [CrossRef]
- Antonucci, E.; Fiaccadori, E.; Donadello, K.; Taccone, F.S.; Franchi, F.; Scolletta, S. Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment. J. Crit. Care 2014, 29, 500–511. [Google Scholar] [CrossRef]
- Klouche, K.; Pommet, S.; Amigues, L.; Bargnoux, A.S.; Dupuy, A.M.; Machado, S.; Serveaux-Delous, M.; Morena, M.; Jonquet, O.; Cristol, J.P. Plasma brain natriuretic peptide and troponin levels in severe sepsis and septic shock: Relationships with systolic myocardial dysfunction and intensive care unit mortality. J. Intensive Care Med. 2014, 29, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Sato, R.; Nasu, M. A review of sepsis-induced cardiomyopathy. J. Intensive Care 2015, 3, 48. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.R.; Chen, I.C.; Dai, Z.K.; Hung, J.F.; Hsu, J.H. Early Elevated B-Type Natriuretic Peptide Levels are Associated with Cardiac Dysfunction and Poor Clinical Outcome in Pediatric Septic Patients. Acta Cardiol. Sin. 2015, 31, 485–493. [Google Scholar] [PubMed]
- Melchiorre, K.; Sharma, R.; Thilaganathan, B. Cardiac structure and function in normal pregnancy. Curr. Opin. Obstet. Gynecol. 2012, 24, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Derwall, M.; Al Zoubi, S.; Zechendorf, E.; Reuter, D.A.; Thiemermann, C.; Schuerholz, T. The Septic Heart: Current Understanding of Molecular Mechanisms and Clinical Implications. Chest 2019, 155, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Nizamuddin, J.; Mahmood, F.; Tung, A.; Mueller, A.; Brown, S.M.; Shaefi, S.; O’Connor, M.; Talmor, D.; Shahul, S. Interval Changes in Myocardial Performance Index Predict Outcome in Severe Sepsis. J. Cardiothorac. Vasc. Anesth. 2017, 31, 957–964. [Google Scholar] [CrossRef]
- Bamfo, J.E.; Kametas, N.A.; Nicolaides, K.H.; Chambers, J.B. Reference ranges for tissue Doppler measures of maternal systolic and diastolic left ventricular function. Ultrasound Obstet. Gynecol. 2007, 29, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, R.; Karaoz, U.; Volegova, M.; MacKichan, J.; Kato-Maeda, M.; Miller, S.; Nadarajan, R.; Brodie, E.L.; Lynch, S.V. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS ONE 2015, 10, e0117617. [Google Scholar] [CrossRef]
- NICE (Ed.) Meningitis (Bacterial) and Meningococcal Septicaemia in under 16s: Recognition, Diagnosis and Management: NICE Guideline [CG102]; NICE: London, UK, 2010. [Google Scholar]
- Poole, S.; Kidd, S.P.; Saeed, K. A review of novel technologies and techniques associated with identification of bloodstream infection etiologies and rapid antimicrobial genotypic and quantitative phenotypic determination. Expert Rev. Mol. Diagn. 2018, 18, 543–555. [Google Scholar] [CrossRef]
- Faron, M.L.; Buchan, B.W.; Ledeboer, N.A. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Use with Positive Blood Cultures: Methodology, Performance, and Optimization. J. Clin. Microbiol. 2017, 55, 3328–3338. [Google Scholar] [CrossRef]
- Rosa-Fraile, M.; Spellerberg, B. Reliable Detection of Group B Streptococcus in the Clinical Laboratory. J. Clin. Microbiol. 2017, 55, 2590–2598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- To, K.N.; Cornwell, E.; Daniel, R.; Goonesekera, S.; Jauneikaite, E.; Chalker, V.; Le Doare, K. Evaluation of matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for the Identification of Group B Streptococcus. BMC Res. Notes 2019, 12, 85. [Google Scholar] [CrossRef] [PubMed]
