

Photo-triggered Reversible Phase Transfer of Azobenzene-based Ionic Liquids between Oil and Water

Zhiyong Li, Ying Feng, Xiaoqing Yuan, Huiyong Wang, Yuling Zhao and Jianji Wang *

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; lizhiyong03@126.com (Z.L.); yli@htu.cn (Y.F.); yuanxiaoqingxx@163.com (X.Y.); whyhnxx@163.com (H.W.); ylzhao@htu.cn (Y.Z.) * Correspondence: jwang@htu.cn; Tel.: +86-373-332-5805

1. ¹H NMR Spectra of the Azobenzene-based Ionic Liquid Surfactants

Figure S1. ¹H NMR spectrum of [C₄AzoC₂DMEA]Br.

Figure S6. ¹H NMR spectrum of [C₄AzoC₆DMEA]Br.

2. ¹H NMR Data of the Azobenzene-Based Ionic Liquid Surfactants

- [C₄AzoC₂DMEA]Br: ¹H NMR (400 MHz, DMSO-*d*₆, TMS): δ = 7.92 (d, 2H, Ph-H), 7.79 (d, 2H, Ph-H), 7.41 (d, 2H, Ph-H), 7.21 (d, 2H, Ph-H), 5.34 (t, 1H, -OH), 4.59 (t, 2H, -CH₂), 3.90 (t, 4H, -CH₂), 3.57 (t, 2H, -CH₂), 3.20 (s, 6H, -CH₃), 2.69 (t, 2H, -CH₂), 1.60 (m, 2H, -CH₂), 1.34 (m, 2H, -CH₂), 0.93 (t, 3H, -CH₃) ppm
- [C₄AzoC₂TMA]Br: ¹H NMR (400 MHz, DMSO-*d*₆, TMS): δ = 7.91 (d, 2H, Ph-H), 7.78 (d, 2H, Ph-H), 7.41 (d, 2H, Ph-H), 7.22 (d, 2H, Ph-H), 4.59 (t, 2H, -CH₂), 3.85 (t, 2H, -CH₂), 3.20 (s, 9H, -CH₃), 2.67 (m, 2H, -CH₂), 1.60 (m, 2H, -CH₂), 1.33 (m, 2H, -CH₂), 0.91 (t, 3H, -CH₃) ppm
- [C₄AzoC₂MIM]Br: ¹H NMR (400 MHz, DMSO-*d*₆, TMS): δ = 9.26 (s, 1H, imidazole ring-H), 7.89 (t, 2H, Ph-H, and 1H, imidazole ring-H), 7.78 (t, 2H, Ph-H, and 1H, imidazole ring-H), 7.40 (d, 2H, Ph-H), 7.18 (d, 2H, Ph-H), 4.67 (t, 2H, -CH₂), 4.49 (t, 2H, -CH₂), 3.90(s, 3H,-NCH₃), 2.67 (t, 2H, -CH₂), 1.61 (m, 2H, -CH₂), 1.34 (m, 2H, -CH₂), 0.93 (t, 3H, -CH₃) ppm
- 4. [C₄AzoC₂Py]Br: ¹H NMR (400 MHz, DMSO-*d*₆, TMS): δ = 9.21 (d, 2H, pyridine ring-H), 8.68 (t, 1H, pyridine ring-H), 8.23 (t, 2H, pyridine ring-H), 7.87 (d, 2H, Ph-H), 7.76 (d, 2H, Ph-H), 7.38 (d, 2H, Ph-H), 7.14 (d, 2H, Ph-H), 5.13 (t, 2H, -CH₂), 4.66 (t, 2H, -CH₂), 2.67 (t, 2H, -CH₂), 1.60 (m, 2H, -CH₂), 1.33 (m, 2H, -CH₂), 0.91 (t, 3H, -CH₃) ppm
- [C4AzoC4DMEA]Br: ¹H NMR (400 MHz, DMSO-d₆, TMS): δ = 7.87 (d, 2H, Ph-H), 7.76 (d, 2H, Ph-H), 7.41 (d, 2H, Ph-H), 7.16 (d, 2H, Ph-H), 5.31 (t, 1H, -OH), 4.16 (t, 2H, -CH₂), 3.84 (t, 2H, -CH₂), 3.41 (t, 4H, -CH₂), 3.09 (s, 6H, -CH₃), 2.67 (t, 2H, -CH₂), 1.87 (m, 2H, -CH₂), 1.80 (m, 2H, -CH₂), 1.64 (m, 2H, -CH₂), 1.34 (m, 2H, -CH₂), 0.93 (t, 3H, -CH₃) ppm
- [C₄AzoC₆DMEA]Br: ¹H NMR (400 MHz, DMSO-d₆, TMS): δ = 7.85 (d, 2H, benzene ring-H), 7.75 (d, 2H, benzene ring-H), 7.39 (d, 2H, benzene ring-H), 7.13 (d, 2H, benzene ring-H), 5.30 (t, 1H, -OH), 4.08 (t, 2H, -CH₂), 3.82 (m, 2H, -CH₂), 3.40 (m, 2H, -CH₂), 3.32 (m, 2H, -CH₂), 3.07 (s, 6H, -NCH₃), 2.66 (t, 2H, -CH₂), 1.78 (m, 4H, -CH₂), 1.59 (m, 2H, -CH₂), 1.47 (m, 2H, -CH₂), 1.31 (m, 4H, -CH₂), 0.90 (t, 3H, -CH₃) ppm

3. The UV-Vis Spectra of [C4AzoC2DMEA]Br in n-Octanol before and after UV Irradiation

Figure S7. The UV-vis spectra of [C₄AzoC₂DMEA]Br in n-octanol: black line, before UV irradiation; red line, after UV irradiation.

