Proteome and Phosphoproteome Analysis in TNF Long Term-Exposed Primary Human Monocytes
Abstract
:1. Introduction
2. Results
2.1. Protein Expression and Phosphorylation Patterns in Primary Human Monocytes Following Tumor Necrosis Factor (TNF) Long Term Treatment
2.2. Significantly Regulated Proteins and Phosphopeptides
2.3. Validation of Proteome and Phosphoproteome Data by Western Blot Analysis
2.4. Top Lists of the Proteome and the Phosphoproteome
2.5. Expression and Phosphorylation of Proteins Associated with the Non-Canonical Nuclear Factor κB (NF-κB) Pathway or Involved in the Negative Regulation of NF-κB
2.6. Increased Expression and Phosphorylation of p100/52, RELB, and p50
2.7. Identification of Glycogen Synthase Kinase (GSK) 3 Binding Motifs in Significantly Regulated Phosphopeptides and Functional Aspects
3. Discussion
4. Material and Methods
4.1. Isolation of Primary Human Monocytes and Cell Culture
4.2. Reagents
4.3. Protein Digestion and Fractionation by Strong Cation Exchange (SCX)
4.4. Phosphopeptide Enrichment
4.5. Liquid Chromatography Mass Spectrometry (LC-MS)
4.6. Data Processing MS Data
4.7. Protein Extraction, Sodium Dodecyl Sulfate (SDS)—Polyacrylamide Gel Electrophoresis (PAGE), Western Blot Analysis, and Densitometry
4.8. RNA Extraction, cDNA Synthesis, and qPCR
4.9. Gene Expression Data
4.10. Statistical/Bioinformatics Analyses
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADAM | a disintegrin and metalloproteinase |
ADI | arginine deiminase |
AIM | apoptosis inhibitor of macrophage |
AK | adenylate kinase |
C/EBP | CCAAT/enhancer binding protein |
CAST | Calpastatin |
CD | cluster of differentiation |
CLIC | chloride intracellular channel |
CLIP | class II-associated invariant chain peptide |
COP | constitutive photomorphogenesis |
CYP | cytochrome P450 |
DCP | decapping mRNA protein |
ECL | enhanced chemoluminescence |
EIF | eukaryotic translation initiation factor |
ERK | extracellular signal-regulated kinase |
FCS | fetal calf serum |
FGF | fibroblast growth factor |
FKBP | FK506 binding protein |
FOSL | Fos-related antigen |
FSCN | fascin actin-bundling protein |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
GRAMD | GRAM domain containing protein |
GSK | glycogen synthase kinase |
HDAC | histone deacetylase |
HRP | horseradish peroxidase |
HSF | heat shock factor |
IDO | indolamin-2,3-dioxygenase |
IKK | IκB kinase |
IL | interleukin |
IRAK | Interleukin-1 receptor-associated kinase |
ITGA | Integrin alpha |
IκB | inhibitor of κB |
KYNU | kynureninase |
LAD | ladinin |
LAP | liver-enriched activating protein |
LARP | La-related protein |
LC | liquid chromatography |
LIP | liver-enriched inhibitory protein |
LPS | lipopolysaccharide |
MAPK | mitogen activated protein kinase |
MARCKS | myristoylated alanine-rich C-kinase substrate |
MEM | minimum essential medium |
miR | mircoRNA |
MPHOSPH | M-phase phosphoprotein |
MS | mass spectrometry |
MTDH | metadherin |
MYH | myosin heavy chain |
NCOR | nuclear receptor co-repressor |
NDRG | N-myc downregulated gene |
NF-κB | nuclear factor κB |
NQO | NAD(P)H Quinone Dehydrogenase |
NUMA | nuclear mitotic apparatus protein |