- Buhimschi, C.S.; Bhandari, V.; Han, Y.W.; Dulay, A.T.; Baumbusch, M.A.; Madri, J.A.; Buhimschi, I.A. Using proteomics in perinatal and neonatal sepsis: Hopes and challenges for the future. Curr. Opin. Infect. Dis. 2009, 22, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Průcha, M.; Zazula, R.; Russwurm, S. Sepsis Diagnostics in the Era of “Omics” Technologies. Prague Med. Rep. 2018, 119, 9–29. [Google Scholar] [CrossRef]
- DeNardo, G.L.; DeNardo, S.J. Concepts, consequences, and implications of theranosis. Semin. Nucl. Med. 2012, 42, 147–150. [Google Scholar] [CrossRef]
- van Engelen, T.S.R.; Wiersinga, W.J.; Scicluna, B.P.; van der Poll, T. Biomarkers in Sepsis. Crit. Care Clin. 2018, 34, 139–152. [Google Scholar] [CrossRef]
- Kouskouti, C.; Evangelatos, N.; Brand, A.; Kainer, F. Maternal sepsis in the era of genomic medicine. Arch. Gynecol. Obstet. 2018, 297, 49–60. [Google Scholar] [CrossRef]
- Burnham, K.L.; Davenport, E.E.; Radhakrishnan, J.; Humburg, P.; Gordon, A.C.; Hutton, P.; Svoren-Jabalera, E.; Garrard, C.; Hill, A.V.S.; Hinds, C.J.; et al. Shared and Distinct Aspects of the Sepsis Transcriptomic Response to Fecal Peritonitis and Pneumonia. Am. J. Respir. Crit. Care Med. 2017, 196, 328–339. [Google Scholar] [CrossRef] [Green Version]
- Davenport, E.E.; Burnham, K.L.; Radhakrishnan, J.; Humburg, P.; Hutton, P.; Mills, T.C.; Rautanen, A.; Gordon, A.C.; Garrard, C.; Hill, A.V.; et al. Genomic landscape of the individual host response and outcomes in sepsis: A prospective cohort study. Lancet Respir. Med. 2016, 4, 259–271. [Google Scholar] [CrossRef]
- Herberg, J.A.; Kaforou, M.; Wright, V.J.; Shailes, H.; Eleftherohorinou, H.; Hoggart, C.J.; Cebey-López, M.; Carter, M.J.; Janes, V.A.; Gormley, S.; et al. Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs. Viral Infection in Febrile Children. Jama 2016, 316, 835–845. [Google Scholar] [CrossRef]
- Sweeney, T.E.; Shidham, A.; Wong, H.R.; Khatri, P. A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic gene set. Sci. Transl. Med. 2015, 7, 287ra71. [Google Scholar] [CrossRef] [PubMed]
- McHugh, L.; Seldon, T.A.; Brandon, R.A.; Kirk, J.T.; Rapisarda, A.; Sutherland, A.J.; Presneill, J.J.; Venter, D.J.; Lipman, J.; Thomas, M.R.; et al. A Molecular Host Response Assay to Discriminate Between Sepsis and Infection-Negative Systemic Inflammation in Critically Ill Patients: Discovery and Validation in Independent Cohorts. PLoS Med. 2015, 12, e1001916. [Google Scholar] [CrossRef] [PubMed]
- Verboom, D.M.; Koster-Brouwer, M.E.; Varkila, M.R.J.; Bonten, M.J.M.; Cremer, O.L. Profile of the SeptiCyte™ LAB gene expression assay to diagnose infection in critically ill patients. Expert Rev. Mol. Diagn. 2019, 19, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Scicluna, B.P.; Klein Klouwenberg, P.M.; van Vught, L.A.; Wiewel, M.A.; Ong, D.S.; Zwinderman, A.H.; Franitza, M.; Toliat, M.R.; Nürnberg, P.; Hoogendijk, A.J.; et al. A molecular biomarker to diagnose community-acquired pneumonia on intensive care unit admission. Am. J. Respir. Crit. Care Med. 2015, 192, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, M.; Cambiaghi, A.; Brunelli, L.; Giordano, S.; Caironi, P.; Guatteri, L.; Raimondi, F.; Gattinoni, L.; Latini, R.; Masson, S.; et al. Mortality prediction in patients with severe septic shock: A pilot study using a target metabolomics approach. Sci. Rep. 2016, 6, 20391. [Google Scholar] [CrossRef] [PubMed]