4. The Reversibility of Transfer Process of [C₄AzoC₂DMEA]Br

Figure S8. The reversibility of transfer process of [C₄AzoC₂DMEA]Br between organic phase and water by alternatively irradiation of UV and visible light for 5 cycles at 25.0 °C: (**a**) absorbance of [C₄AzoC₂DMEA]Br in organic phase; (**b**) absorbance of [C₄AzoC₂DMEA]Br in water; •, after UV irradiation for 30 min; •, after subsequent irradiation of visible light for 60 min.

5. UV-Vis Spectra for the Ionic Liquid Surfactants in n-Octanol + n-Hexane (2:1, v/v)

Figure S9. UV-vis spectra of 1.0×10^{-2} mol/kg [C₄AzoC₂MIM]Br with different UV irradiation time at 25.0 °C in n-octanol + n-hexane (2:1, v/v): a, initial state; b, 2 min; c, 4 min; d, 8 min; e, 10 min; f, 20 min; g, 30 min; h, 60 min.

Figure S10. UV-vis spectra of 1.0×10^{-2} mol/kg [C₄AzoC₂Py]Br with different UV irradiation time at 25.0 °C in n-octanol + n-hexane (2:1, v/v): a, initial state; b, 2 min; c, 4 min; d, 8 min; e, 10 min; f, 20 min; g, 30 min; h, 60 min.

Figure S11. UV-vis spectra of 1.0×10^{-2} mol/kg [C₄AzoC₂TMA]Br with different UV irradiation time at 25.0 °C in n-octanol + n-hexane (2:1, v/v): a, initial state; b, 2 min; c, 4 min; d, 8 min; e, 10 min; f, 20 min; g, 30 min; h, 60 min.

Figure S12. UV-vis spectra of 5.0×10^{-3} mol/kg [C₄AzoC₂DMEA]Br with different UV irradiation time at 25.0 °C in n-octanol + n-hexane (2:1, v/v): a, initial state; b, 1 min; c, 2 min; d, 3 min; e, 5 min; f, 7 min; g, 10 min; h, 20 min; i, 30 min; j, 60 min.

Figure S13. UV-vis spectra of 5.0×10^{-3} mol/kg [C₄AzoC₄DMEA]Br with different UV irradiation time at 25.0 °C in n-octanol + n-hexane (2:1, v/v): a, initial state; b, 2 min; c, 3 min; d, 5 min; e, 7 min; f, 10 min; g, 20 min; h, 30 min; i, 60 min.

Figure S14. UV-vis spectra of 5.0×10^{-3} mol/kg [C₄AzoC₆DMEA]Br with different UV irradiation time at 25.0 °C in n-octanol + n-hexane (2:1, v/v): a, initial state; b, 2 min; c, 3 min; d, 5 min; e, 7 min; f, 10 min; g, 20 min; h, 30 min; i, 60 min.

6. DLS Results of the Azobenzene-Based IL Surfactants in n-Octanol/n-Hexane (2:1, v/v)

Figure S15. DLS results of 5.0 × 10⁻³ mol/kg azobenzene-based ILs in n-octanol + n-hexane (2:1, *v*/*v*) at 25.0 °C: (a) [C₄AzoC₂DMEA]Br; (b) [C₄AzoC₄DMEA]Br; (c) [C₄AzoC₆DMEA]Br; (d) [C₄AzoC₂TMA]Br; (e) [C₄AzoC₂MIM]Br; (f) [C₄AzoC₂Py]Br;•, before UV irradiation;o, after UV irradiation.

7. Critical Aggregate Concentration Determination of [C₄AzoC₂DMEA]Br

Figure S16. Conductivity of [C₄AzoC₂DMEA]Br in aqueous solutions as a function of [C₄AzoC₂DMEA]Br concentration at 25.0 °C after UV irradiation.

κ / μS·cm⁻¹

0.008

C / mol/kg

0.012

0.016

Figure S17. Conductivity of [C4AzoC2Py]Br in aqueous solutions as a function of [C4AzoC2Py]Br concentration at 25.0 °C: ■, before UV irradiation; □, after UV irradiation.

0.004

Figure S18. Conductivity of [C4AzoC2MIM]Br in aqueous solutions as a function of [C4AzoC2MIM]Br concentration at 25.0 °C: ■, before UV irradiation; □, after UV irradiation.

Figure S19. Conductivity of [C4AzoC2TMA]Br in aqueous solutions as a function of [C4AzoC2TMA]Br concentration at 25.0 °C: ■, before UV irradiation; □, after UV irradiation.

8. Solubility of the Azobenzene-Based Compounds in Water

Compound	Solubility/mol/L
[C4AzoC2MIM]Br	0.98 a
[C4AzoC2Py]Br	8.66×10^{-2}
[C4AzoC2TMA]Br	0.86 a
[C4AzoC2DMEA]Br	0.94 a
[C4AzoC4DMEA]Br	0.93 a
[C ₄ AzoC ₆ DMEA]Br	1.05 ª

Table 1. Solubility of the azobenzene-based compounds in water at 25.0 °C.

^a At this concentration, the gel formed in the system and the viscosity increased significantly. In this case, it is hard to continue the dissolution.

9. The Melting Point of the Azobenzene-Based Compounds

Table 2. The melting point of azobenzene-based compounds.

Compound	Melting Point/°C
[C ₄ AzoC ₂ MIM]Br	147
[C4AzoC2Py]Br	167
[C4AzoC2TMA]Br	147
[C4AzoC2DMEA]Br	154
[C4AzoC4DMEA]Br	82
[C ₄ AzoC ₆ DMEA]Br	93

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).