OGFR | opioid growth factor receptor |
OPI | oxaloacetate/pyruvate/insulin |
PAGE | polyacrylamide gel electrophoresis |
PDK | phosphoinositide-dependent kinase |
PFKFB | 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase |
PILRA | paired immunoglobin-like type 2 receptor α |
PML | promyelocytic leukemia protein |
PMSF | phenylmethylsulfonyl fluoride |
PPA | pyrophosphatase |
PPFIA | protein tyrosine phosphatase receptor Type F interacting protein |
PRRC | proline-rich and coiled-coil-containing protein |
RBM | RNA binding motif protein |
REL | v-rel reticuloendotheliosis viral oncogene homolog |
RFTN | Raftlin |
RPMI | Roswell Park Memorial Institute |
SDS | sodium dodecyl sulfate |
SET | SET nuclear proto-oncogene |
SHP | Src homology region 2 domain-containing phosphatase |
SIGLEC | Sialic acid-binding immunoglobulin-type lectin |
SIRT | sirtuin |
SMAD | SMAD family member |
SMAP | small acidic protein |
SRRM | serine/arginine repetitive matrix protein |
SRSF | serine/arginine-rich splicing factor |
TBP | TATA-binding protein |
TGF | transforming growth factor |
THP-1 | Tohoku Hospital Pediatrics-1 |
TNF | tumor necrosis factor |
TNFAIP | tumor necrosis factor α-induced protein |
TP53BP | tumor suppressor p53-binding protein |
TRAF | TNF receptor-associated factor |
TRAFD | TRAF-type zinc finger domain-containing protein |
TRIP | thyroid receptor-interacting protein |
U | unit |
USP | ubiquitin specific peptidase |
VIM | vimentin |
References
- Buckley, C.D.; Gilroy, D.W.; Serhan, C.N.; Stockinger, B.; Tak, P.P. The resolution of inflammation. Nat. Rev. Immunol. 2013, 13, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Nathan, C.; Ding, A. Nonresolving inflammation. Cell 2010, 140, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.A.; Sousa, L.P.; Pinho, V.; Perretti, M.; Teixeira, M.M. Resolution of Inflammation: What Controls Its Onset? Front. Immunol. 2016, 7, 160. [Google Scholar] [CrossRef]
- Biswas, S.K.; Lopez-Collazo, E. Endotoxin tolerance: New mechanisms, molecules and clinical significance. Trends Immunol. 2009, 30, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Huber, R.; Bikker, R.; Welz, B.; Christmann, M.; Brand, K. TNF Tolerance in Monocytes and Macrophages: Characteristics and Molecular Mechanisms. J. Immunol. Res. 2017, 2017, 9570129. [Google Scholar] [CrossRef] [PubMed]
- Porcheray, F.; Viaud, S.; Rimaniol, A.C.; Leone, C.; Samah, B.; Dereuddre-Bosquet, N.; Dormont, D.; Gras, G. Macrophage activation switching: An asset for the resolution of inflammation. Clin. Exp. Immunol. 2005, 142, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Gunther, J.; Vogt, N.; Hampel, K.; Bikker, R.; Page, S.; Muller, B.; Kandemir, J.; Kracht, M.; Dittrich-Breiholz, O.; Huber, R.; et al. Identification of two forms of TNF tolerance in human monocytes: Differential inhibition of NF-kappaB/AP-1- and PP1-associated signaling. J. Immunol. 2014, 192, 3143–3155. [Google Scholar] [CrossRef]
