Molecular Imaging of Diabetic Foot Infections: New Tools for Old Questions
Abstract
:1. Introduction
2. Challenges in the Diagnosis and Treatment of DFIs
2.1. Is There An Infection?
2.2. Which Pathogen(s) Are Causing the Infection?
2.3. Where Is the Infection and Where Does It Extend to?
3. Is the Antibiotic Penetrating the Infection Site?
Can We Use Molecular Imaging to Monitor Response to Treatment?
4. Could Molecular Imaging Evaluate Microvascular Complications in DFI?
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
11C | Carbon-11 |
18F | Fluoride-18 |
68Ga | Gallium-68 |
99mTc | Technetium-99m |
ABI | Ankle-branchial pressure index |
CN | Charcot’s neuroarthropathy |
CFU | Colony-forming unit |
CT | Computed tomography |
DFI | Diabetic foot infection |
DFU | Diabetic foot ulcer |
ESBL | Extended spectrum beta-lactamase |
ESR | Erythrocyte sedimentation rate |
FDG | Fluorodeoxyglucose |
FDS | Fluorodeoxysorbitol |
FIAU | Fialuridine |
FPTMP | Fluoropropyl-trimethoprim |
GMP | Good manufacturing practice |
MDRO | Multidrug-resistant organism |
MRI | Magnetic resonance imaging |
MRSA | Methicillin-resistant Staphylococcus aureus |
MSSA | Methicillin-susceptible Staphylococcus aureus |
NOTA | 1,4,7-triazacyclononane-N,N′,N″-triacetic acid |
PABA | para-Aminobenzoic acid |
PAD | Peripheral artery disease |
PET | Positron emission tomography |
SPECT | Single-photon emission computed tomography |
STIR | Short TI Inversion Recovery |
TcPO2 | Transcutaneous oxygen tension |
TB | Tuberculosis/Tuberculous |
UBI | Ubiquicidin |
References
- Institute for Health Metrics and Evaluation (IHME). GBD Compare Data Visualization. 2017. Available online: http://vizhub.healthdata.org/gbd-compare (accessed on 27 September 2019).
- Frykberg, R.G.; Wittmayer, B.; Zgonis, T. Surgical Management of Diabetic Foot Infections and Osteomyelitis. Clin. Podiatr. Med. Surg. 2007, 24, 469–482. [Google Scholar] [CrossRef]
- Raghav, A.; Khan, Z.A.; Labala, R.K.; Ahmad, J.; Noor, S.; Mishra, B.K. Financial burden of diabetic foot ulcers to world: A progressive topic to discuss always. Ther. Adv. Endocrinol. Metab. 2018, 9, 29–31. [Google Scholar] [CrossRef]
- Geiss, L.S.; Li, Y.; Hora, I.; Albright, A.; Rolka, D.; Gregg, E.W. Resurgence of diabetes-related nontraumatic lower-extremity amputation in the young and middle-aged adult US population. Diabetes Care 2019, 42, 50–54. [Google Scholar] [CrossRef]
- Uckay, I.; Aragon-Sanchez, J.; Lew, D.; Lipsky, B.A. Diabetic foot infections: What have we learned in the last 30 years? Int. J. Infect. Dis. 2015, 40, 81–91. [Google Scholar] [CrossRef]
- Weledji, E.P.; Fokam, P. Treatment of the diabetic foot—To amputate or not? BMC Surg. 2014, 14, 83. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, A.A.; Sellmyer, M.A.; Gowrishankar, G.; Ruiz-Bedoya, C.A.; Tucker, E.W.; Palestro, C.J.; Hammoud, D.A.; Jain, S.K. Molecular imaging of bacterial infections: Overcoming the barriers to clinical translation. Sci. Transl. Med. 2019, 11, eaax8251. [Google Scholar] [CrossRef]
- Lipsky, B.A.; Berendt, A.R.; Cornia, P.B.; Pile, J.C.; Peters, E.J.; Armstrong, D.G.; Deery, H.G.; Embil, J.M.; Joseph, W.S.; Karchmer, A.W.; et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin. Infect. Dis. 2012, 54, e132–e173. [Google Scholar] [CrossRef]
- Glaudemans, A.; Uçkay, I.; Lipsky, B. Challenges in diagnosing infection in the diabetic foot. Diabet. Med. 2015, 32, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.; Peters, E.; Senneville, E.; Berendt, A.; Embil, J.; Lavery, L.; Urbančič-Rovan, V.; Jeffcoate, W. Expert opinion on the management of infections in the diabetic foot. Diabetes Metab. Res. Rev. 2012, 28, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.; Senneville, E.; Abbas, Z.; Aragón-Sánchez, J.; Diggle, M.; Embil, J. IWGDF Guideline on the diagnosis and treatment of foot infection in persons with diabetes. Diabetes. Metab. Res. Rev 2016, 32 (Suppl. 1), 45–74. [Google Scholar] [CrossRef] [PubMed]
