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Abstract: Drugs that accumulate in lysosomes reach very high tissue concentrations, which is
evident in the high volume of distribution and often lower clearance of these compounds. Such
a pharmacokinetic profile is beneficial for indications where high tissue penetration and a less
frequent dosing regime is required. Here, we show how the level of lysosomotropic accumulation in
cells can be predicted solely from molecular structure. To develop quantitative structure–activity
relationship (QSAR) models, we used cellular accumulation data for 69 lysosomotropic macrocycles,
the pharmaceutical class for which this type of prediction model is extremely valuable due to the
importance of cellular accumulation for their anti-infective and anti-inflammatory applications
as well as due to the fact that they are extremely difficult to model by computational methods
because of their large size (Mw > 500). For the first time, we show that five levels of intracellular
lysosomotropic accumulation (as measured by liquid chromatography coupled to tandem mass
spectrometry—LC-MS/MS), from low/no to extremely high, can be predicted with 60% balanced
accuracy solely from the compound’s structure. Although largely built on macrocycles, the eight
non-macrocyclic compounds that were added to the set were found to be well incorporated by the
models, indicating their possible broader application. By uncovering the link between the molecular
structure and cellular accumulation as the key process in tissue distribution of lysosomotropic
compounds, these models are applicable for directing the drug discovery process and prioritizing
the compounds for synthesis with fine-tuned accumulation properties, according to the desired
pharmacokinetic profile.

Keywords: cellular accumulation; macrocycle; QSAR; OPLS; applicability domain; classification
models; molecular descriptors

1. Introduction

The pharmacokinetic profile is of critical importance for a drug’s success, and models to predict
absorption, distribution, metabolism and excretion (ADME) properties are an extremely valuable tool
in drug discovery. Among the ADME processes, in vitro and in silico modeling are most often applied
to optimize the drug’s absorption and interaction with metabolic enzymes. For some types of drugs,
however, their distribution in the organism and retention in tissues can markedly vary with structure,
and dramatically affect the overall pharmacokinetic profile. Being able to predict these properties for
new compounds before synthesizing them can be a huge advantage in the drug discovery phase.

Lysosomotropic drugs reach very high concentrations in cells and tissues, resulting in a
pharmacokinetic profile characterized by a very high volume of distribution, very low plasma
concentrations, and often long halftimes in tissues [1]. Due to their cationic and amphiphilic nature,
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lysosomotropic compounds accumulate in acidic compartments of the cell such as lysosomes, based on
the proton trapping mechanism [2,3]. Briefly, the neutral form of the compound passes through the cell
membrane and subsequently through the lysosomal membrane. The compound becomes protonated
in an acidic environment, and as such, cannot traverse back through the membrane. Consequently, the
equilibrium of the drug movement in the cell is markedly shifted toward movement into the lysosome,
resulting in very high overall intracellular concentrations.

Such a pharmacokinetic profile is considered beneficial for drugs that need high tissue penetration
such as macrocycle antibiotics (e.g., erythromycin, clarithromycin, and azithromycin), enabling them a
long-lasting action on intracellular pathogens [4] as well as being essential for their anti-inflammatory
activity [5]. In addition, a less frequent dosing regime, suitable for such compounds due to their high
concentration in tissues, contributes to a better patient compliance. Thus, finding a compound with
optimal tissue distribution for a given application offers a significant advantage over compounds with
a more classical pharmacokinetic profile.

Apart from providing pharmacokinetic benefits, lysosomotropic accumulation affects cells. For
moderately accumulated compounds, accumulation in lysosomes results in an increase in lysosomal
volume, and at higher intracellular accumulation, accumulation of phospholipids is observed, both
phenomena proven reversible after removal of the drug [6,7]. Extremely highly accumulating
compounds can, however in some cell types, cause cell death.

Therefore, to be able to utilize the benefits of intracellular accumulation and at the same time
control potential negative effects, it is extremely important to understand the structural features
governing the accumulation of lysosomotropic compounds.