- Bikker, R.; Christmann, M.; Preuss, K.; Welz, B.; Friesenhagen, J.; Dittrich-Breiholz, O.; Huber, R.; Brand, K. TNF phase III signalling in tolerant cells is tightly controlled by A20 and CYLD. Cell Signal. 2017, 37, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Ferlito, M.; Romanenko, O.G.; Ashton, S.; Squadrito, F.; Halushka, P.V.; Cook, J.A. Effect of cross-tolerance between endotoxin and TNF-alpha or IL-1beta on cellular signaling and mediator production. J. Leukoc. Biol. 2001, 70, 821–829. [Google Scholar]
- Park, S.H.; Park-Min, K.H.; Chen, J.; Hu, X.; Ivashkiv, L.B. Tumor necrosis factor induces GSK3 kinase-mediated cross-tolerance to endotoxin in macrophages. Nat. Immunol. 2011, 12, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Fullerton, J.N.; Gilroy, D.W. Resolution of inflammation: A new therapeutic frontier. Nat. Rev. Drug Discov. 2016, 15, 551–567. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Hayden, M.S. New regulators of NF-kappaB in inflammation. Nat. Rev. Immunol. 2008, 8, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, K.; Karin, M. NF-kappaB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol. 2018, 18, 309–324. [Google Scholar] [CrossRef]
- Huber, R.; Pietsch, D.; Panterodt, T.; Brand, K. Regulation of C/EBPbeta and resulting functions in cells of the monocytic lineage. Cell Signal. 2012, 24, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Zwergal, A.; Quirling, M.; Saugel, B.; Huth, K.C.; Sydlik, C.; Poli, V.; Neumeier, D.; Ziegler-Heitbrock, H.W.; Brand, K. C/EBP beta blocks p65 phosphorylation and thereby NF-kappa B-mediated transcription in TNF-tolerant cells. J. Immunol. 2006, 177, 665–672. [Google Scholar] [CrossRef]
- Piwien-Pilipuk, G.; Van Mater, D.; Ross, S.E.; MacDougald, O.A.; Schwartz, J. Growth hormone regulates phosphorylation and function of CCAAT/enhancer-binding protein beta by modulating Akt and glycogen synthase kinase-3. J. Biol. Chem. 2001, 276, 19664–19671. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Li, N.; Gade, P.; Kalvakolanu, D.V.; Weibley, T.; Doble, B.; Woodgett, J.R.; Wood, T.D.; Gaffen, S.L. IL-17 receptor signaling inhibits C/EBPbeta by sequential phosphorylation of the regulatory 2 domain. Sci. Signal. 2009, 2, ra8. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, T.; Hosur, K.; Abe, T.; Kantarci, A.; Ziogas, A.; Wang, B.; Van Dyke, T.E.; Chavakis, T.; Hajishengallis, G. Antagonistic effects of IL-17 and D-resolvins on endothelial Del-1 expression through a GSK-3beta-C/EBPbeta pathway. Nat. Commun. 2015, 6, 8272. [Google Scholar] [CrossRef] [PubMed]
- Cole, A.; Frame, S.; Cohen, P. Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem. J. 2004, 377, 249–255. [Google Scholar] [CrossRef]
- Cadeco, S.; Williamson, A.J.; Whetton, A.D. The use of proteomics for systematic analysis of normal and transformed hematopoietic stem cells. Curr. Pharm. Des. 2012, 18, 1730–1750. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, D.; Moriggi, M.; Gelfi, C. Mapping the human skeletal muscle proteome: Progress and potential. Expert Rev. Proteom. 2017, 14, 825–839. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.C. The non-canonical NF-kappaB pathway in immunity and inflammation. Nat. Rev. Immunol. 2017, 17, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Vecsei, L.; Szalardy, L.; Fulop, F.; Toldi, J. Kynurenines in the CNS: Recent advances and new questions. Nat. Rev. Drug Discov. 2013, 12, 64–82. [Google Scholar] [CrossRef] [PubMed]
