Parent-of-Origin Effects in 15q11.2 BP1-BP2 Microdeletion (Burnside-Butler) Syndrome
Abstract
:1. Introduction
2. Results
2.1. Cohort Characteristics
2.2. Differences in Clinical Features by Parent-of-Origin of the 15q11.2 BP1-BP2 Microdeletion
2.3. Differences in Clinical Features between Proband Gender
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ASD | Autism spectrum disorder |
ADHD | Attention-deficit hyperactivity disorder |
BP1-BP2 | Breakpoint 1–Breakpoint 2 |
CHD | Congenital heart disease |
DECIPHER | DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources |
GTEx | Gene-Tissue Expression Project |
OMIM | Online Mendelian Inheritance in Man |
POE | Parent-of-origin effect |
VOUS | Variant of uncertain (clinical) significance |
References
- Butler, M.G. Clinical and genetic aspects of the 15q11.2 BP1-BP2 microdeletion disorder. J. Intellect. Disabil. Res. 2017, 61, 568–579. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.M.; Butler, M.G. The 15q11.2 BP1-BP2 microdeletion syndrome: A review. Int. J. Mol. Sci. 2015, 16, 4068–4082. [Google Scholar] [CrossRef]
- Burnside, R.D.; Pasion, R.; Mikhail, F.M.; Carroll, A.J.; Robin, N.H.; Youngs, E.L.; Gadi, I.K.; Keitges, E.; Jaswaney, V.L.; Papenhausen, P.R.; et al. Microdeletion, microduplication of proximal 15q11.2 between BP1 and BPP2: A susceptibility region for neurological dysfunction including develpomental and language delay. Hum. Genet. 2011, 130, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.S.; South, S.T.; Lortz, A.; Hensel, C.H.; Sdano, M.R.; Vanzo, R.J.; Martin, M.M.; Peiffer, A.; Lambert, C.G.; Calhoun, A.; et al. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf-Hirschhorn syndrome. J. Med. Genet. 2016, 53, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Ulfarsson, M.O.; Walters, G.B.; Gustafsson, O.; Steinberg, S.; Silva, A.; Doyle, O.M.; Brammer, M.; Gudbjartsson, D.F.; Arnarsdottir, S.; Jonsdottir, G.A.; et al. 15q11.2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia. Transl. Psychiatry 2017, 7, e1109. [Google Scholar] [CrossRef] [Green Version]
- Arkadir, D.; Noreau, A.; Goldman, J.S.; Rouleau, G.A.; Alcalay, R.N. Pure hereditary spastic paraplegia due to a de novo mutation in the NIPA1 gene. Eur. J. Neurol. 2014, 21, e2. [Google Scholar] [CrossRef] [PubMed]
- Tazelaar, G.H.P.; Dekker, A.M.; van Vugt, J.; van der Spek, R.A.; Westeneng, H.J.; Kool, L.; Kenna, K.P.; van Rheenen, W.; Pulit, S.L.; McLaughlin, R.L.; et al. Association of NIPA1 repeat expansions with amyotrophic lateral sclerosis in a large international cohort. Neurobiol. Aging 2018, 74, 234.e9–234.e15. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.; Tammimies, K.; Pellecchia, G.; Alipanahi, B.; Hu, P.; Wang, Z.; Pinto, D.; Lau, L.; Nalpathamkalam, T.; Marshall, C.R.; et al. Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder. Nat. Genet. 2014, 46, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Goytain, A.; Hines, R.M.; El-Husseini, A.; Quamme, G.A. NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. J. Biol. Chem. 2007, 282, 8060–8068. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, Y.; Zhang, P.; Zhang, F.; Xie, H.; Chan, P.; Wu, X. NIPA2 mutations are correlative with childhood absence epilepsy in the Han Chinese population. Hum. Genet. 2014, 133, 657–676. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, M.S.; Damiano, J.; Mullen, S.A.; Bellows, S.T.; Scheffer, I.E.; Berkovic, S.F. Does variation in NIPA2 contribute to genetic generalized epilepsy? Hum. Genet. 2014, 133, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Maver, A.; Cuturilo, G.; Kovanda, A.; Miletic, A.; Peterlin, B. Rare missense TUBGCP5 gene variant in a patient with primary microcephaly. Eur. J. Med. Genet. 2018. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, R.J.; Berry-Kravis, E.; Hazlett, H.C.; Bailey, D.B., Jr.; Moine, H.; Kooy, R.F.; Tassone, F.; Gantois, I.; Sonenberg, N.; Mandel, J.L.; et al. Fragile X syndrome. Nat. Rev. Dis. Primers 2017, 3, 17065. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, M.R.F.; Ansor, N.M.; Kousi, M.; Yue, W.W.; Tan, P.L.; Clarkson, K.; Clayton-Smith, J.; Corning, K.; Jones, J.R.; Lam, W.W.K.; et al. RAC1 Missense Mutations in Developmental Disorders with Diverse Phenotypes. Am. J. Hum. Genet. 2017, 101, 466–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nebel, R.A.; Zhao, D.; Pedrosa, E.; Kirschen, J.; Lachman, H.M.; Zheng, D.; Abrahams, B.S. Reduced CYFIP1 in Human Neural Progenitors Results in Dysregulation of Schizophrenia and Epilepsy Gene Networks. PLoS ONE 2016, 11, e0148039. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, K.; Harony-Nicolas, H.; Buxbaum, J.D.; Bozdagi-Gunal, O.; Benson, D.L. Cyfip1 Regulates Presynaptic Activity during Development. J. Neurosci. 2016, 36, 1564–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, R.S.; Garg, P.; Zaitlen, N.; Lappalainen, T.; Watson, C.T.; Azam, N.; Ho, D.; Li, X.; Antonarakis, S.E.; Brunner, H.G.; et al. DNA Methylation Profiling of Uniparental Disomy Subjects Provides a Map of Parental Epigenetic Bias in the Human Genome. Am. J. Hum. Genet. 2016, 99, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Chung, L.; Wang, X.; Zhu, L.; Towers, A.J.; Cao, X.; Kim, I.H.; Jiang, Y.H. Parental origin impairment of synaptic functions and behaviors in cytoplasmic FMRP interacting protein 1 (Cyfip1) deficient mice. Brain Res. 2015, 1629, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Bittel, D.; Kibiryeva, N.; Talebizadeh, Z.; Butler, M. Microarray analysis of gene/transcript expression in Prader-Willi syndrome: Deletion versus UPD. J. Med. Genet. 2003, 40, 568–574. [Google Scholar] [CrossRef]
- Vanlerberghe, C.; Petit, F.; Malan, V.; Vincent-Delorme, C.; Bouquillon, S.; Boute, O.; Holder-Espinasse, M.; Delobel, B.; Duban, B.; Vallee, L.; et al. 15q11.2 microdeletion (BP1-BP2) and developmental delay, behaviour issues, epilepsy and congenital heart disease: A series of 52 patients. Eur. J. Med. Genet. 2015, 58, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Polyak, A.; Rosenfeld, J.A.; Girirajan, S. An assessment of sex bias in neurodevelopmental disorders. Genome Med. 2015, 7, 94. [Google Scholar] [CrossRef] [PubMed]