So far, in silico modeling of lysosomotropic compounds, or cationic amphiphilic drugs (CADs), has
largely revolved around the prediction of phospholipidosis as a clinically detectable adverse effect of
extreme compound accumulation, rather than the prediction of their intracellular concentration, which
would help fine tune the ADME properties. For small molecules, a few in silico models exist for the
prediction of CADs or phospholipidosis inducers. These, however, usually classify molecules in only
two classes, based on whether they are likely or not to be an inducer, hence a lysosomotropic compound.
These in silico models, however, are unable to predict macrocycles correctly due to the large molecular
size (Mw > 500) and complex 3D structure [8]. Similarly, current physiology based pharmacokinetic
(PBPK) models developed for small molecules often struggle to describe the disposition of macrocyclic
drugs, partially due to tissue partitioning models used within [9,10], which are not able to capture their
true distribution properties and the level of accumulation in tissues. A new set of rules (“Beyond Rule
of 5”) is needed to better describe successful macrocycle pharmaceuticals [11,12], but this is limited by
the scarcity of data and systematic knowledge on the relationship between macrocycle structure and
their pharmacokinetics [13]. Therefore, the preclinical assessment of the pharmacokinetic profile of
highly accumulating macrocycles is largely limited to costly animal studies.

Considering a highly complicated synthesis procedures for macrocyclic compounds, often with
more than 15 steps and very low yield [14], having a reliable model that could predict accumulation
in cells solely from molecular structure, without any experimental data, would be of great help
in the early drug discovery phase for the prioritization of macrocyclic compounds with optimal
pharmacokinetic properties for synthesis. In addition, models capable of giving a more refined answer
than just yes or no for lysosomotropic compounds and differentiate various levels of accumulation
intensity, could markedly improve current predictions of pharmacokinetic properties for a broader
range of compounds.

In quantitative structure–activity relationship (QSAR) models, multiple molecular descriptors
(theoretical, calculated, or experimental) of a set of molecules are quantitatively assessed for their
contribution to the measured biological activity, resulting in a model capable of predicting the level of
the biological activity for new compounds based on the values of the descriptors found to contribute
most to the given activity. These models are a valuable in silico tools in drug discovery to direct the
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synthesis of new compounds with an increased likelihood of producing desired pharmacological
activity for which the QSAR model is available.

Our first in silico models to predict macrocycle intracellular accumulation were 2-class decision
tree models, which, apart from calculated molecular descriptors, relied on experimentally determined
physicochemical properties such as lipophilicity parameter ChromlogD, or phospholipophilicity
parameter CHIIAM [15]. Our later studies investigated the applicability of calculated 3D molecular
descriptors with or without empirically determined lipophilicity to develop continuous prediction
models for cellular accumulation [16]. Recently, we have developed a high throughput in vitro model
for the indirect measurement of the cellular accumulation of compounds [17]. We have shown that
by imaging the increase in lysosomal volume, we can, with 81% accuracy, predict five levels of
accumulation intensity for existing compounds, which is sufficient to successfully rank the substances
available for testing, according to this pharmacokinetic property.

In the present study, we go one step further, and on a broader set of compounds, use the data
available from lysosomal imaging to develop advanced, purely in silico descriptor-based models
to enable the prediction of the level of cellular accumulation for compounds without the need for
experimental testing. First, we developed a prediction model for intracellular accumulation by
combining the calculated molecular descriptors and experimental data on the imaging of the lysosomal
volume increase. Then, we developed an additional model that was able to predict the experimental
imaging data. By fusing the information from the two models, we obtained a novel in silico model
capable of predicting five levels of intracellular accumulation solely from the molecular structure with
60% balanced accuracy (i.e., 3-fold improvement from baseline random distribution).

2. Results and Discussion

2.1. Experimental Determination of Intracellular Accumulation

So far, there are two ways to experimentally determine the intracellular accumulation of
lysosomotropic compounds in cells in vitro:

1. Quantification of compound concentration in cells by liquid chromatography coupled to tandem
mass spectrometry (LC-MS/MS), which is a low throughput method, that is often expensive,
requires larger sample, and is rather time consuming to adjust reliable and robust measurements.
On the other hand, when validated, the method gives absolute quantification of accumulation
(ACC), which can subsequently be used to divide compounds in different levels (classes), according
to the intensity of accumulation (here denoted as ACC Class (Table 1)).

