Reflectance According to Cell Size, Foaming Ratio and Refractive Index of Microcellular Foamed Amorphous Polymer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solubility
2.2. Foaming Ratio
2.3. Cell Size Change with Foaming Temperature of Specimens with Equal Dissolution
2.4. Diffuse Reflectivity
2.4.1. Diffuse Reflectivity According to Foaming Temperature of Microcellular Foamed Amorphous Polymer
2.4.2. Diffuse Reflectivity According to Wavelength of Microcellular Foamed Amorphous Polymer
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Microcellular Foaming Process
3.2.2. Microcellular Batch Process
3.2.3. Mechanism of Diffuse Reflection by Micron Cells
3.2.4. Experimental Conditions
3.2.5. Diffused Reflectivity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MCPs | Microcellular foaming process |
APET | Amorphous polyethylene terephthalate |
PC | Polycarbonate |
PMMA | Poly methyl methacrylate |
LCD | Liquid crystal display |
BLU | Back light unit |
SCI | Specular component included |
SCE | Specular component excluded |
References
- Feldman, D. Polymer history. Des. Monomers Polym. 2008, 11, 1–15. [Google Scholar] [CrossRef]
- Anderson, M.C. Plastics flow into the medical device industry. Manuf. Eng. 2015, 155, 49–53. [Google Scholar]
- Endres, H.J. Bioplastics. Adv. Biochem. Eng. Biotechnol. 2019, 166, 427–468. [Google Scholar] [PubMed]
- Cha, S.W. A Microcellular Foaming/Forming Process Performed at Ambient Temperature and a Super Microcellular Foaming Process. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1994. [Google Scholar]
- Molina, M.J.; Rowland, F.S. Stratospheric sink for chlorofluoromethanes: Chlorine atomc-atalysed destruction of ozone. Nature 1974, 249, 810–812. [Google Scholar] [CrossRef]
- Rowland, F.S.; Molina, M.J. Chlorofluoromethanes in the environment. Rev. Geophys. 1975, 13, 1–35. [Google Scholar] [CrossRef]
- Martini, J.E.; Suh, N.P.; Waldman, F.A. Microcellular closed cell foams and their method of manufacture. U.S. Patent 4,473,665, 9 September 1984. [Google Scholar]
- Colton, J.S.; Suh, N.P. Microcellular foams of semi-crystaline polymeric materials. U.S. Patent 5,160,674, 3 November 1992. [Google Scholar]
- Cha, S.W.; Suh, N.P.; Baldwin, D.F.; Park, C.B. Microcellular thermoplastic foamed with supercritical fluid. U.S. Patent 5,158,986, 27 October 1992. [Google Scholar]
- Baldwin, D.F.; Suh, N.P.; Park, C.B.; Cha, S.W. Supermicrocellular foamed materials. U.S. Patent 5,334,356, 2 August 1994. [Google Scholar]
- Jin, W.; Xingguo, C.; Mingjun, Y.; Jiasong, H. An investigation on the microcellular structure of polystyrene/LCP blends prepared by using supercritical carbon dioxide. Polymer 2001, 42, 8265–8275. [Google Scholar] [CrossRef]
- Guan, R.; Xiang, B.; Xiao, Z.; Li, Y.; Lu, D.; Song, G. The processing-structure relationships in thin microcellular PET sheet prepared by compression molding. Eur. Polym. J. 2006, 42, 1022–1032. [Google Scholar] [CrossRef]