- Picinelli, C.; Lintas, C.; Piras, I.S.; Gabriele, S.; Sacco, R.; Brogna, C.; Persico, A.M. Recurrent 15q11.2 BP1-BP2 microdeletions and microduplications in the etiology of neurodevelopmental disorders. Am. J. Med. Genet. Part B Neuropsychiatry Genet. 2016, 171, 1088–1098. [Google Scholar] [CrossRef]
- Madrigal, I.; Rodriguez-Revenga, L.; Xuncla, M.; Mila, M. 15q11.2 microdeletion and FMR1 premutation in a family with intellectual disabilities and autism. Gene 2012, 508, 92–95. [Google Scholar] [CrossRef]
- BIttel, D.C.; Kibiryeva, N.; Butler, M.G. Expression of 4 Genes Between Chromosome 15 Breakpoints 1 and 2 and Behavioral Outcomes in Prader-Willi Syndrome. Pediatrics 2006, 118, e1276–e1283. [Google Scholar] [CrossRef] [Green Version]
- De Rubeis, S.; Bagni, C. Regulation of molecular pathways in the Fragile X Syndrome: Insights into Autism Spectrum Disorders. J. Neurodev. Disord. 2011, 3, 257–269. [Google Scholar] [CrossRef]
- Butler, M.G.; Bittel, D.C.; Kibiryeva, N.; Talebizadeh, Z.; Thompson, T. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics 2005, 113, 565–573. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Zhang, P.; Wang, J.; Wu, Y.; Wu, X.; Netoff, T.; Jiang, Y. Functional study of NIPA2 mutations identified from the patients with childhood absence epilepsy. PLoS ONE 2014, 9, e109749. [Google Scholar] [CrossRef]
- Nagase, T.; Kikuno, R.; Ohara, O. Prediction of the coding sequences of unidentified human genes. XXI. The complete sequences of 60 new cDNA clones from brain which code for large proteins. DNA Res. 2001, 8, 179–187. [Google Scholar] [CrossRef]
- De Wolf, V.; Brison, N.; Devriendt, K.; Peeters, H. Genetic counseling for susceptibility loci and neurodevelopmental disorders: The del15q11.2 as an example. Am. J. Med. Genet. Part A 2013, 161A, 2846–2854. [Google Scholar] [CrossRef]
- Bonaccorso, C.M.; Spatuzza, M.; Di Marco, B.; Gloria, A.; Barrancotto, G.; Cupo, A.; Musumeci, S.A.; D’Antoni, S.; Bardoni, B.; Catania, M.V. Fragile X mental retardation protein (FMRP) interacting proteins exhibit different expression patterns during development. Int. J. Dev. Neurosci. 2015, 42, 15–23. [Google Scholar] [CrossRef]
- Bozdagi, O.; Sakurai, T.; Dorr, N.; Pilorge, M.; Takahashi, N.; Buxbaum, J.D. Haploinsufficiency of Cyfip1 produces fragile X-like phenotypes in mice. PLoS ONE 2012, 7, e42422. [Google Scholar] [CrossRef]
- Abekhoukh, S.; Sahin, H.B.; Grossi, M.; Zongaro, S.; Maurin, T.; Madrigal, I.; Kazue-Sugioka, D.; Raas-Rothschild, A.; Doulazmi, M.; Carrera, P.; et al. New insights into the regulatory function of CYFIP1 in the context of WAVE- and FMRP-containing complexes. Dis. Models Mech. 2017, 10, 463–474. [Google Scholar] [CrossRef]
- Babbs, R.K.; Ruan, Q.T.; Kelliher, J.C.; Beierle, J.A.; Chen, M.M.; Feng, A.X.; Kirkpatrick, S.L.; Benitez, F.A.; Rodriguez, F.A.; Pierre, J.; et al. Cyfip1 haploinsufficiency increases compulsive-like behavior and modulates palatable food intake: Implications for Prader-Willi Syndrome. bioRxiv 2018. [Google Scholar] [CrossRef]