2. Indirect evaluation of compound accumulation from the measured increase in lysosomal volume
induced by the accumulating compound, performed by fluorescent cell microscopy (cell imaging).
This method is high throughput, but less precise than the LC-MS/MS method, and can only give
an estimation of the accumulation classified in five classes (denoted as LTR ACC Class). Still,
this imaging method has an accuracy of 81% in predicting the actual ACC Class (measured by
LC-MS/MS) [17].

In the present study, we used 69 macrocycles and eight non-macrocycles with measured
intracellular accumulation by the LC-MS/MS method and classified in five classes (ACC Class),
out of which 39 macrocycles and all eight non-macrocycles also had data on the indirect evaluation of
accumulation by cell imaging (LTR ACC Class) (Table 1). We then used 97 calculated physicochemical
molecular descriptors, together with the experimental LTR ACC Class data, to develop orthogonal
projections to latent structures (OPLS) models for the prediction of actual intracellular accumulation
(i.e., parameter ACC Class). The calculated descriptors cover molecular size and shapes, charges,
ring characteristics, lipophilicity, and hydrogen bonding as well as various van der Waals surface
area contributions of hydrophobic/hydrophilic, polarizability, and electrostatic nature (listed in the
Supplementary Materials).



Int. J. Mol. Sci. 2019, 20, 5938 4 of 13

Compound structures, distribution into the training and validation sets as well as their experimental
data are provided in the Supplementary Materials. Generic structures of the used macrocycles are
shown in Figure 1.

Table 1. The five classes of compound accumulation levels in cells (ACC Class) and the distribution
of test compounds into classes according to liquid chromatography coupled to tandem mass
spectrometry—LC-MS/MS (ACC Class) or the lysosome volume change measurements (LTR ACC Class).

ACC Class I/E % AZI Accumulation No of cpds Per class a No of cpds Per Class b

1 0–7 0–14% No/low 22 14
2 7.5–33 15–66% Moderate 23 10
3 33.5–92 67–184% High 14 7
4 92.5–220 185–440% Very high 9 11
5 >220 >440% Extremely high 7 5

a according to the ACC Class, b according to the LTR ACC Class. I/E = accumulation (ACC) expressed as intracellular
to extracellular concentration ratio measured by LC-MS/MS, % AZI = accumulation (ACC) expressed relative to
control compound azithromycin [17].
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Figure 1. Generic structures of the rationally designed set of 69 macrocycles used in the project. The set
was specifically created to cover a wide range of cellular accumulation intensities. Positions of various
substituents R1–R6 in a 15- and 14-atom macrocycle are indicated in red [15,16].

2.2. Prediction of Intracellular Accumulation from Molecular Structure

To enable the determination of intracellular accumulation only from the molecular structure, using
our training set of 47 compounds, we developed three OPLS models as described in the Materials
and Methods (Table 2). OPLS (Orthogonal projections to latent structures) is a projection method,
and a modification to the traditional projections to latent structures (or partial least squares, PLS)
method, where the aim is to separate the systematic variation in the descriptors into two parts: (1) one
that is linearly related to the target variable (ACC Class), and (2) another that is orthogonal to the
target variable.

Two of the three developed models predict ACC Class, based either on the calculated descriptors
together with an experimental descriptor (LTR ACC Class) (Model 1), or based solely on calculated
molecular descriptors (Model 2). Since the experimentally determined LTR ACC Class turned out
to be a crucial descriptor in the successful prediction of accumulation (ACC Class), we developed
the third OPLS model with the purpose to predict this experimental descriptor LTR ACC Class
from the calculated molecular descriptors (Model 3). This way, we wanted to create an alternative,
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non-experimental way to obtain this crucial information for the prediction of intracellular accumulation
(ACC Class).

Table 2. An overview of the orthogonal projections to latent structures (OPLS) models developed with
the training set.

OPLS Model Predicted Endpoint

Name of the
Dependent
(Predicted)
Parameter

No. of Classes of
the Dependent

(Predicted)
Parameter

Descriptors Used in the
Model a

Model 1 Intracellular accumulation
measured by LC-MS/MS ACC Class 5

� 97 calculated
physicochemical descriptors

� Experimentally
measured LTR ACC Class

Model 2 Intracellular accumulation
measured by LC-MS/MS ACC Class 5 � 97 calculated

physicochemical descriptors

Model 3 Intracellular accumulation
measured by cell imaging LTR ACC Class 5 � 97 calculated

physicochemical descriptors
a See Section 3.2 and Supporting Materials for a detailed description.

