B Cells and Antibodies in Kawasaki Disease
Abstract
:1. Introduction
1.1. Overview
1.2. Genetic Background
1.3. Epidemiology
1.4. Theories on Pathogenesis
2. Consideration of Humoral Immunity
2.1. Treatment
2.2. KD Murine Models
2.3. Human Pathologic Studies
2.4. Activation of Peripheral B Cells and Antibodies
2.5. Cloning of Antibodies from Plasma Cell Infiltrates
2.6. Viral-like Inclusions Reported
2.7. Common Structures Appear as Intracellular Inclusions (ICIs)
2.8. Anti-Self-Antibody Responses
2.9. Similar Plasmablast Responses in KD and other Infections
3. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALIS | Aggresome-like induced structures |
BLK | B lymphocyte kinase |
CDR | Complementarity determining regions |
CRP | C-reactive protein |
HHV-6 | Human herpesviridae-6 |
ICI | Intracellular inclusions |
IG | Immunoglobulin |
IVIG | Intravenous immunoglobulin |
KD | Kawasaki Disease |
NMDAR | N-methyl D-aspartate receptors |
PBs | Plasmablasts |
R/S | Replacement to silent nucleotide mutation |
VLP | Virus-like particle |
References
- Kawasaki, T. Kawasaki disease. Acta Paediatr. 1995, 84, 713–715. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.C.; Lo, M.H.; Hsieh, K.S.; Guo, M.M.; Huang, Y.H. High-dose aspirin is associated with anemia and does not confer benefit to disease outcomes in Kawasaki disease. PLoS ONE 2015, 10, e0144603. [Google Scholar] [CrossRef]
- Shingadia, D.; O’Gorman, M.; Rowley, A.H.; Shulman, S.T. Surface and cytoplasmic immunoglobulin expression in circulating B-lymphocytes in acute Kawasaki disease. Pediatr. Res. 2001, 50, 538–543. [Google Scholar] [CrossRef]
- Chang, C.J.; Kuo, H.C.; Chang, J.S.; Lee, J.K.; Tsai, F.J.; Khor, C.C.; Chang, L.C.; Chen, S.P.; Ko, T.M.; Liu, Y.M.; et al. Replication and meta-analysis of GWAS identified susceptibility loci in Kawasaki disease confirm the importance of B lymphoid tyrosine kinase (BLK) in disease susceptibility. PLoS ONE 2013, 8, e72037. [Google Scholar] [CrossRef]
- Lee, H.H.; Park, I.H.; Shin, J.S.; Kim, D.S. Immunoglobulin V(H) chain gene analysis of peripheral blood IgM-producing B cells in patients with Kawasaki disease. Yonsei Med. J. 2009, 50, 493–504. [Google Scholar] [CrossRef]
- Newburger, J.W.; Takahashi, M.; Gerber, M.A.; Gewitz, M.H.; Tani, L.Y.; Burns, J.C.; Shulman, S.T.; Bolger, A.F.; Ferrieri, P.; Baltimore, R.S.; et al. Diagnosis, treatment, and long-term management of Kawasaki disease: A statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics 2004, 114, 1708–1733. [Google Scholar] [CrossRef] [PubMed]
- Terai, M.; Honda, T.; Yasukawa, K.; Yasukawa, K.; Higashi, K.; Hamada, H.; Kohno, Y. Prognostic impact of vascular leakage in acute Kawasaki disease. Circulation 2003, 108, 325–330. [Google Scholar] [CrossRef]
- Jun, H.O.; Yu, J.J.; Kang, S.Y.; Seo, C.D.; Baek, J.S.; Kim, Y.H.; Ko, J.K. Diagnostic characteristics of supplemental laboratory criteria for incomplete Kawasaki disease in children with complete Kawasaki disease. Korean J. Pediatr. 2015, 58, 369–373. [Google Scholar] [CrossRef]
- Ohshio, G.; Furukawa, F.; Khine, M.; Yoshioka, H.; Kudo, H.; Hamashima, Y. High levels of IgA-containing circulating immune complex and secretory IgA in Kawasaki disease. Microbiol. Immunol. 1987, 31, 891–898. [Google Scholar] [CrossRef]