- Langley, R.J.; Tsalik, E.L.; van Velkinburgh, J.C.; Glickman, S.W.; Rice, B.J.; Wang, C.; Chen, B.; Carin, L.; Suarez, A.; Mohney, R.P.; et al. An integrated clinico-metabolomic model improves prediction of death in sepsis. Sci. Transl. Med. 2013, 5, 195ra95. [Google Scholar] [CrossRef]
- Cambiaghi, A.; Pinto, B.B.; Brunelli, L.; Falcetta, F.; Aletti, F.; Bendjelid, K.; Pastorelli, R.; Ferrario, M. Characterization of a metabolomic profile associated with responsiveness to therapy in the acute phase of septic shock. Sci. Rep. 2017, 7, 9748. [Google Scholar] [CrossRef]
- Garcia-Simon, M.; Morales, J.M.; Modesto-Alapont, V.; Gonzalez-Marrachelli, V.; Vento-Rehues, R.; Jorda-Miñana, A.; Blanquer-Olivas, J.; Monleon, D. Prognosis Biomarkers of Severe Sepsis and Septic Shock by 1H NMR Urine Metabolomics in the Intensive Care Unit. PLoS ONE 2015, 10, e0140993. [Google Scholar] [CrossRef]
- Shallcross, L.J.; Mentzer, A.; Rahman, S.; Cooke, G.S.; Sriskandan, S.; Noursadeghi, M. Cohort study protocol: Bioresource in Adult Infectious Diseases (BioAID). Wellcome Open Res 2018, 3, 97. [Google Scholar] [CrossRef] [Green Version]
- van der Zande, I.S.E.; van der Graaf, R.; Hooft, L.; van Delden, J.J.M. Facilitators and barriers to pregnant women’s participation in research: A systematic review. Women Birth 2018, 31, 350–361. [Google Scholar] [CrossRef]
- Foulkes, M.A.; Grady, C.; Spong, C.Y.; Bates, A.; Clayton, J.A. Clinical research enrolling pregnant women: A workshop summary. J. Womens Health (Larchmt) 2011, 20, 1429–1432. [Google Scholar] [CrossRef] [PubMed]
Parameter | Score | |
---|---|---|
0 | 1 | |
Systolic Blood Pressure(mmHg) | ≥90 | <90 |
Respiratory Rate | <25 breaths/minute | ≥25 breaths/minute |
Altered Mentation | Alert | Not alert |
System Parameter | Score | ||
---|---|---|---|
0 | 1 | 2 | |
Respiration | |||
PaO2/FiO2 (mmHg) | ≥400 | 300 to <400 | <300 |
Coagulation | |||
Platelets (×106/L) | ≥150 | 100–150 | <100 |
Liver | |||
Bilirubin (µmol/L) | ≤20 | 20–32 | >32 |
Cardiovascular | |||
Mean arterial pressure (mmHg) | MAP ≥70 | MAP <70 | Vasopressors required |
Central Nervous System | Alert | Rousable by voice | Rousable by pain |
Renal | |||
Creatinine (µmol/L) | ≤90 | 90–120 | >120 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greer, O.; Shah, N.M.; Sriskandan, S.; Johnson, M.R. Sepsis: Precision-Based Medicine for Pregnancy and the Puerperium. Int. J. Mol. Sci. 2019, 20, 5388. https://doi.org/10.3390/ijms20215388
Greer O, Shah NM, Sriskandan S, Johnson MR. Sepsis: Precision-Based Medicine for Pregnancy and the Puerperium. International Journal of Molecular Sciences. 2019; 20(21):5388. https://doi.org/10.3390/ijms20215388
Chicago/Turabian StyleGreer, Orene, Nishel Mohan Shah, Shiranee Sriskandan, and Mark R. Johnson. 2019. "Sepsis: Precision-Based Medicine for Pregnancy and the Puerperium" International Journal of Molecular Sciences 20, no. 21: 5388. https://doi.org/10.3390/ijms20215388
APA StyleGreer, O., Shah, N. M., Sriskandan, S., & Johnson, M. R. (2019). Sepsis: Precision-Based Medicine for Pregnancy and the Puerperium. International Journal of Molecular Sciences, 20(21), 5388. https://doi.org/10.3390/ijms20215388