- Weiner, R.D.; Viselli, S.J.; Fulkert, K.A.; Accetta, P. Histology versus microbiology for accuracy in identification of osteomyelitis in the diabetic foot. J. Foot Ankle Surg. 2011, 50, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, A.A.; Weinstein, E.A.; Bambarger, L.E.; Saini, V.; Chang, Y.S.; DeMarco, V.P.; Klunk, M.H.; Urbanowski, M.E.; Moulton, K.L.; Murawski, A.M. A systematic approach for developing bacteria-specific imaging tracers. J. Nucl. Med. 2017, 58, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Mutch, C.A.; Ordonez, A.A.; Qin, H.; Parker, M.; Bambarger, L.E.; Villanueva-Meyer, J.E.; Blecha, J.; Carroll, V.; Taglang, C.; Flavell, R.; et al. Para-Aminobenzoic Acid: A Positron Emission Tomography Tracer Targeting Bacteria-Specific Metabolism. ACS Infect. Dis. 2018, 4, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ordonez, A.A.; Wang, H.; Li, Y.; Gogarty, K.R.; Weinstein, E.A.; Daryaee, F.; Merino, J.; Yoon, G.E.; Kalinda, A.S. Positron Emission Tomography Imaging with 2-[18F] F-p-Aminobenzoic Acid Detects Staphylococcus aureus Infections and Monitors Drug Response. ACS Infect. Dis. 2018, 4, 1635–1644. [Google Scholar] [CrossRef]
- Sellmyer, M.A.; Lee, I.; Hou, C.; Weng, C.-C.; Li, S.; Lieberman, B.P.; Zeng, C.; Mankoff, D.A.; Mach, R.H. Bacterial infection imaging with [18F] fluoropropyl-trimethoprim. Proc. Natl. Acad. Sci. USA 2017, 114, 8372–8377. [Google Scholar] [CrossRef]
- Neumann, K.D.; Villanueva-Meyer, J.E.; Mutch, C.A.; Flavell, R.R.; Blecha, J.E.; Kwak, T.; Sriram, R.; VanBrocklin, H.F.; Rosenberg, O.S.; Ohliger, M.A. Imaging active infection in vivo using d-amino acid derived pet radiotracers. Sci. Rep. 2017, 7, 7903. [Google Scholar] [CrossRef]
- Bettegowda, C.; Foss, C.A.; Cheong, I.; Wang, Y.; Diaz, L.; Agrawal, N.; Fox, J.; Dick, J.; Dang, L.H.; Zhou, S. Imaging bacterial infections with radiolabeled 1-(2′-deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-iodouracil. Proc. Natl. Acad. Sci. USA 2005, 102, 1145–1150. [Google Scholar] [CrossRef]
- Zhang, X.M.; Zhang, H.H.; McLeroth, P.; Berkowitz, R.D.; Mont, M.A.; Stabin, M.G.; Siegel, B.A.; Alavi, A.; Barnett, T.M.; Gelb, J.; et al. [124I] FIAU: Human dosimetry and infection imaging in patients with suspected prosthetic joint infection. Nucl. Med. Biol. 2016, 43, 273–279. [Google Scholar] [CrossRef]
- Ebenhan, T.; Sathekge, M.M.; Lengana, T.; Koole, M.; Gheysens, O.; Govender, T.; Zeevaart, J.R. 68Ga-NOTA-Functionalized Ubiquicidin: Cytotoxicity, biodistribution, radiation dosimetry, and first-in-human PET/CT Imaging of Infections. J. Nucl. Med. 2018, 59, 334–339. [Google Scholar] [CrossRef]
- Petrik, M.; Umlaufova, E.; Raclavsky, V.; Palyzova, A.; Havlicek, V.; Haas, H.; Novy, Z.; Dolezal, D.; Hajduch, M.; Decristoforo, C. Imaging of Pseudomonas aeruginosa infection with Ga-68 labelled pyoverdine for positron emission tomography. Sci. Rep. 2018, 8, 15698. [Google Scholar] [CrossRef]
- Ordonez, A.A.; Bambarger, L.E.; Murthy, N.; Wilson, D.M.; Jain, S.K. Bacterial Imaging. In Imaging Infections: From Bench to Bedside; Jain, S.K., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 149–172. [Google Scholar] [CrossRef]
- Gowrishankar, G.; Hardy, J.; Wardak, M.; Namavari, M.; Reeves, R.E.; Neofytou, E.; Srinivasan, A.; Wu, J.C.; Contag, C.H.; Gambhir, S.S. Specific imaging of bacterial infection using 6-18F-fluoromaltotriose: A second-generation PET tracer targeting the maltodextrin transporter in bacteria. J. Nucl. Med. 2017, 58, 1679–1684. [Google Scholar] [CrossRef] [PubMed]