- Yanagawa, H.; Yashiro, M.; Nakamura, Y.; Sakata, K.; Kawasaki, T. Iv gamma globulin treatment of Kawasaki disease in Japan: Results of a nationwide survey. Acta Paediatr. 1995, 84, 765–768. [Google Scholar] [CrossRef]
- Pinna, G.S.; Kafetzis, D.A.; Tselkas, O.I.; Skevaki, C.L. Kawasaki disease: An overview. Curr. Opin. Infect. Dis. 2008, 21, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Yanagawa, H.; Harada, K.; Kato, H.; Kawasaki, T. Mortality among persons with a history of Kawasaki disease in Japan: The fifth look. Arch. Pediatr. Adolesc. Med. 2002, 156, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Aso, E.; Yashiro, M.; Uehara, R.; Watanabe, M.; Tajimi, M.; Oki, I.; Ojima, T.; Yanagawa, T.; Kawasaki, T. Mortality among persons with a history of Kawasaki disease in Japan: Can paediatricians safely discontinue follow-up of children with a history of the disease but without cardiac sequelae? Acta Paediatr. 2005, 94, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.B.; Kahn, A.M.; Burns, J.C. When children with Kawasaki disease grow up: Myocardial and vascular complications in adulthood. J. Am. Coll. Cardiol. 2009, 54, 1911–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrissoheris, M.P.; Donohue, T.J.; Young, R.S.; Ghantous, A. Coronary artery aneurysms. Cardiol. Rev. 2008, 16, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Burgner, D.; Harnden, A. Kawasaki disease: What is the epidemiology telling us about the etiology? Int. J. Infect. Dis. 2005, 9, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Abuhammour, W.M.; Hasan, R.A.; Eljamal, A.; Asmar, B. Kawasaki disease hospitalizations in a predominantly African-American population. Clin. Pediatr. (Phila) 2005, 44, 721–725. [Google Scholar] [CrossRef]
- Clark, D.E.; Denby, K.J.; Kaufman, L.M.; Fill, M.M.A.; Piya, B.; Krishnaswami, S.; Fonnesbeck, C.; Halasa, N. Predictors of intravenous immunoglobulin non-response and racial disparities in Kawasaki disease. Pediatr. Infect. Dis. J. 2018, 37, 1227–1234. [Google Scholar] [CrossRef]
- Porcalla, A.R.; Sable, C.A.; Patel, K.M.; Martin, G.R.; Singh, N. The epidemiology of Kawasaki disease in an urban hospital: Does African American race protect against coronary artery aneurysms? Pediatr. Cardiol. 2005, 26, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Scuccimarri, R. Kawasaki disease. Pediatr. Clin. N. Am. 2012, 59, 425–445. [Google Scholar] [CrossRef]
- Rodo, X.; Ballester, J.; Cayan, D.; Melish, M.E.; Nakamura, Y.; Uehara, R.; Burns, J.C. Association of Kawasaki disease with tropospheric wind patterns. Sci. Rep. 2011, 1, 152. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.C.; Cayan, D.R.; Tong, G.; Bainto, E.V.; Turner, C.L.; Shike, H.; Kawasaki, T.; Nakamura, Y.; Yashiro, M.; Yanagawa, H. Seasonality and temporal clustering of Kawasaki syndrome. Epidemiology 2005, 16, 220–225. [Google Scholar] [CrossRef]
- Kao, A.S.; Getis, A.; Brodine, S.; Burns, J.C. Spatial and temporal clustering of Kawasaki syndrome cases. Pediatr. Infect. Dis. J. 2008, 27, 981–985. [Google Scholar] [CrossRef]
- Makino, N.; Nakamura, Y.; Yashiro, M.; Ae, R.; Tsuboi, S.; Aoyama, Y.; Kojo, T.; Uehara, R.; Kotani, K.; Yanagawa, H. Descriptive epidemiology of Kawasaki disease in Japan, 2011–2012: From the results of the 22nd nationwide survey. J. Epidemiol. 2015, 25, 239–245. [Google Scholar] [CrossRef]