- Wang, X.C.; Jing, X.; Peng, Y.Y.; Ma, Z.K.; Liu, C.T.; Turng, L.S.; Shen, C.Y. The effect of nanoclay on the crystallization behavior, microcellular structure, and mechanical properties of thermoplastic polyurethane nanocomposite foams. Polym. Eng. Sci. 2016, 56, 319–327. [Google Scholar] [CrossRef]
- Leighton, T.G. The Acoustic Bubble; Academic Press: San Diego, CA, USA, 1994; pp. 72–83. [Google Scholar]
- Kim, Y.H.; Cha, S.W.; Ahn, J.; Cho, S.H. Studies of the variation in the dielectric constant and unique behaviors with changes in the foaming ratio of the microcellular foaming process. Polym. Plast. Technol. Eng. 2011, 50, 762–767. [Google Scholar] [CrossRef]
- Han, E.; Choi, S.; Cha, S.W. Diffused Reflection Performance of Microcellular Foamed Polyethylene Naphthalate. Polym. Plast. Technol. Eng. 2013, 52, 1285–1289. [Google Scholar] [CrossRef]
- Seo, J.-H.; Cha, S.W.; Lee, K.S.; Moon, Y. The effect of microcellular plastics on light transmission. Polym. Plast. Technol. Eng. 2008, 47, 1117–1121. [Google Scholar] [CrossRef]
- Seo, J.-H.; Cha, S.W.; Kim, H.B. Diffused reflection of microcellular foamed polycarbonate. Polym. Plast. Technol. Eng. 2009, 48, 351–358. [Google Scholar] [CrossRef]
- Seo, J.-H.; Cha, S.W.; Kim, H.B. Diffused Reflection of Microcellular Foamed Polylactic Acid (PLA). J. Polym. Eng. 2009, 29, 79–102. [Google Scholar] [CrossRef]
- Cho, S.H.; Cha, S.W.; Seo, J.H.; Ahn, J.H. A study on the foaming ratio and optical characteristics of microcellular foamed plastics produced by a repetitive foaming process. Int. J. Precis. Eng. Manuf. 2013, 14, 1147–1152. [Google Scholar] [CrossRef]
- Han, E.; Cha, S.W. Factors That Affect Diffuse Reflection Performance of Microcellular Foamed Plastics. Polym. Plast. Technol. Eng. 2013, 52, 1290–1294. [Google Scholar] [CrossRef]
- Park, C.B.; Suh, N.P. Rapid polymer/gas solution formation for continuous processing of microcellular plastics. ASME Trans. J. Manuf. Sci. Eng. J. Eng. Ind. 1996, 118, 639–645. [Google Scholar] [CrossRef]
- Park, C.B.; Cheung, L.K. A study of cell nucleation in the extrusion of polypropylene foams. Polym. Eng. Sci. 1997, 37, 1–10. [Google Scholar] [CrossRef]
- Moon, Y.; Cha, S.W.; Seo, J.H. Bubble nucleation and growth in microcellular injection molding processes. Polym. Plast. Technol. Eng. 2008, 47, 420–426. [Google Scholar] [CrossRef]
- Seo, J.H.; Ohm, W.S.; Cho, S.H.; Cha, S.W. Effects of repeated microcellular foaming process on cell morphology and foaming ratio of microcellular plastics. Polym. Plast. Technol. Eng. 2011, 50, 588–592. [Google Scholar] [CrossRef]
- Spectrophotometer CM-3600d Instruction Manual. Available online: https://sensing.konicaminolta.us/uploads/_discontinued_cm_3600dspectrophotometer_manual-16212kzq50.pdf (accessed on 11 November 2019).