- Ning, X.; Seo, W.; Lee, S.; Takemiya, K.; Rafi, M.; Feng, X.; Weiss, D.; Wang, X.; Williams, L.; Camp, V.M. PET imaging of bacterial infections with fluorine-18-labeled maltohexaose. Angew. Chem. Int. Ed. 2014, 53, 14096–14101. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, E.A.; Ordonez, A.A.; DeMarco, V.P.; Murawski, A.M.; Pokkali, S.; MacDonald, E.M.; Klunk, M.; Mease, R.C.; Pomper, M.G.; Jain, S.K. Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Sci. Transl. Med. 2014, 6, 259ra146. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Yao, S.; Xing, H.; Zhang, H.; Tai, Y.C.; Zhang, Y.; Liu, Y.; Ma, Y.; Wu, C.; Wang, H.; et al. Biodistribution and Radiation Dosimetry of the Enterobacteriaceae-Specific Imaging Probe [(18)F]Fluorodeoxysorbitol Determined by PET/CT in Healthy Human Volunteers. Mol. Imaging. Biol. 2016, 18, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, A.A.; Wintaco, L.M.; Ruiz-Bedoya, C.A.; Frey, S.; Sanchez, J.D.; D’Alessio, F.R.; Holt, D.P.; Dannals, R.F.; Pomper, M.G.; Jain, S.K. Noninvasive diagnosis and monitoring of pulmonary infections using pathogen-specific 18F-fluorodeoxysorbitol (18F-FDS) PET—First in human study. Abstr GA 321. In Proceedings of the World Molecular Imaging Conference, Montreal, QC, Canada, 4–7 September 2019. [Google Scholar]
- Cheng, X.; Zhu, W.; Cui, R. Increased 18F-2-Fluorodeoxysorbitol (18F-FDS) Activity in a Pituitary Spindle Cell Carcinoma. Clin. Nucl. Med. 2016, 41, 953–955. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhu, W.; Cui, R. Increased 18F-2-Fluorodeoxysorbitol (18F-FDS) Activity in a Pituitary Spindle Cell Carcinoma: Reply. Clin. Nucl. Med. 2017, 42, 649–650. [Google Scholar] [CrossRef]
- Javadi, M.S.; Ordonez, A.A.; Jain, S.K. Re: Increased 18F-2-Fluorodeoxysorbitol (18F-FDS) Activity in a Pituitary Spindle Cell Carcinoma. Clin. Nucl. Med. 2017, 42, 649. [Google Scholar] [CrossRef]
- Li, Z.B.; Wu, Z.; Cao, Q.; Dick, D.W.; Tseng, J.R.; Gambhir, S.S.; Chen, X. The synthesis of 18F-FDS and its potential application in molecular imaging. Mol. Imaging Biol. 2008, 10, 92–98. [Google Scholar] [CrossRef]
- Scott, M.E.; Viola, R.E. The use of fluoro- and deoxy-substrate analogs to examine binding specificity and catalysis in the enzymes of the sorbitol pathway. Carbohydr. Res. 1998, 313, 247–253. [Google Scholar] [CrossRef]
- Liu, J.; Bai, R.; Li, Y.; Staedtke, V.; Zhang, S.; van Zijl, P.C.; Liu, G. MRI detection of bacterial brain abscesses and monitoring of antibiotic treatment using bacCEST. Magn. Reson. Med. 2018, 80, 662–671. [Google Scholar] [CrossRef]
- Citron, D.M.; Goldstein, E.J.; Merriam, C.V.; Lipsky, B.A.; Abramson, M.A. Bacteriology of moderate-to-severe diabetic foot infections and in vitro activity of antimicrobial agents. J. Clin. Microbiol. 2007, 45, 2819–2828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesens, O.; Desbiez, F.; Theis, C.; Ferry, T.; Bensalem, M.; Laurichesse, H.; Tauveron, I.; Beytout, J.; Aragon Sanchez, J.; Working Group on Diabetic Osteomyelitis. Staphylococcus aureus-Related Diabetic Osteomyelitis: Medical or Surgical Management? A French and Spanish Retrospective Cohort. Int. J. Low. Extrem. Wounds 2015, 14, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Senneville, E.; Lombart, A.; Beltrand, E.; Valette, M.; Legout, L.; Cazaubiel, M.; Yazdanpanah, Y.; Fontaine, P. Outcome of diabetic foot osteomyelitis treated nonsurgically: A retrospective cohort study. Diabetes Care 2008, 31, 637–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, E.J.; Lipsky, B.A. Diagnosis and management of infection in the diabetic foot. Med. Clin. 2013, 97, 911–946. [Google Scholar] [CrossRef] [PubMed]