- Mauro, A.; Fabi, M.; Da Fre, M.; Guastaroba, P.; Corinaldesi, E.; Calabri, G.B.; Giani, T.; Simonini, G.; Rusconi, F.; Cimaz, R. Kawasaki disease: An epidemiological study in central Italy. Pediatr. Rheumatol. Online J. 2016, 14, 22. [Google Scholar] [CrossRef]
- Chen, J.J.; Ma, X.J.; Liu, F.; Yan, W.L.; Huang, M.R.; Huang, M.; Huang, G.Y.; Shanghai Kawasaki Disease Research Group. Epidemiologic features of Kawasaki disease in Shanghai from 2008 through 2012. Pediatr. Infect. Dis. J. 2016, 35, 7–12. [Google Scholar] [PubMed]
- Chang, A.; Delmerico, A.M.; Hicar, M.D. Spatiotemporal analysis and epidemiology of Kawasaki disease in Western New York: A sixteen year review of cases presenting to a single tertiary care center. Pediatr. Infect. Dis. J. 2018. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.C.; Herzog, L.; Fabri, O.; Tremoulet, A.H.; Rodo, X.; Uehara, R.; Burgner, D.; Bainto, E.; Pierce, D.; Tyree, M.; et al. Seasonality of Kawasaki disease: A global perspective. PLoS ONE 2013, 8, e74529. [Google Scholar] [CrossRef]
- Dergun, M.; Kao, A.; Hauger, S.B.; Newburger, J.W.; Burns, J.C. Familial occurrence of Kawasaki syndrome in North America. Arch. Pediatr. Adolesc. Med. 2005, 159, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Nakamura, Y.; Sakata, K.; Hara, N.; Kobayashi, M.; Nagai, M.; Yanagawa, H.; Kawasaki, T. Kawasaki disease in families. Pediatrics 1989, 84, 666–669. [Google Scholar]
- Yorifuji, T.; Tsukahara, H.; Doi, H. Breastfeeding and risk of Kawasaki disease: A nationwide longitudinal survey in Japan. Pediatrics 2016, 137, e20153919. [Google Scholar] [CrossRef] [PubMed]
- Newburger, J.W.; Taubert, K.A.; Shulman, S.T.; Rowley, A.H.; Gewitz, M.H.; Takahashi, M.; McCrindle, B.W. Summary and abstracts of the Seventh International Kawasaki Disease Symposium: December 4–7, 2001, Hakone, Japan. Pediatr. Res. 2003, 53, 153–157. [Google Scholar] [PubMed]
- Nakagawa, A.; Ito, M.; Iwaki, T.; Yatabe, Y.; Asai, J.; Hayashi, K. Chronic active Epstein-Barr virus infection with giant coronary aneurysms. Am. J. Clin. Pathol. 1996, 105, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Manlhiot, C.; O’Shea, S.; Bernknopf, B.; LaBelle, M.; Chahal, N.; Dillenburg, R.F.; Lai, L.S.; Bock, D.; Lew, B.; Masood, S.; et al. Epidemiology of Kawasaki disease in Canada 2004 to 2014: Comparison of surveillance using administrative data vs. periodic medical record review. Can. J. Cardiol. 2018, 34, 303–309. [Google Scholar] [CrossRef]
- Rodo, X.; Curcoll, R.; Robinson, M.; Ballester, J.; Burns, J.C.; Cayan, D.R.; Lipkin, W.I.; Williams, B.L.; Couto-Rodriguez, M.; Nakamura, Y.; et al. Tropospheric winds from northeastern China carry the etiologic agent of Kawasaki disease from its source to Japan. Proc. Natl. Acad. Sci. USA 2014, 111, 7952–7957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, A.L.; Lu, M.; Minich, L.L.; Atz, A.M.; Klein, G.L.; Korsin, R.; Lambert, L.; Li, J.S.; Mason, W.; Radojewski, E.; et al. Associated symptoms in the ten days before diagnosis of Kawasaki disease. J. Pediatr. 2009, 154, 592–595.e2. [Google Scholar] [CrossRef]