To evaluate the developed prediction models, the validation set compounds were first predicted
from the model based only on the 97 calculated physicochemical descriptors (OPLS Model 2), depicted
in Figure 2 as the “No LTR ACC class”. The accuracies of the prediction of the ACC Class (five
classes) for the validation set, taking the AD into account or not were 47.1 and 45.6%, respectively,
which was more than 2-fold improvement in accuracy when compared to guessing the class by chance
(“No model”).

2.3. Enrichment of the QSAR Model for Intracellular Accumulation with Experimental Imaging Data

The intracellular accumulation of the validation set compounds were further predicted using
OPLS Model 1, which is based on 97 calculated and one experimental descriptor. In order to avoid the
dependence on experimental data, this prediction was performed in two different ways: with and
without the predicted LTR ACC Class data as the input descriptor. In the former case, the LTR ACC
Class information was predicted using the OPLS Model 3 based on 97 calculated descriptors, while for
the latter case, the LTR ACC Class descriptor was treated by OPLS as “missing data”. The results for
these two sets of predictions are depicted in Figure 2 as the “Predicted LTR ACC Class” and “Missing
LTR ACC Class”, respectively. The balanced accuracy of the model was slightly higher (60%) when
using the predicted values for the LTR ACC Class as descriptor when compared to treating these values
as missing (56% with applicability domain consideration). However, comparing these two sets of
results using the McNemar’s Chi-squared test with continuity correction [18], there was no statistically
significant difference between these two models (p-value = 0.134) at the 95% confidence level.
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Figure 2. The balanced accuracies (non-error rates) of intracellular accumulation prediction (parameter
ACC Class) for the validation set using two orthogonal projections to latent structures (OPLS) models
(Models 1 and 2). Model 3 was also applied to predict the LTR ACC Class, and predicted values
were used in Model 1 (denoted as the “Predicted LTR ACC Class”). Applicability domain (AD)
considerations: AD = N (black), all compounds (30); AD = Y (grey), only compounds within AD (19).

On the other hand, comparing the validation set prediction results from Model 2 with Model 1
by using the predicted LTR ACC Class as the descriptor (“No LTR ACC class” vs. “Predicted LTR
ACC Class”), the difference between these two models was statistically significant (p-value = 0.023)
at the 95% confidence level, according to the McNemar’s Chi-squared test. This indicates that the
information provided by Model 3, developed for predicting the experimental parameter LTR ACC
Class, is extremely useful for obtaining more accurate ACC Class predictions from Model 1. Since
Model 3 is based only on calculated molecular descriptors, and it replaces the only experimental
descriptor in Model 1, this information fusion resulted in a significantly improved Model 1, which now
required only calculated structural descriptors (Figure 3). The balanced accuracy of this new, purely
in silico descriptor-based model (“Predicted LTR ACC Class”) was 59.7%, which is an almost 3-fold
improvement over guessing by chance (“No model”) with a high correlation between experimental and
predicted ACC Class values with a Spearman coefficient of correlation R of 0.86 (Figure 4). Moreover,
for the mispredicted compounds, the error in prediction was never larger than one class, which means
that the prediction result was never far away from the actual experimentally determined values.

Accordingly, when treating LTR ACC Class values as “missing”, the benefits of the above described
information fusion are omitted and the difference in validation set predictions from Model 1 (“Missing
LTR ACC Class” in Figure 2) and from Model 2 (“No LTR ACC Class descriptor”) was not statistically
significant at the 95% confidence level.

The derived OPLS Models 1–3 contained one predictive component for all three models and four,
two, and three orthogonal descriptor (X) space components, respectively. The performance when
randomly selecting 33% of the compounds in the training set as an “internal” validation set was similar
when compared to the external validation set (BA: 0.46–0.60) with balanced accuracy (BA) values of
between 0.43–0.66.
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compounds: (a) OPLS Model 1 developed with the training set; (b) Model 1 extended by Model 3 in
the validation step. The model in (b) no longer requires experimental testing for the prediction of the
ACC Class.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 13 

7 

 
Figure 3. A schematic representation of developed prediction models for intracellular accumulation 
of compounds: (a) OPLS Model 1 developed with the training set; (b) Model 1 extended by Model 3 
in the validation step. The model in (b) no longer requires experimental testing for the prediction of 
the ACC Class. 