- Wirthgen, E.; Hoeflich, A. Endotoxin-Induced Tryptophan Degradation along the Kynurenine Pathway: The Role of Indolamine 2,3-Dioxygenase and Aryl Hydrocarbon Receptor-Mediated Immunosuppressive Effects in Endotoxin Tolerance and Cancer and Its Implications for Immunoparalysis. J. Amino Acids 2015, 2015, 973548. [Google Scholar] [CrossRef] [PubMed]
- Mbongue, J.C.; Nicholas, D.A.; Torrez, T.W.; Kim, N.S.; Firek, A.F.; Langridge, W.H. The Role of Indoleamine 2,3-Dioxygenase in Immune Suppression and Autoimmunity. Vaccines 2015, 3, 703–729. [Google Scholar] [CrossRef] [PubMed]
- Pallotta, M.T.; Orabona, C.; Volpi, C.; Vacca, C.; Belladonna, M.L.; Bianchi, R.; Servillo, G.; Brunacci, C.; Calvitti, M.; Bicciato, S.; et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat. Immunol. 2011, 12, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, D.; Song, P.; Zou, M.H. Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation. Front. Biosci. 2015, 20, 1116–1143. [Google Scholar]
- Hayashi, T.; Mo, J.H.; Gong, X.; Rossetto, C.; Jang, A.; Beck, L.; Elliott, G.I.; Kufareva, I.; Abagyan, R.; Broide, D.H.; et al. 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc. Natl. Acad. Sci. USA 2007, 104, 18619–18624. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, C. What Are the bona fide GSK3 Substrates? Int. J. Alzheimers Dis. 2011, 2011, 505607. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.Q.; Gronborg, M.; Huang, H.; Kim, J.W.; Otto, T.C.; Pandey, A.; Lane, M.D. Sequential phosphorylation of CCAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3beta is required for adipogenesis. Proc. Natl. Acad. Sci. USA 2005, 102, 9766–9771. [Google Scholar] [CrossRef]
- Park, B.H.; Qiang, L.; Farmer, S.R. Phosphorylation of C/EBPbeta at a consensus extracellular signal-regulated kinase/glycogen synthase kinase 3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes. Mol. Cell. Biol. 2004, 24, 8671–8680. [Google Scholar] [CrossRef]
- Gaffen, S.L. Recent advances in the IL-17 cytokine family. Curr. Opin. Immunol. 2011, 23, 613–619. [Google Scholar] [CrossRef]
- Lai, T.Y.; Wu, S.D.; Tsai, M.H.; Chuang, E.Y.; Chuang, L.L.; Hsu, L.C.; Lai, L.C. Transcription of Tnfaip3 is regulated by NF-kappaB and p38 via C/EBPbeta in activated macrophages. PLoS ONE 2013, 8, e73153. [Google Scholar] [CrossRef]
- Lork, M.; Verhelst, K.; Beyaert, R. CYLD, A20 and OTULIN deubiquitinases in NF-kappaB signaling and cell death: So similar, yet so different. Cell Death Differ. 2017, 24, 1172–1183. [Google Scholar] [CrossRef]
- Cappello, C.; Zwergal, A.; Kanclerski, S.; Haas, S.C.; Kandemir, J.D.; Huber, R.; Page, S.; Brand, K. C/EBPbeta enhances NF-kappaB-associated signalling by reducing the level of IkappaB-alpha. Cell. Signal. 2009, 21, 1918–1924. [Google Scholar] [CrossRef]
- Kim, G.; Meriin, A.B.; Gabai, V.L.; Christians, E.; Benjamin, I.; Wilson, A.; Wolozin, B.; Sherman, M.Y. The heat shock transcription factor Hsf1 is downregulated in DNA damage-associated senescence, contributing to the maintenance of senescence phenotype. Aging Cell 2012, 11, 617–627. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, D.; Bae, D.H.; Sahni, S.; Jansson, P.; Zheng, Y.; Zhao, Q.; Yue, F.; Zheng, M.; Kovacevic, Z.; et al. Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors. Carcinogenesis 2013, 34, 1943–1954. [Google Scholar] [CrossRef]