- Freeman, A.F.; Crawford, S.E.; Finn, L.S.; Lopez-Andreu, J.A.; Ferrando-Monleon, S.; Perez-Tamarit, D.; Cornwall, M.L.; Shulman, S.T.; Rowley, A.H. Inflammatory pulmonary nodules in Kawasaki disease. Pediatr. Pulmonol. 2003, 36, 102–106. [Google Scholar] [CrossRef]
- Bell, D.M.; Brink, E.W.; Nitzkin, J.L.; Hall, C.B.; Wulff, H.; Berkowitz, I.D.; Feorino, P.M.; Holman, R.C.; Huntley, C.L.; Meade, R.H., III; et al. Kawasaki syndrome: Description of two outbreaks in the United States. N. Engl. J. Med. 1981, 304, 1568–1575. [Google Scholar] [CrossRef]
- Jordan-Villegas, A.; Chang, M.L.; Ramilo, O.; Mejias, A. Concomitant respiratory viral infections in children with Kawasaki disease. Pediatr. Infect. Dis. J. 2010, 29, 770–772. [Google Scholar] [CrossRef]
- Rowley, A.H.; Shulman, S.T. The epidemiology and pathogenesis of Kawasaki disease. Front. Pediatr. 2018, 6, 374. [Google Scholar] [CrossRef]
- Curtis, N. Kawasaki disease and toxic shock syndrome–At last the etiology is clear? Adv. Exp. Med. Biol. 2004, 549, 191–200. [Google Scholar] [PubMed]
- Duong, T.T.; Silverman, E.D.; Bissessar, M.V.; Yeung, R.S. Superantigenic activity is responsible for induction of coronary arteritis in mice: An animal model of Kawasaki disease. Int. Immunol. 2003, 15, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.Y.; Meissner, H.C.; Fulton, D.R.; Murray, D.L.; Kotzin, B.L.; Schlievert, P.M. Toxic shock syndrome toxin-secreting Staphylococcus aureus in Kawasaki syndrome. Lancet 1993, 342, 1385–1388. [Google Scholar] [CrossRef]
- Leung, D.Y.; Sullivan, K.E.; Brown-Whitehorn, T.F.; Fehringer, A.P.; Allen, S.; Finkel, T.H.; Washington, R.L.; Makida, R.; Schlievert, P.M. Association of toxic shock syndrome toxin-secreting and exfoliative toxin-secreting Staphylococcus aureus with Kawasaki syndrome complicated by coronary artery disease. Pediatr. Res. 1997, 42, 268–272. [Google Scholar] [CrossRef]
- Matsubara, K.; Fukaya, T. The role of superantigens of group A Streptococcus and Staphylococcus aureus in Kawasaki disease. Curr. Opin. Infect. Dis. 2007, 20, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, T.; Kato, H. The pathogenesis of Kawasaki disease and superantigens. Jpn. J. Infect. Dis. 1999, 52, 141–145. [Google Scholar] [PubMed]
- Abe, J.; Kotzin, B.L.; Jujo, K.; Melish, M.E.; Glode, M.P.; Kohsaka, T.; Leung, D.Y. Selective expansion of T cells expressing T-cell receptor variable regions V beta 2 and V beta 8 in Kawasaki disease. Proc. Natl. Acad. Sci. USA 1992, 89, 4066–4070. [Google Scholar] [CrossRef] [PubMed]
- Abe, J.; Kotzin, B.L.; Meissner, C.; Melish, M.E.; Takahashi, M.; Fulton, D.; Romagne, F.; Malissen, B.; Leung, D.Y. Characterization of T cell repertoire changes in acute Kawasaki disease. J. Exp. Med. 1993, 177, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Yoshioka, T.; Matsutani, T.; Iwagami, S.; Toyosaki-Maeda, T.; Yutsudo, T.; Tsuruta, Y.; Suzuki, H.; Uemura, S.; Takeuchi, T.; Koike, M.; et al. Polyclonal expansion of TCRBV2- and TCRBV6-bearing T cells in patients with Kawasaki disease. Immunology 1999, 96, 465–472. [Google Scholar] [CrossRef]
- Choi, I.H.; Chwae, Y.J.; Shim, W.S.; Kim, D.S.; Kwon, D.H.; Kim, J.D.; Kim, S.J. Clonal expansion of CD8+ T cells in Kawasaki disease. J. Immunol. 1997, 159, 481–486. [Google Scholar]