- Napoli, I.; Mercaldo, V.; Boyl, P.P.; Eleuteri, B.; Zalfa, F.; De Rubeis, S.; Di Marino, D.; Mohr, E.; Massimi, M.; Falconi, M.; et al. The Fragile X Syndrome Protein Represses Activity-Dependent Translation through CYFIP1, a New 4E-BP. Cell 2008, 134, 1042–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Vries, B.B.; Fryns, J.P.; Butler, M.G.; Canziani, F.; Wesby-van Swaay, E.; van Hemel, J.O.; Oostra, B.A.; Halley, D.J.; Niermeijer, M.F. Clinical and molecular studies in fragile X patients with a Prader-Willi-like phenotype. J. Med. Genet. 1993, 30, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, Y.; Ohashi, I.; Naruto, T.; Ida, K.; Enomoto, Y.; Saito, T.; Nagai, J.I.; Yanagi, S.; Ueda, H.; Kurosawa, K. Familial total anomalous pulmonary venous return with 15q11.2 (BP1-BP2) microdeletion. J. Hum. Genet. 2018, 63, 1185–1188. [Google Scholar] [CrossRef] [PubMed]
- Carithers, L.J.; Ardlie, K.; Barcus, M.; Branton, P.A.; Britton, A.; Buia, S.A.; Compton, C.C.; Deluca, D.S.; Peter-demchok, J.; Gelfand, E.T.; et al. A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv. Biobank. 2015, 13, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Soemedi, R.; Wilson, I.J.; Bentham, J.; Darlay, R.; Topf, A.; Zelenika, D.; Cosgrove, C.; Setchfield, K.; Thornborough, C.; Granados-riveron, J.; et al. Contribution of Global Rare Copy-Number Variants to the Risk of Sporadic Congenital Heart Disease. Am. J. Hum. Genet. 2012, 91, 489–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajaratnam, A.; Shergill, J.; Salcedo-arellano, M.; Saldarriaga, W.; Duan, X.; Hagerman, R. Fragile X syndrome and fragile X-associated disorders. F1000 Res. 2017, 6, 2112. [Google Scholar] [CrossRef] [Green Version]
- Girirajan, S.; Rosenfeld, J.A.; Coe, B.; Parikh, S.; Friedman, N.; Goldstein, A.; Filipink, R.A.; Mcconnell, J.S.; Angle, B.; Meschino, W.S.; et al. Phenotypic Heterogeneity of Genomic Disorders and Rare Copy-Number Variants. N. Engl. J. Med. 2012, 367, 1321–1331. [Google Scholar] [CrossRef] [Green Version]
- Pang, K.C.; Feldman, D.; Oertel, R.; Telfer, M. Molecular Karyotyping in Children and Adolescents with Gender Dysphoria. Transgender Health 2018, 3, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Doornbos, M.; Sikkema-Raddatz, B.; Ruijvenkamp, C.A.; Dijkhuizen, T.; Bijlsma, E.K.; Gijsbers, A.C.; Hilhorst-Hofstee, Y.; Hordijk, R.; Verbruggen, K.T.; Kerstjens-Frederikse, W.S.; et al. Nine patients with a microdeletion 15q11.2 between breakpoints 1 and 2 of the Prader-Willi critical region, possibly associated with behavioural disturbances. Eur. J. Med. Genet. 2009, 52, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Murthy, S.K.; Nygren, A.O.H.; El Shakankiry, H.M.; Schouten, J.P.; Al Khayat, A.I.; Ridha, A.; Al Ali, M.T. Detection of a novel familial deletion of four genes between BP1 and BP2 of the Prader-Willi/Angelman syndrome critical region by oligo-array CGH in a child with neurological disorder and speech impairment. Cytogenet. Genome Res. 2007, 116, 135–140. [Google Scholar] [CrossRef]