- Hosoi, F.; Izumi, H.; Kawahara, A.; Murakami, Y.; Kinoshita, H.; Kage, M.; Nishio, K.; Kohno, K.; Kuwano, M.; Ono, M. N-myc downstream regulated gene 1/Cap43 suppresses tumor growth and angiogenesis of pancreatic cancer through attenuation of inhibitor of kappaB kinase beta expression. Cancer Res. 2009, 69, 4983–4991. [Google Scholar] [CrossRef]
- Huber, R.; Panterodt, T.; Welz, B.; Christmann, M.; Friesenhagen, J.; Westphal, A.; Pietsch, D.; Brand, K. C/EBPbeta-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation. PLoS ONE 2015, 10, e0144338. [Google Scholar] [CrossRef]
- Junemann, J.; Birgin, G.; Erdmann, J.; Schroder, A.; Just, I.; Gerhard, R.; Pich, A. Toxin A of the nosocomial pathogen Clostridium difficile induces primary effects in the proteome of HEp-2 cells. Proteom. Clin. Appl. 2017, 11. [Google Scholar] [CrossRef]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R.A.; Olsen, J.V.; Mann, M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011, 10, 1794–1805. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Mann, M. 1D and 2D annotation enrichment: A statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinform. 2012, 13 (Suppl. 16), S12. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef]
- Haas, S.C.; Huber, R.; Gutsch, R.; Kandemir, J.D.; Cappello, C.; Krauter, J.; Duyster, J.; Ganser, A.; Brand, K. ITD- and FL-induced FLT3 signal transduction leads to increased C/EBPbeta-LIP expression and LIP/LAP ratio by different signalling modules. Br. J. Haematol. 2010, 148, 777–790. [Google Scholar] [CrossRef] [PubMed]
Protein Name | Protein Ratio | Function |
---|---|---|
IDO1 | 19.4 | metabolism |
SIGLEC10 | 16.3 | cell structure/signalling |
MYH11 | 16 | cell structure |
NFKB2 | 15.8 | gene regulation |
SRSF2 | 10.8 | gene regulation |
LAD1 | 10.6 | cell structure |
CD82 | 9.3 | cell structure/signalling |
CLIC4 | 8.4 | cell structure |
KYNU | 8.1 | metabolism |
AIM1 | 7.9 | cell structure |
FSCN1 | 7.6 | cell structure |
RELB | 7 | gene regulation |
PPA1 | 7 | metabolism |
CYP27A1 | 6.5 | metabolism |
SET | 6.1 | gene regulation |
SMAP | 6.1 | cell structure |
PILRA | 5.4 | signalling |
MPHOSPH8 | 5.4 | gene regulation |
NQO1 | 5.2 | metabolism |
IL18 | 5.2 | signalling |
TRIP10 | 5.1 | cell structure |
GRAMD1A | 5.1 | unknown |
ADI1 | 5.0 | metabolism |
AK4 | 4.8 | metabolism |
CAST | 4.6 | proteolysis |
Protein Name | Phosphopeptide Ratio | Phosphorylation Site | Function |
---|---|---|---|
EIF3G | 45.9 | T41 | gene regulation |
ITGA5 | 42.4 | S128 | cell structure |
MARCKS | 39.7 | S101 | cell structure |
RBM14 | 35.2 | S620, S623 | gene regulation |
VIM | 29.2 | S56 | cell structure |
MTDH | 28.9 | S298 | cell structure |
SRRM2 | 24.7 | S2067, T2069, S2071 | gene regulation |
MARCKS | 22.7 | S77 | cell structure |
ADAM17 | 21.3 | S791 | proteolysis |
LAD1 | 20.3 | S38 | cell structure |
OGFR | 19.6 | S577, S637 | gene regulation |