- Charles, P.G.; Uckay, I.; Kressmann, B.; Emonet, S.; Lipsky, B.A. The role of anaerobes in diabetic foot infections. Anaerobe 2015, 34, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Stacey, H.J.; Clements, C.S.; Welburn, S.C.; Jones, J.D. The prevalence of methicillin-resistant Staphylococcus aureus among diabetic patients: A meta-analysis. Acta Diabetol. 2019, 56, 907–921. [Google Scholar] [CrossRef] [Green Version]
- Saltoglu, N.; Ergonul, O.; Tulek, N.; Yemisen, M.; Kadanali, A.; Karagoz, G.; Batirel, A.; Ak, O.; Sonmezer, C.; Eraksoy, H. Influence of multidrug resistant organisms on the outcome of diabetic foot infection. Int. J. Infect. Dis. 2018, 70, 10–14. [Google Scholar] [CrossRef] [Green Version]
- VinodKumar, C.S.; Hiresave, S.; Giriyapal, B.K.; Bandekar, N. Metallo beta lactamase producing Pseudomonas aeruginosa and its association with diabetic foot. Indian J. Surg. 2011, 73, 291–294. [Google Scholar] [CrossRef] [Green Version]
- Víquez-Molina, G.; Aragón-Sánchez, J.; Pérez-Corrales, C.; Murillo-Vargas, C.; López-Valverde, M.E.; Lipsky, B.A. Virulence factor genes in Staphylococcus aureus isolated from diabetic foot soft tissue and bone infections. Int. J. Low. Extrem. Wounds 2018, 17, 36–41. [Google Scholar] [CrossRef]
- Uçkay, I.; Gariani, K.; Pataky, Z.; Lipsky, B.A. Diabetic foot infections: State-of-the-art. Diabetes Obes. Metab. 2014, 16, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Lew, D.P.; Waldvogel, F.A. Osteomyelitis. Lancet 2004, 364, 369–379. [Google Scholar] [CrossRef]
- Meyr, A.J.; Singh, S.; Zhang, X.; Khilko, N.; Mukherjee, A.; Sheridan, M.J.; Khurana, J.S. Statistical reliability of bone biopsy for the diagnosis of diabetic foot osteomyelitis. J. Foot Ankle Surg. 2011, 50, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Teh, J.; Berendt, T.; Lipsky, B.A. Investigating suspected bone infection in the diabetic foot. BMJ 2009, 339, b4690. [Google Scholar] [CrossRef] [PubMed]
- Yochum, T.R.; Rowe, L.J. Infection. In Essentials of Skeletal Radiology, 3rd ed.; Williams and Wilkens: Baltimore, MD, USA, 1987. [Google Scholar]
- Álvaro-Afonso, F.J.; Lázaro-Martínez, J.L.; Aragón-Sánchez, J.; García-Morales, E.; Cecilia-Matilla, A.; Beneit-Montesinos, J.V. Interobserver and intraobserver reproducibility of plain X-rays in the diagnosis of diabetic foot osteomyelitis. Int. J. Low. Extrem. Wounds 2013, 12, 12–15. [Google Scholar] [CrossRef]
- Peterson, N.; Widnall, J.; Evans, P.; Jackson, G.; Platt, S. Diagnostic imaging of diabetic foot disorders. Foot Ankle Int. 2017, 38, 86–95. [Google Scholar] [CrossRef]
- Eser Sanverdi, S.; Ergen, B.; Oznur, A. Current challenges in imaging of the diabetic foot. Diabet. Foot Ankle 2012, 3, 18754. [Google Scholar] [CrossRef]
- Censullo, A.; Vijayan, T. Using nuclear medicine imaging wisely in diagnosing infectious diseases. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Tan, P.; Teh, J. MRI of the diabetic foot: Differentiation of infection from neuropathic change. Br. J. Radiol. 2007, 80, 939–948. [Google Scholar] [CrossRef]
- Beaman, F.D.; von Herrmann, P.F.; Kransdorf, M.J.; Adler, R.S.; Amini, B.; Appel, M.; Arnold, E.; Bernard, S.A.; Greenspan, B.S.; Lee, K.S. ACR Appropriateness Criteria® suspected osteomyelitis, septic arthritis, or soft tissue infection (excluding spine and diabetic foot). J. Am. Coll. Radiol. 2017, 14, S326–S337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palestro, C.J. Radionuclide imaging of musculoskeletal infection: A review. J. Nucl. Med. 2016, 57, 1406–1412. [Google Scholar] [CrossRef] [Green Version]