 
Figure 4. Correlation (Spearman correlation coefficient) between the experimental and predicted ACC 
Class as predicted by OPLS Model 1 using the LTR ACC Class values predicted by Model 3. 

2.4. PLS Coefficients of the Two Models for the Prediction of Intracellular Accumulation 

The redistribution of information among the descriptors when including the experimental LTR 
ACC Class descriptor or not in the model is evident from Figures 5 and 6. When excluding this single 
most important descriptor, the information carried by this variable must, as much as possible, be 
redistributed into the remaining descriptors. Since the LTR ACC Class descriptor has a positive value 
in Model 1, there is an average increase in values for the remaining physicochemical descriptors in 
Model 2 when compared to the corresponding ones in Model 1 (Figure 5). The same redistribution 
on an individual descriptor level is depicted in Figure 6. Most descriptors have a more positive 
coefficient in Model 2 when compared to Model 1.  

Inspection of the most important molecular descriptors from OPLS Model 1 (LTR_class, 
PEOE_VSA6, PEOE_VSA13, MolLogP, SlogP_VSA1, NHOHCount, NumHDonors) showed that they 
were related to various descriptions of partially charged van der Waals surface area contributions, 
lipophilicity, and hydrogen bonding, where the two first categories have a positive contribution with 

0

1

2

3

4

5

0 1 2 3 4 5 6

Pr
ed

ict
ed

 A
CC

 C
la

ss
 v

al
ue

s

Experimental ACC Class values

r = 0.863

Figure 4. Correlation (Spearman correlation coefficient) between the experimental and predicted ACC
Class as predicted by OPLS Model 1 using the LTR ACC Class values predicted by Model 3.

2.4. PLS Coefficients of the Two Models for the Prediction of Intracellular Accumulation

The redistribution of information among the descriptors when including the experimental LTR
ACC Class descriptor or not in the model is evident from Figures 5 and 6. When excluding this single
most important descriptor, the information carried by this variable must, as much as possible, be
redistributed into the remaining descriptors. Since the LTR ACC Class descriptor has a positive value
in Model 1, there is an average increase in values for the remaining physicochemical descriptors in
Model 2 when compared to the corresponding ones in Model 1 (Figure 5). The same redistribution on
an individual descriptor level is depicted in Figure 6. Most descriptors have a more positive coefficient
in Model 2 when compared to Model 1.

Inspection of the most important molecular descriptors from OPLS Model 1 (LTR_class,
PEOE_VSA6, PEOE_VSA13, MolLogP, SlogP_VSA1, NHOHCount, NumHDonors) showed that
they were related to various descriptions of partially charged van der Waals surface area contributions,
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lipophilicity, and hydrogen bonding, where the two first categories have a positive contribution with
respect to accumulation, while the last category negatively influences the level of accumulation [19,20].
This is in line with previous observations that lipophilicity, hydrophobic regions, and the number of
positive charges contribute positively to accumulation [15,16].
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2.5. General Remarks

The aim of the present study was to develop purely in silico descriptor-based models for the
prediction of intracellular accumulation of macrocyclic compounds, as measured by LC-MS/MS in
NCI-H292 cells (ACC Class). To do that, we used calculated physicochemical molecular descriptors
as well as experimental data on lysosomal volume change in response to test compounds (LTR ACC
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Class) determined by cell imaging, which was found previously to correlate extremely well with the
intracellular accumulation measured by LC-MS/MS [17].

Experimental imaging data (LTR ACC Class) as a descriptor was found to have the highest PLS
regression coefficient, indicating its strong contribution and high importance in the prediction of
intracellular accumulation. In order to enable reliable predictions of accumulation even for compounds
for which there are no experimental imaging data available, we developed a model for the prediction
of imaging data from calculated molecular descriptors (OPLS Model 3).

Using predicted imaging data from Model 3, together with the physicochemical descriptors in
Model 1, was shown to have the highest balanced accuracy of all tested in silico models, and was
performing statistically significantly better than the model based only on physicochemical descriptors.
This means that the fusion of the information contained in Model 3 with Model 1 resulted in the
improved model being capable of predicting new compounds without any experimental data.