Materials | APET 1 | PC 2 | PMMA 3 |
---|---|---|---|
Solubility (%) | 6.4 | 11.4 | 21.5 |
Material Information | APET | PC | PMMA |
---|---|---|---|
Supplier | Taekwang Newtec | Taekwang Newtec | Spolytech |
Grade Name | PLASTAR | PLAGLAS | EXEET GLAS AG00 |
Density (g/cm3) | 1.29 | 1.19 | 1.18 |
Glass Transition Temperature (°C) | 81 | 147 | 105 |
Melting Temperature (°C) | 260 | 250 | 160 |
Materials | Refractive Index | Reflectivity (%) | Transmittance (%) |
---|---|---|---|
APET | 1.404 | 13.86 | 88.69 |
PC | 1.586 | 13.73 | 90.13 |
PMMA | 1.470 | 12.45 | 92.81 |
Experimental Conditions | Values |
---|---|
Blowing Agent | CO2 |
Material Thickness (mm) | 1.0 |
Saturation Time (hours) | 24 |
Saturation Temperature (°C) | 27 |
Saturation Pressure (MPa) | 5.5 |
Desorption Time (min) | 3 |
Experimental Conditions | Values |
---|---|
Foaming Medium | Glycerin (99% purity) |
Foaming Temperature (°C) | 50–140 |
Foaming Time (s) | 30 |
Cooling Medium | Water |
Cooling Temperature (°C) | 10 |
Cooling Time (s) | 60 |
Material | Refractive Index | Foaming Temperature (°C) | 50 | 60 | 70 | 80 | 90 | 100 | 110 | |
APET | 1.404 | Foaming Ratio (%) | 36.1 | 44.1 | 64.2 | 73.2 | 75.4 | 79.9 | 82.7 | |
Cell Size (micron) | 42.0 | 43.5 | 51.2 | 41.7 | 42.3 | 40.6 | 43.9 | |||
Reflectivity (at 550 nm) | SCI (%) | 70.4 | 75.8 | 81.6 | 84.3 | 84.9 | 87.0 | 82.7 | ||
SCE (%) | 66.0 | 71.3 | 79.5 | 82.9 | 82.8 | 86.2 | 84. | |||
Material | Refractive Index | Foaming Temperature (°C) | 80 | 90 | 100 | 110 | 120 | 130 | 140 | |
PC | 1.586 | Foaming Ratio (%) | 30.0 | 35.3 | 52.1 | 52.9 | 61.9 | 66.4 | 73.9 | |
Cell Size (micron) | 3.0 | 3.8 | 1.6 | 2.4 | 2.7 | 3.2 | 1.8 | |||
Reflectivity (at 550 nm) | SCI (%) | 90.8 | 92.3 | 93.9 | 94.3 | 94.0 | 95.6 | 95.8 | ||
SCE (%) | 90.4 | 91.1 | 93.5 | 93.4 | 93.4 | 94.1 | 94.8 | |||
Material | Refractive Index | Foaming Temperature (°C) | 50 | 60 | 70 | 80 | 90 | 100 | 110 | |
PMMA | 1.470 | Foaming Ratio (%) | 58.2 | 68.4 | 74.9 | 82.5 | 93.1 | 89.8 | 92.7 | |
Cell Size (micron) | 18.4 | 21.2 | 22.0 | 23.5 | 21.8 | 24.3 | 31.8 | |||
Reflectivity (at 550 nm) | SCI (%) | 90.2 | 92.8 | 92.7 | 92.4 | 90.7 | 93.3 | 92.6 | ||
SCE (%) | 89.9 | 91.5 | 91.3 | 91.0 | 90.5 | 91.7 | 92.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, S.W.; Cho, S.-h.; Sohn, J.S.; Ryu, Y.; Ahn, J. Reflectance According to Cell Size, Foaming Ratio and Refractive Index of Microcellular Foamed Amorphous Polymer. Int. J. Mol. Sci. 2019, 20, 6068. https://doi.org/10.3390/ijms20236068
Cha SW, Cho S-h, Sohn JS, Ryu Y, Ahn J. Reflectance According to Cell Size, Foaming Ratio and Refractive Index of Microcellular Foamed Amorphous Polymer. International Journal of Molecular Sciences. 2019; 20(23):6068. https://doi.org/10.3390/ijms20236068
Chicago/Turabian StyleCha, Sung Woon, Soo-hyun Cho, Joo Seong Sohn, Youngjae Ryu, and Jeonghun Ahn. 2019. "Reflectance According to Cell Size, Foaming Ratio and Refractive Index of Microcellular Foamed Amorphous Polymer" International Journal of Molecular Sciences 20, no. 23: 6068. https://doi.org/10.3390/ijms20236068
APA StyleCha, S. W., Cho, S. -h., Sohn, J. S., Ryu, Y., & Ahn, J. (2019). Reflectance According to Cell Size, Foaming Ratio and Refractive Index of Microcellular Foamed Amorphous Polymer. International Journal of Molecular Sciences, 20(23), 6068. https://doi.org/10.3390/ijms20236068