- Palestro, C.J.; Love, C.; Tronco, G.G.; Tomas, M.B.; Rini, J.N. Combined labeled leukocyte and technetium 99m sulfur colloid bone marrow imaging for diagnosing musculoskeletal infection. Radiographics 2006, 26, 859–870. [Google Scholar] [CrossRef]
- Palestro, C.J.; Love, C. Nuclear Medicine and Diabetic Foot Infections. Semin. Nucl. Med. 2009, 39, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Lauri, C.; Tamminga, M.; Glaudemans, A.W.; Orozco, L.E.J.; Erba, P.A.; Jutte, P.C.; Lipsky, B.A.; IJzerman, M.J.; Signore, A.; Slart, R.H. Detection of osteomyelitis in the diabetic foot by imaging techniques: A systematic review and meta-analysis comparing MRI, white blood cell scintigraphy, and FDG-PET. Diabetes Care 2017, 40, 1111–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palestro, C.J. 18F-FDG and diabetic foot infections: The verdict is…. J. Nucl. Med. 2011, 52, 1009–1011. [Google Scholar] [CrossRef] [PubMed]
- Gnanasegaran, G.; Vijayanathan, S.; Fogelman, I. Diagnosis of infection in the diabetic foot using 18 F-FDG PET/CT: A sweet alternative? Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 1525–1527. [Google Scholar] [CrossRef] [Green Version]
- Arnon-Sheleg, E.; Keidar, Z. Diabetic Foot Infection: The Role of PET/CT Imaging. Curr. Pharm. Des. 2018, 24, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Cassar-Pullicino, V.N.; Semprini, A.; Tonetti, L.; Magarelli, N.; Colosimo, C. Neuropathic osteoarthropathy with and without superimposed osteomyelitis in patients with a diabetic foot. Skelet. Radiol. 2016, 45, 735–754. [Google Scholar] [CrossRef]
- Papanas, N.; Zissimopoulos, A.; Maltezos, E. 18F-FDG PET and PET/CT for the diagnosis of diabetic foot osteomyelitis. Hippokratia 2013, 17, 4–6. [Google Scholar]
- Yang, H.; Zhuang, H.; Rubello, D.; Alavi, A. Mild-to-moderate hyperglycemia will not decrease the sensitivity of 18F-FDG PET imaging in the detection of pedal osteomyelitis in diabetic patients. Nucl. Med. Commun. 2016, 37, 259–262. [Google Scholar] [CrossRef]
- Büsing, K.A.; Schönberg, S.O.; Brade, J.; Wasser, K. Impact of blood glucose, diabetes, insulin, and obesity on standardized uptake values in tumors and healthy organs on 18F-FDG PET/CT. Nucl. Med. Boil. 2013, 40, 206–213. [Google Scholar] [CrossRef]
- Bailey, D.L.; Pichler, B.J.; Gückel, B.; Antoch, G.; Barthel, H.; Bhujwalla, Z.M.; Biskup, S.; Biswal, S.; Bitzer, M.; Boellaard, R.; et al. Combined PET/MRI: Global Warming—Summary Report of the 6th International Workshop on PET/MRI, March 27–29, 2017, Tübingen, Germany. Mol. Imaging Biol. 2018, 20, 4–20. [Google Scholar] [CrossRef] [Green Version]
- Sathekge, M.; Garcia-Perez, O.; Paez, D.; El-Haj, N.; Kain-Godoy, T.; Lawal, I.; Estrada-Lobato, E. Molecular imaging in musculoskeletal infections with 99m Tc-UBI 29-41 SPECT/CT. Ann. Nucl. Med. 2018, 32, 54–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhusari, P.; Bhatt, J.; Sood, A.; Kaur, R.; Vatsa, R.; Rastogi, A.; Mukherjee, A.; Dash, A.; Mittal, B.R.; Shukla, J. Evaluating the potential of kit-based 68Ga-ubiquicidin formulation in diagnosis of infection: A pilot study68Ga. Nucl. Med. Commun. 2019, 40, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Fatima, S.; Saeed, M.A.; Zia, M.; Irfan Ullah, J. 99mTc-Ceftizoxime: Synthesis, characterization and its use in diagnosis of diabetic foot osteomyelitis. J. Med. Imaging Radiat. Oncol. 2019, 63, 61–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarda, L.; Crémieux, A.-C.; Lebellec, Y.; Meulemans, A.; Lebtahi, R.; Hayem, G.; Génin, R.; Delahaye, N.; Huten, D.; Le Guludec, D. Inability of 99mTc-ciprofloxacin scintigraphy to discriminate between septic and sterile osteoarticular diseases. J. Nucl. Med. 2003, 44, 920–926. [Google Scholar] [PubMed]