It is noteworthy that the obtained in silico models were developed with calculated molecular
descriptors based on 2D rather than a 3D structure, even for large molecules such as macrocycles.
It is likely that most important information about the 3D structure is contained in the experimental
LTR ACC Class descriptor. However, the remaining 2D molecular descriptors from Models 1 and 3
combined sufficiently well to describe the information necessary to obtain successful models. Moreover,
the descriptors were relatively easy to calculate and are readily available, as they come from an open
source software.

In our recent work, we have shown that the in vitro experimental 5-class model based only on the
experimental imaging of lysosomal volume changes showed an extremely high accuracy of 81% in
predicting the level of intracellular accumulation [17]. It is therefore not surprising that this descriptor
turned out to be highly important in the here developed in silico models. We may suggest that for
already synthesized compounds and compound libraries, the in vitro imaging model may be the
easiest way to obtain a very accurate estimation of intracellular accumulation of compounds in high
throughput format, provided that the facilities for this in vitro method are available. On the other hand,
for yet non-existing compounds the purely in silico descriptor-based model (Figure 3b) with predicted
imaging data offers, so far, the best way forward in predicting cellular accumulation and helping in the
design of new macrocycle molecules with favorable cellular accumulation properties. This preselection
would present a huge advantage for compounds with such a complex synthesis like macrocycles.

3. Materials and Methods

3.1. Compounds

Test compounds included 69 macrocycles and eight standard non-macrocyclic drugs. Macrocycle
synthesis and intracellular accumulation measured by LC-MS/MS in the NCI-H292 cell line in 3 h
exposure was reported by Stepanic et al. (2011) [15] and Kostrun et al. (2017) [16]. The macrocyclic
compounds used are represented by generic formulas in Figure 1.

The accumulation of eight standard non-macrocyclic drugs: acetaminophen (ACE), amiodarone
(AMIO), amitriptyline (AMIT), chloroquine diphosphate (CHL), imipramine (IMI), indomethacin
(IND), ofloxacin (OFL), and fluoxetine (FLU) was reported by Sanchez Garcia et al. (2018) [21].

The 77 compounds (69 macrocycles and eight non-macrocycles) covered the whole range of
cellular accumulation intensities as reported for pharmaceuticals thus far, from no/low accumulation to
extremely high. The training set consisted of 47 compounds (39 macrocycles and eight non-macrocycles)
and the validation set contained 30 macrocycles. Compound structures as well as their distribution in
both sets, together with their experimental data, can be found in the Supplementary Materials.

3.2. Physicochemical Descriptors

The investigated compounds were desalted and neutralized using Corina [22], followed by
structure standardization using the IMI eTOX project standardizer (https://pypi.python.org/pypi/

https://pypi.python.org/pypi/standardiser
https://pypi.python.org/pypi/standardiser
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standardiser) in combination with the MolVS standardizer for tautomer standardization (https:
//pypi.python.org/pypi/MolVS).