- von der Lippe, C.; Rustad, C.; Heimdal, K.; Rodningen, O.K. 15q11.2 microdeletion—Seven new patients with delayed development and/or behavioural problems. Eur. J. Med. Genet. 2011, 54, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.P.; Lin, S.P.; Lee, C.L.; Chern, S.R.; Wu, P.S.; Chen, Y.N.; Chen, S.W.; Wang, W. Familial transmission of recurrent 15q11.2 (BP1-BP2) microdeletion encompassing NIPA1, NIPA2, CYFIP1, and TUBGCP5 associated with phenotypic variability in developmental, speech, and motor delay. Taiwan J. Obstetr. Gynecol. 2017, 56, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Sempere Perez, A.; Manchon Trives, I.; Palazon Azorin, I.; Alcaraz Mas, L.; Perez Lledo, E.; Galan Sanchez, F. 15q11.2 (BP1-BP2) microdeletion, a new syndrome with variable expressivity. An. Pediatr. (Barc.) 2011, 75, 58–62. [Google Scholar] [CrossRef]
- Jahn, J.A.; von Spiczak, S.; Muhle, H.; Obermeier, T.; Franke, A.; Mefford, H.C.; Stephani, U.; Helbig, I. Iterative phenotyping of 15q11.2, 15q13.3 and 16p13.11 microdeletion carriers in pediatric epilepsies. Epilepsy Res. 2014, 108, 109–116. [Google Scholar] [CrossRef]
- Abdelmoity, A.T.; LePichon, J.-B.; Nyp, S.S.; Soden, S.E.; Daniel, C.A.; Yu, S. 15q11.2 Proximal Imbalances Associated With a Diverse Array of Neuropsychiatric Disorders and Mild Dysmorphic Features. J. Dev. Behav. Pediatr. 2012, 33, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Mullen, S.A.; Carvill, G.L.; Bellows, S.; Bayly, M.A.; Berkovic, S.F.; Dibbens, L.M.; Scheffer, I.E.; Mefford, H.C. Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology 2013, 81, 1507–1514. [Google Scholar] [CrossRef] [Green Version]
- Usrey, K.M.; Williams, C.A.; Dasouki, M.; Fairbrother, L.C.; Butler, M.G. Congenital Arthrogryposis: An Extension of the 15q11.2 BP1-BP2 Microdeletion Syndrome? Case Rep. Genet. 2014, 2014, 127258. [Google Scholar] [CrossRef] [PubMed]
- Firth, H.V.; Richards, S.M.; Bevan, A.P.; Clayton, S.; Corpas, M.; Rajan, D.; Van Vooren, S.; Moreau, Y.; Pettett, R.M.; Carter, N.P. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 2009, 84, 524–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Female Probands (N = 29) | Male Probands (N = 42) | |||||||
---|---|---|---|---|---|---|---|---|---|
Avg | SD | Med | Range | Avg | SD | Med | Range | p | |
Age (Years) | 9.4 | 8.2 | 7.0 | 0.08–27 | 6.9 | 5.2 | 6.0 | 0.25–24 | 0.130 |
Total Symptoms | 3.4 | 2.4 | 2.0 | 1–10 | 4.9 | 2.2 | 4.5 | 1–10 | 0.020 |
Physical Features | 0.9 | 1.0 | 1.0 | 0–3 | 1.0 | 0.9 | 1.0 | 0–3 | 0.610 |
Non-physical Features | 2.5 | 2.4 | 2.0 | 0–9 | 3.95 | 2.1 | 4.0 | 0–8 | 0.009 |
Variable | Maternal (N = 34) | Paternal (N = 37) | |||||||
---|---|---|---|---|---|---|---|---|---|
Avg | SD | Med | Range | Avg | SD | Med | Range | P | |
Age (Years) | 8.7 | 7.1 | 6.5 | 1.5–27 | 7.1 | 6.2 | 5.3 | 0.08–24 | 0.33 |
Total Symptoms | 4.7 | 2.2 | 5.0 | 1–9 | 3.9 | 2.8 | 3.0 | 1–10 | 0.18 |
Physical Features | 0.8 | 0.9 | 1.0 | 0–3 | 1.0 | 0.9 | 1.0 | 0–3 | 0.35 |
Non-physical Features | 3.9 | 2.1 | 4.0 | 0–8 | 2.9 | 2.5 | 2.0 | 0–9 | 0.07 |
Clinical Feature | Percentage | Total Individuals |
---|---|---|
Speech Delay | 49 | 35 |
Motor Delay | 49 | 35 |
Facial Dysmorphisms | 42 | 30 |
Developmental Delay | 37 | 26 |
Behavioral Differences | 37 | 26 |
Intellectual Disability | 35 | 25 |
Muscular Problems | 31 | 22 |
Learning Difficulties | 30 | 21 |
Psychiatric Diagnosis | 30 | 21 |
Epilepsy | 24 | 17 |
Microcephaly | 20 | 14 |
ASD | 18 | 13 |
Short Stature | 14 | 10 |
Congenital Heart Condition | 11 | 8 |