- Welling, M.; Stokkel, M.; Balter, J.; Sarda-Mantel, L.; Meulemans, A.; Le Guludec, D. The many roads to infection imaging. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 848–849. [Google Scholar] [CrossRef] [Green Version]
- Kwon, K.T.; Armstrong, D.G. Microbiology and Antimicrobial Therapy for Diabetic Foot Infections. Infect. Chemother. 2018, 50, 11–20. [Google Scholar] [CrossRef]
- Lipsky, B.A. Evidence-based antibiotic therapy of diabetic foot infections. FEMS Immunol. Med. Microbiol. 1999, 26, 267–276. [Google Scholar] [CrossRef]
- Spellberg, B.; Lipsky, B.A. Systemic antibiotic therapy for chronic osteomyelitis in adults. Clin. Infect. Dis. 2012, 54, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Thabit, A.K.; Fatani, D.F.; Bamakhrama, M.S.; Barnawi, O.A.; Basudan, L.O.; Alhejaili, S.F. Antibiotic penetration into bone and joints: An updated review. Int. J. Infect. Dis. 2019, 81, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, P.R.; Lipsky, B.A.; Bradbury, A.W.; Botek, G. Treatment for diabetic foot ulcers. Lancet 2005, 366, 1725–1735. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Y.; Shea, C.; Fowler, J.S.; Hooker, J.M.; Tonge, P.J. Radiosynthesis and bioimaging of the tuberculosis chemotherapeutics isoniazid, rifampicin and pyrazinamide in baboons. J. Med. Chem. 2010, 53, 2882–2891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langer, O.; Mitterhauser, M.; Brunner, M.; Zeitlinger, M.; Wadsak, W.; Mayer, B.X.; Kletter, K.; Müller, M. Synthesis of fluorine-18-labeled ciprofloxacin for PET studies in humans. Nucl. Med. Boil. 2003, 30, 285–291. [Google Scholar] [CrossRef]
- Brunner, M.; Langer, O.; Dobrozemsky, G.; Muller, U.; Zeitlinger, M.; Mitterhauser, M.; Wadsak, W.; Dudczak, R.; Kletter, K.; Muller, M. [18F] Ciprofloxacin, a new positron emission tomography tracer for noninvasive assessment of the tissue distribution and pharmacokinetics of ciprofloxacin in humans. Antimicrob. Agents Chemother. 2004, 48, 3850–3857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ordonez, A.A.; Bambarger, L.E.; Jain, S.K.; Weinstein, E.A. Biodistribution and Pharmacokinetics of Antimicrobials. In Imaging Infections: From Bench to Bedside; Jain, S.K., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 209–222. [Google Scholar] [CrossRef]
- DeMarco, V.P.; Ordonez, A.A.; Klunk, M.; Prideaux, B.; Wang, H.; Zhuo, Z.; Tonge, P.J.; Dannals, R.F.; Holt, D.P.; Lee, C.K. Determination of [11C] rifampin pharmacokinetics within Mycobacterium tuberculosis-infected mice by using dynamic positron emission tomography bioimaging. Antimicrob. Agents Chemother. 2015, 59, 5768–5774. [Google Scholar] [CrossRef] [Green Version]
- Tucker, E.W.; Guglieri-Lopez, B.; Ordonez, A.A.; Ritchie, B.; Klunk, M.H.; Sharma, R.; Chang, Y.S.; Sanchez-Bautista, J.; Frey, S.; Lodge, M.A.; et al. Noninvasive (11) C-rifampin positron emission tomography reveals drug biodistribution in tuberculous meningitis. Sci. Transl. Med. 2018, 10, eaau0965. [Google Scholar] [CrossRef] [Green Version]
- Berendt, A.R.; Peters, E.J.; Bakker, K.; Embil, J.M.; Eneroth, M.; Hinchliffe, R.J.; Jeffcoate, W.J.; Lipsky, B.A.; Senneville, E.; Teh, J.; et al. Diabetic foot osteomyelitis: A progress report on diagnosis and a systematic review of treatment. Diabetes Metab. Res. Rev. 2008, 24 (Suppl. 1), S145–S161. [Google Scholar] [CrossRef]
- Van der Bruggen, W.; Bleeker-Rovers, C.P.; Boerman, O.C.; Gotthardt, M.; Oyen, W.J. PET and SPECT in osteomyelitis and prosthetic bone and joint infections: A systematic review. Semin. Nucl. Med. 2010, 40, 3–15. [Google Scholar] [CrossRef]