A total of 97 different 2D physiochemical descriptors covering molecular size and shapes,
charges, ring characteristics, lipophilicity, hydrogen bonding as well as various van der Waals
surface area contributions of hydrophobic/hydrophilic, polarizability and electrostatic nature were
calculated using RDKit (2017.09.01 release, https://www.rdkit.org): ‘Chi0’, ‘Chi0n’, ‘Chi0v’, ‘Chi1’,
‘Chi1n’, ‘Chi1v’, ‘Chi2n’, ‘Chi2v’, ‘Chi3n’, ‘Chi3v’, ‘Chi4n’, ‘Chi4v’, ‘EState_VSA1’, ‘EState_VSA10’,
‘EState_VSA11’, ‘EState_VSA2’, ‘EState_VSA3’, ‘EState_VSA4’, ‘EState_VSA5’, ‘EState_VSA6’,
‘EState_VSA7’, ‘EState_VSA8’, ‘EState_VSA9’, ‘FractionCSP3’, ‘HallKierAlpha’, ‘HeavyAtomCount’,
‘Ipc’, ‘Kappa1’, ‘Kappa2’, ‘Kappa3’, ‘LabuteASA’, ‘MolLogP’, ‘MolMR’, ‘MolWt’, ‘NHOHCount’,
‘NOCount’, ‘NumAliphaticCarbocycles’, ‘NumAliphaticHeterocycles’, ‘NumAliphaticRings’,
‘NumAromaticCarbocycles’, ‘NumAromaticHeterocycles’, ‘NumAromaticRings’, ‘NumHAcceptors’,
‘NumHDonors’, ‘NumHeteroatoms’, ‘NumRotatableBonds’, ‘NumSaturatedCarbocycles’,
‘NumSaturatedHeterocycles’, ‘NumSaturatedRings’, ‘PEOE_VSA1’, ‘PEOE_VSA10’, ‘PEOE_VSA11’,
‘PEOE_VSA12’, ‘PEOE_VSA13’, ‘PEOE_VSA14’, ‘PEOE_VSA2’, ‘PEOE_VSA3’, ‘PEOE_VSA4’,
‘PEOE_VSA5’, ‘PEOE_VSA6’, ‘PEOE_VSA7’, ‘PEOE_VSA8’, ‘PEOE_VSA9’, ‘RingCount’, ‘SMR_VSA1’,
‘SMR_VSA10’, ‘SMR_VSA2’, ‘SMR_VSA3’, ‘SMR_VSA4’, ‘SMR_VSA5’, ‘SMR_VSA6’, ‘SMR_VSA7’,
‘SMR_VSA8’, ‘SMR_VSA9’, ‘SlogP_VSA1’, ‘SlogP_VSA10’, ‘SlogP_VSA11’, ‘SlogP_VSA12’,
‘SlogP_VSA2’, ‘SlogP_VSA3’, ‘SlogP_VSA4’, ‘SlogP_VSA5’, ‘SlogP_VSA6’, ‘SlogP_VSA7’, ‘SlogP_VSA8’,
‘SlogP_VSA9’, ‘TPSA’, ‘VSA_EState1’, ‘VSA_EState10’, ‘VSA_EState2’, ‘VSA_EState3’, ‘VSA_EState4’,
‘VSA_EState5’, ‘VSA_EState6’, ‘VSA_EState7’, ‘VSA_EState8’, ‘VSA_EState9’. See Supporting Materials
for more detail.

3.3. Experimental Descriptor LTR ACC Class—the Indirect High Throughput Experimental Measure of
Cellular Accumulation

Imaging of the enlargement of lysosomal volume for 47 out of 77 compounds has been described in
our previous study [17], where the lysosomal volume increase measured by fluorescent microscopy was
found to highly correlate with the intracellular accumulation of compounds measured by LC-MS/MS.
In that study, we developed a 5-class in vitro model for the prediction of cellular accumulation as
determined by LC-MS/MS (ACC Class) from the changes in lysosomal volume. The obtained five
classes of compounds according to the intensity of lysosomal volume enlargement were used as an
experimental descriptor (referred to as LTR ACC Class) in the development of the in silico models for
the prediction of intracellular accumulation in the present study. In this classification, class 1 denotes
the lowest or no accumulation and class 5 represents an extremely high accumulation of a compound
(Table 1).

3.4. Quantitative Structure-Activity Relationship Model (QSAR) Modeling

The dependent variable was experimentally determined intracellular accumulation measured by
LC-MS/MS expressed as five classes (Table 1). The distribution of the test compounds in five classes by
ACC Class and LTR ACC Class is shown.

The orthogonal PLS (OPLS) method (SIMCA 15 software package, Umetrics, Umea, Sweden) was
used for data analysis [23]. The dataset was mean-centered and auto-scaled prior to analysis. Simca
default parameter settings were used. OPLS, a modification of the traditional PLS method, aims to
separate the systematic variation in the descriptor matrix into two parts: (1) linearly related to the target
variable (ACC Class), and (2) orthogonal to the target variable, whereas the traditional PLS method
only addresses part 1. Due to the rather low total number of available compounds, their distribution
into the training and validation sets was guided by the availability of experimental data. Since the 47
compounds, for which both ACC Class and LTR ACC Class data were available, distributed well into
five classes of the ACC Class, they were used as the training set. The remaining 30 compounds with
ACC Class but no LTR ACC Class data were designated into the validation set. The training set of 47

https://pypi.python.org/pypi/standardiser
https://pypi.python.org/pypi/standardiser
https://pypi.python.org/pypi/MolVS
https://pypi.python.org/pypi/MolVS
https://www.rdkit.org