Macrocephaly | 7 | 5 |
Parent-of-Origin Differences | Gender Differences | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clinical Feature | Full Cohort (N = 71) | No Siblings (N = 55) | No Siblings and/or VOUS (N = 44) | Full Cohort (N = 71) | No Siblings (N = 55) | No Siblings and/or VOUS (N = 44) | |||||||
% Mat | % Pat | % Mat | % Pat | % Mat | % Pat | % F | % M | % F | % M | % F | % M | ||
Grouped Clinical Features | Any Behavior | 62 | 41 | 59 | 42 | 50 | 45 | 31 | 64 ** | 36 | 61 | 32 | 60 |
Any Delays | 65 | 68 | 62 | 77 | 54 | 75 | 48 | 79 ** | 55 | 79 | 47 | 76 * | |
Any Non-physical | 97 | 92 | 97 | 92 | 96 | 95 | 90 | 98 | 91 | 97 | 89 | 100 | |
Any Physical | 56 | 65 | 59 | 73 | 54 | 65 | 55 | 64 | 59 | 70 | 53 | 64 | |
Specific Clinical Features | ASD | 29 | 8 * | 24 | 8 | 21 | 5 | 17 | 19 | 18 | 15 | 11 | 16 |
CHD | 0 | 22 *** | 0 | 19 ** | 0 | 10 | 17 | 7 | 14 | 6 | 11 | 0 | |
DD | 41 | 32 | 41 | 38 | 38 | 40 | 24 | 45 | 32 | 45 | 26 | 48 | |
Difficult Behaviors | 47 | 27 | 45 | 27 | 38 | 25 | 24 | 45 | 27 | 42 | 21 | 40 | |
Epilepsy | 29 | 19 | 34 | 12 * | 42 | 10 ** | 38 | 14 * | 32 | 18 | 32 | 24 | |
Facial Dysmorphisms | 47 | 38 | 48 | 46 | 42 | 45 | 38 | 45 | 45 | 48 | 42 | 44 | |
ID | 44 | 27 | 45 | 31 | 46 | 35 | 28 | 40 | 32 | 42 | 32 | 48 | |
LD | 38 | 22 | 38 | 19 | 38 | 20 | 17 | 38 | 23 | 33 | 16 | 40 | |
Macrocephaly | 15 | 0 * | 17 | 0* | 13 | 0 | 7 | 7 | 9 | 9 | 5 | 8 | |
Microcephaly | 15 | 24 | 10 | 27 | 13 | 25 | 17 | 21 | 18 | 18 | 16 | 20 | |
Motor Delay | 53 | 46 | 48 | 54 | 50 | 55 | 28 | 64 *** | 32 | 64 * | 32 | 68 * | |
Muscular Diagnosis | 24 | 38 | 24 | 50 * | 17 | 55 ** | 28 | 33 | 36 | 36 | 32 | 36 | |
Psychiatric Diagnosis | 32 | 27 | 31 | 23 | 29 | 30 | 17 | 38 | 23 | 30 | 26 | 32 | |
Short Stature | 9 | 19 | 10 | 19 | 13 | 20 | 10 | 17 | 14 | 15 | 16 | 16 | |
Speech Delay | 56 | 43 | 52 | 54 | 46 | 50 | 38 | 57 | 41 | 61 | 32 | 60 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, K.W.; Serrano, M.; Loddo, S.; Robinson, C.; Alesi, V.; Dallapiccola, B.; Novelli, A.; Butler, M.G. Parent-of-Origin Effects in 15q11.2 BP1-BP2 Microdeletion (Burnside-Butler) Syndrome. Int. J. Mol. Sci. 2019, 20, 1459. https://doi.org/10.3390/ijms20061459
Davis KW, Serrano M, Loddo S, Robinson C, Alesi V, Dallapiccola B, Novelli A, Butler MG. Parent-of-Origin Effects in 15q11.2 BP1-BP2 Microdeletion (Burnside-Butler) Syndrome. International Journal of Molecular Sciences. 2019; 20(6):1459. https://doi.org/10.3390/ijms20061459
Chicago/Turabian StyleDavis, Kyle W., Moises Serrano, Sara Loddo, Catherine Robinson, Viola Alesi, Bruno Dallapiccola, Antonio Novelli, and Merlin G. Butler. 2019. "Parent-of-Origin Effects in 15q11.2 BP1-BP2 Microdeletion (Burnside-Butler) Syndrome" International Journal of Molecular Sciences 20, no. 6: 1459. https://doi.org/10.3390/ijms20061459
APA StyleDavis, K. W., Serrano, M., Loddo, S., Robinson, C., Alesi, V., Dallapiccola, B., Novelli, A., & Butler, M. G. (2019). Parent-of-Origin Effects in 15q11.2 BP1-BP2 Microdeletion (Burnside-Butler) Syndrome. International Journal of Molecular Sciences, 20(6), 1459. https://doi.org/10.3390/ijms20061459