- Filippi, L.; Uccioli, L.; Giurato, L.; Schillaci, O. Diabetic foot infection: Usefulness of SPECT/CT for 99mTc-HMPAO-labeled leukocyte imaging. J. Nucl. Med. 2009, 50, 1042–1046. [Google Scholar] [CrossRef] [Green Version]
- Glaudemans, A.W.; Signore, A. FDG-PET/CT in infections: The imaging method of choice? Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1986–1991. [Google Scholar] [CrossRef] [Green Version]
- Keidar, Z.; Militianu, D.; Melamed, E.; Bar-Shalom, R.; Israel, O. The diabetic foot: Initial experience with 18F-FDG PET/CT. J. Nucl. Med. 2005, 46, 444–449. [Google Scholar]
- Lazaga, F.; Van Asten, S.A.; Nichols, A.; Bhavan, K.; La Fontaine, J.; Oz, O.K.; Lavery, L.A. Hybrid imaging with 99mTc-WBC SPECT/CT to monitor the effect of therapy in diabetic foot osteomyelitis. Int. Wound J. 2016, 13, 1158–1160. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Chryssikos, T.; Moghadam-Kia, S.; Zhuang, H.; Torigian, D.A.; Alavi, A. Positron emission tomography as a diagnostic tool in infection: Present role and future possibilities. Semin. Nucl. Med. 2009, 39, 36–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawaz, A.; Torigian, D.A.; Siegelman, E.S.; Basu, S.; Chryssikos, T.; Alavi, A. Diagnostic performance of FDG-PET, MRI, and plain film radiography (PFR) for the diagnosis of osteomyelitis in the diabetic foot. Mol. Imaging Biol. 2010, 12, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Hakim, S.G.; Bruecker, C.W.; Jacobsen, H.; Hermes, D.; Lauer, I.; Eckerle, S.; Froehlich, A.; Sieg, P. The value of FDG-PET and bone scintigraphy with SPECT in the primary diagnosis and follow-up of patients with chronic osteomyelitis of the mandible. Int. J. Oral Maxillofac. Surg. 2006, 35, 809–816. [Google Scholar] [CrossRef]
- Win, Z.; O’Flynn, E.; O’Rourke, E.J.; Singh, A.; Cooke, G.S.; Friedland, J.S.; Al-Nahhas, A. F-18 FDG PET in the diagnosis and monitoring of salmonella vertebral osteomyelitis: A comparison with MRI. Clin. Nucl. Med. 2006, 31, 437–440. [Google Scholar] [CrossRef]
- Rajamani, S.; Kuszpit, K.; Scarff, J.M.; Lundh, L.; Khan, M.; Brown, J.; Stafford, R.; Cazares, L.H.; Panchal, R.G.; Bocan, T. Bioengineering of bacterial pathogens for noninvasive imaging and in vivo evaluation of therapeutics. Sci. Rep. 2018, 8, 12618. [Google Scholar] [CrossRef]
- Nibbering, P.H.; Welling, M.M.; Paulusma-Annema, A.; Brouwer, C.P.; Lupetti, A.; Pauwels, E.K. 99mTc-Labeled UBI 29-41 peptide for monitoring the efficacy of antibacterial agents in mice infected with Staphylococcus aureus. J. Nucl. Med. 2004, 45, 321–326. [Google Scholar]
- Konig, C.; Simmen, H.P.; Blaser, J. Bacterial concentrations in pus and infected peritoneal fluid--implications for bactericidal activity of antibiotics. J. Antimicrob. Chemother. 1998, 42, 227–232. [Google Scholar] [CrossRef]
- Boyko, E.J.; Ahroni, J.H.; Davignon, D.; Stensel, V.; Prigeon, R.L.; Smith, D.G. Diagnostic utility of the history and physical examination for peripheral vascular disease among patients with diabetes mellitus. J. Clin. Epidemiol. 1997, 50, 659–668. [Google Scholar] [CrossRef]
- Suzuki, E.; Kashiwagi, A.; Nishio, Y.; Egawa, K.; Shimizu, S.; Maegawa, H.; Haneda, M.; Yasuda, H.; Morikawa, S.; Inubushi, T. Increased arterial wall stiffness limits flow volume in the lower extremities in type 2 diabetic patients. Diabetes Care 2001, 24, 2107–2114. [Google Scholar] [CrossRef] [Green Version]