Int. J. Mol. Sci. 2019, 20, 5938 11 of 13

compounds (with available ACC Class and LTR ACC Class data) was used to develop two different
OPLS models for the prediction of intracellular accumulation determined by LC-MS/MS (Models 1 and
2) and one OPLS model for the prediction of intracellular accumulation class determined by lysosomal
imaging (LTR ACC Class) (Model 3) (Table 2):

1. OPLS intracellular accumulation Model 1 using both the 97 physiochemical descriptors and the
experimental LTR ACC Class information for 47 compounds with existing experimental LTR
ACC Class information. The model was used to predict intracellular accumulation as measured
in cells using LC-MS/MS.

2. OPLS intracellular accumulation Model 2 using only the 97 physiochemical descriptors for the
same 47 compounds in Model 1. The model was used to predict intracellular accumulation as
measured in cells using LC-MS/MS.

3. OPLS LTR ACC Class Model 3 using only the 97 physiochemical descriptors for 47 compounds
with experimental LTR ACC Class information. The model was used to predict the lysosomal
volume change as measured in cells using cell imaging (parameter LTR ACC Class), and which
was previously found to correlate with intracellular accumulation determined by LC-MS/MS.

In order to validate the developed models, we used 30 compounds (validation set) with available
ACC Class, but no LTR ACC Class data. To predict the ACC Class for the validation set, we used three
different schemes:

A. From OPLS Model 1 where the LTR ACC Class descriptor was treated as ‘missing’ data (“missing
LTR ACC class”).

B. From OPLS Model 1 where the predicted values from OPLS LTR ACC Class Model 3 were used
as the LTR ACC Class descriptor (“predicted LTR ACC class”).

C. From OPLS Model 2 (“no LTR ACC class”).

The applicability domains (AD) for the derived models were defined, by default, using the
residual standard deviation (rsd) (i.e., remaining unused information in the data matrix), and the 95%
confidence interval as the cut-off in relation to the average residual standard deviation in the descriptor
matrix of the training set from 7-fold cross-validation (i.e., calculated using each of the left-out folds).
If the rsd for the test compound was greater than two times the average rsd of the training set (~95%
confidence interval), the test compound in question is regarded as out-of-AD.

Since an experimental model for predicting ACC Class already exists as the cell imaging method
resulting in parameter LTR ACC Class, with the in silico models in this study, we specifically focused
on validating models that would not need any experimental data for new compounds to be predicted.
Therefore, all three schemes of validation are applicable for compounds where only the molecular
structure is known.

Multi-class balanced accuracy (non-error rate) [24], which is not influenced by the imbalanced
distribution of classes as well as Spearman rank correlation were used to evaluate the performance of
the derived models.

4. Conclusions

In this study, we used the intracellular accumulation data of 69 macrocyclic compounds measured
by LC-MS/MS to build QSAR models for the prediction of their intracellular accumulation. In
addition to the molecular structure descriptors, we also used the experimental data of intracellular
accumulation obtained by high throughput imaging of lysosomal volume changes. For compounds
without any experimental data, our purely in silico model based on calculated molecular descriptors
and predicted lysosomal imaging data, showed the most accurate classification predictions of five
classes of intracellular accumulation reported so far, with a balanced accuracy of 60%. Bearing in mind
the difficulty of purely in silico based predictions for such large molecules like macrocycles, and the
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importance of cellular accumulation in their pharmacology, the presented model can be of significant
help in the design of the new macrocycle molecules with fine-tuned desired pharmacokinetic properties.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/20/23/
5938/s1.
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Abbreviations

ACC
Accumulation of compounds in cells expressed as either I/E or % of the accumulation of
the reference compound azithromycin

ACC Class Class (level) of accumulation (determined from LC-MS/MS data on ACC)
AD Applicability domain
ADME Absorption distribution metabolism and excretion
AZI Azithromycin, a macrocycle antibiotic
CAD Cationic amphiphilic drug
I/E Intracellular to extracellular concentration ratio; a measure of accumulation
LC-MS/MS Liquid chromatography coupled to tandem mass spectrometry

LTR ACC Class
Class (level) of accumulation (determined by an indirect method of cell imaging of
lysosome volume change)

OPLS Orthogonal projections to latent structures
QSAR Quantitative structure-activity relationship model
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