SRRM2 | 18.6 | S2067, T2069, S2071 | gene regulation |
FOSL2 | 18.2 | S308 | gene regulation |
CD44 | 18.1 | S697 | cell structure |
CD44 | 18.1 | S706 | cell structure |
RELB | 16.7 | S573 | gene regulation |
NUMA1 | 16.7 | S1757 | cell structure |
RFTN1 | 16.6 | S199 | cell structure/signalling |
CLIP1 | 16.3 | S195, S200 | cell structure |
PRRC2C | 16.1 | S1544 | unknown |
TRAF1 | 16.0 | S66 | signalling |
PFKFB3 | 15.4 | S461 | metabolism |
FKBP15 | 15.4 | S1114 | cell structure |
LARP4B | 15.4 | S601 | gene regulation |
PPFIA1 | 15.0 | S763 | cell structure |
Protein Name | Microarray Ratio | Proteome Ratio | Phosphopeptide Ratio |
---|---|---|---|
IDO1 | 55.9 | 19.4 | - |
SIGLEC10 | 133.3 | 16.3 | 6.2 |
NFKB2 | 4; 4.1; 4.2; 4.3 | 15.8 | 4.6 |
KYNU | 4.8; 6.3 | 8.1 | - |
RELB | 8.1 | 7 | 16.8 |
CAST | 0.7; 0.9; 1; 1.2 | 4.6 | 13.2; 12.2; 3.4 |
TNFAIP2 | 3.1 | 3.75 | - |
C/EBPB | 1.7; 1.8; 1.9; 2.9 | 3.4 | - |
TRAFD1/FLN29 | 4.5 | 3 | 2 |
USP15 | 0.9; 1; 1.4 | 2.6 | - |
NFKB1 | 1.8; 1.9; 2 | 2.5 | - |
TRAF1 | 6.6; 11.2 | - | 16 |
NCOR1 | 0.7; 1; 1.2; 1.7 | - | 12.9; 7.75 |
SIRT1 | 0.7 | - | 10.2; 5.4 |
PML | 2.4; 2.5; 2.6; 2.9; 3.9; 6 | - | 8.25 |
DCP1A | 1.4 | - | 7.9 |
NCOR2/SMRT | 8.8 | - | 7.4; 7.4 |
NDRG1 | 4.8; 10.6 | - | 6.2; 4.7; 4.2; 4.0 |
HSF1 | 1 | - | 4.0; 4.0 |
TP53BP1 | 1.2 | - | 2.1 |
Gene Name | Kinase/Isoform |
---|---|
ATM | serine protein kinase ATM |
CaMK1 | Ca/calmodulin-dependent protein kinase 1 |
CaMK2 | Ca/calmodulin-dependent protein kinase 2 |
CDK1 | cyclin-dependent kinase 1 |
CK1 | casein kinase 1 |
CK2A1 | casein kinase 2α1 |
CK2A2 | casein kinase 2α2 |
GSK3A/B | glycogen synthase kinase 3α/β |
MAPK11 | p38β |
MAPK12 | p38γ |
MAPK13 | p38δ |
MAPK14 | p38α |
PHKA2 | phosphorylase kinase α2 |
PHKB | phosphorylase kinase β |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Welz, B.; Bikker, R.; Junemann, J.; Christmann, M.; Neumann, K.; Weber, M.; Hoffmeister, L.; Preuß, K.; Pich, A.; Huber, R.; et al. Proteome and Phosphoproteome Analysis in TNF Long Term-Exposed Primary Human Monocytes. Int. J. Mol. Sci. 2019, 20, 1241. https://doi.org/10.3390/ijms20051241
Welz B, Bikker R, Junemann J, Christmann M, Neumann K, Weber M, Hoffmeister L, Preuß K, Pich A, Huber R, et al. Proteome and Phosphoproteome Analysis in TNF Long Term-Exposed Primary Human Monocytes. International Journal of Molecular Sciences. 2019; 20(5):1241. https://doi.org/10.3390/ijms20051241
Chicago/Turabian StyleWelz, Bastian, Rolf Bikker, Johannes Junemann, Martin Christmann, Konstantin Neumann, Mareike Weber, Leonie Hoffmeister, Katharina Preuß, Andreas Pich, René Huber, and et al. 2019. "Proteome and Phosphoproteome Analysis in TNF Long Term-Exposed Primary Human Monocytes" International Journal of Molecular Sciences 20, no. 5: 1241. https://doi.org/10.3390/ijms20051241
APA StyleWelz, B., Bikker, R., Junemann, J., Christmann, M., Neumann, K., Weber, M., Hoffmeister, L., Preuß, K., Pich, A., Huber, R., & Brand, K. (2019). Proteome and Phosphoproteome Analysis in TNF Long Term-Exposed Primary Human Monocytes. International Journal of Molecular Sciences, 20(5), 1241. https://doi.org/10.3390/ijms20051241