- Romanos, M.T.; Raspovic, A.; Perrin, B.M. The reliability of toe systolic pressure and the toe brachial index in patients with diabetes. J. Foot Ankle Res. 2010, 3, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, D.T.; Price, P.; Harding, K.G. The influence of diabetes and lower limb arterial disease on cutaneous foot perfusion. J. Vasc. Surg. 2006, 44, 770–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezio, F.; Giacomo, C.; Maurizio, C.; Antonella, Q.; Vincenzo, C.; Francesco, S. Evaluation of feasibility of ankle pressure and foot oxymetry values for the detection of critical limb ischemia in diabetic patients. Vasc. Endovasc. Surg. 2010, 44, 184–189. [Google Scholar] [CrossRef]
- Braun, J.D.; Trinidad-Hernandez, M.; Perry, D.; Armstrong, D.G.; Mills, J.L., Sr. Early quantitative evaluation of indocyanine green angiography in patients with critical limb ischemia. J. Vasc. Surg. 2013, 57, 1213–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mennes, O.A.; van Netten, J.J.; Slart, R.H.; Steenbergen, W. Novel Optical Techniques for Imaging Microcirculation in the Diabetic Foot. Curr. Pharm. Des. 2018, 24, 1304–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvelo, J.L.; Papademetris, X.; Mena-Hurtado, C.; Jeon, S.; Sumpio, B.E.; Sinusas, A.J.; Stacy, M.R. Radiotracer imaging allows for noninvasive detection and quantification of abnormalities in angiosome foot perfusion in diabetic patients with critical limb ischemia and nonhealing wounds. Circ. Cardiovasc. Imaging 2018, 11, e006932. [Google Scholar] [CrossRef] [Green Version]
- Kuśmierek, J.; Dąbrowski, J.; Bieńkiewicz, M.; Szumiński, R.; Płachcińska, A. Radionuclide assessment of lower limb perfusion using 99m Tc-MIBI in early stages of atherosclerosis. Nucl. Med. Rev. 2006, 9, 18–23. [Google Scholar]
Tissue Penetration | High tissue penetration in areas with reduced vascular supply and heterogeneous infection conditions. |
Sensitive | High target-to-background signal ratio. Low limit of detection (≤105 colony-forming units (CFUs)) [7]. |
Specific | Bacterial accumulation in both susceptible and drug-resistant organisms in different growth phases. Capable of differentiating between bacterial infection and sterile inflammation. |
Specific for Gram-positive bacteria | Selective accumulation within Gram-positive pathogens. Capable of differentiating between Gram-positive and Gram-negative infections and sterile inflammation. |
Quantitative | Signal proportional to the bacterial burden. |
Stable | Chemically stable in blood. Low degradation of the agent by the host. |
Safe | Acceptable radiation dose and repeat injection feasible without toxicity. |
Manufacturable | Good manufacturing practice (GMP) production line with available PET/SPECT radioisotopes at a reasonable expense. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Bedoya, C.A.; Gordon, O.; Mota, F.; Abhishek, S.; Tucker, E.W.; Ordonez, A.A.; Jain, S.K. Molecular Imaging of Diabetic Foot Infections: New Tools for Old Questions. Int. J. Mol. Sci. 2019, 20, 5984. https://doi.org/10.3390/ijms20235984
Ruiz-Bedoya CA, Gordon O, Mota F, Abhishek S, Tucker EW, Ordonez AA, Jain SK. Molecular Imaging of Diabetic Foot Infections: New Tools for Old Questions. International Journal of Molecular Sciences. 2019; 20(23):5984. https://doi.org/10.3390/ijms20235984
Chicago/Turabian StyleRuiz-Bedoya, Camilo A., Oren Gordon, Filipa Mota, Sudhanshu Abhishek, Elizabeth W. Tucker, Alvaro A. Ordonez, and Sanjay K. Jain. 2019. "Molecular Imaging of Diabetic Foot Infections: New Tools for Old Questions" International Journal of Molecular Sciences 20, no. 23: 5984. https://doi.org/10.3390/ijms20235984
APA StyleRuiz-Bedoya, C. A., Gordon, O., Mota, F., Abhishek, S., Tucker, E. W., Ordonez, A. A., & Jain, S. K. (2019). Molecular Imaging of Diabetic Foot Infections: New Tools for Old Questions. International Journal of Molecular Sciences, 20(23), 5984. https://doi.org/10.3390/ijms20235984