- Rowley, A.H.; Baker, S.C.; Shulman, S.T.; Fox, L.M.; Takahashi, K.; Garcia, F.L.; Crawford, S.E.; Chou, P.; Orenstein, J.M. Cytoplasmic inclusion bodies are detected by synthetic antibody in ciliated bronchial epithelium during acute Kawasaki disease. J. Infect. Dis. 2005, 192, 1757–1766. [Google Scholar] [CrossRef] [PubMed]
- Pietra, B.A.; De Inocencio, J.; Giannini, E.H.; Hirsch, R. TCR V beta family repertoire and T cell activation markers in Kawasaki disease. J. Immunol. 1994, 153, 1881–1888. [Google Scholar] [PubMed]
- Sakaguchi, M.; Kato, H.; Nishiyori, A.; Sagawa, K.; Itoh, K. Characterization of CD4+ T helper cells in patients with Kawasaki disease (KD): Preferential production of tumour necrosis factor-alpha (TNF-alpha) by V beta 2- or V beta 8- CD4+ T helper cells. Clin. Exp. Immunol. 1995, 99, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.W.; Wang, J.; Sun, L.; Zhang, J.M.; Cao, L.; Ding, Y.Y.; Chen, Y.; Dou, J.J.; Huang, J.; Tang, Y.F.; et al. Understanding the pathogenesis of Kawasaki disease by network and pathway analysis. Comput. Math. Methods Med. 2013, 2013, 989307. [Google Scholar] [CrossRef] [PubMed]
- Onouchi, Y.; Ozaki, K.; Burns, J.C.; Shimizu, C.; Terai, M.; Hamada, H.; Honda, T.; Suzuki, H.; Suenaga, T.; Takeuchi, T.; et al. A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat. Genet. 2012, 44, 517–521. [Google Scholar] [CrossRef]
- Onouchi, Y.; Onoue, S.; Tamari, M.; Wakui, K.; Fukushima, Y.; Yashiro, M.; Nakamura, Y.; Yanagawa, H.; Kishi, F.; Ouchi, K.; et al. CD40 ligand gene and Kawasaki disease. Eur. J. Hum. Genet. 2004, 12, 1062–1068. [Google Scholar] [CrossRef] [Green Version]
- Rowley, A.H.; Baker, S.C.; Orenstein, J.M.; Shulman, S.T. Searching for the cause of Kawasaki disease—Cytoplasmic inclusion bodies provide new insight. Nat. Rev. Microbiol. 2008, 6, 394–401. [Google Scholar] [CrossRef]
- Burns, J.C.; Kone-Paut, I.; Kuijpers, T.; Shimizu, C.; Tremoulet, A.; Arditi, M. Review: Found in translation: International initiatives pursuing interleukin-1 blockade for treatment of acute Kawasaki disease. Arthritis Rheumatol. 2017, 69, 268–276. [Google Scholar] [CrossRef]
- Katz, U.; Shoenfeld, Y.; Zandman-Goddard, G. Update on intravenous immunoglobulins (IVIg) mechanisms of action and off- label use in autoimmune diseases. Curr. Pharm. Des. 2011, 17, 3166–3175. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, S.R.; Anderson, M.S. Advances in the treatment of Kawasaki disease. Curr. Opin. Pediatr. 2013, 25, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Tacke, C.E.; Burgner, D.; Kuipers, I.M.; Kuijpers, T.W. Management of acute and refractory Kawasaki disease. Expert Rev. Anti Infect. Ther. 2012, 10, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Heidt, S.; Roelen, D.L.; Eijsink, C.; Eikmans, M.; van Kooten, C.; Claas, F.H.; Mulder, A. Calcineurin inhibitors affect B cell antibody responses indirectly by interfering with T cell help. Clin. Exp. Immunol. 2010, 159, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Sauvaget, E.; Bonello, B.; David, M.; Chabrol, B.; Dubus, J.; Bosdure, E. Resistant Kawasaki disease treated with anti-CD20. J. Pediatr. 2012, 160, 875–876. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, P.E.; Thompson, P.A.; Rosenwasser, L.J.; Dinarello, C.A. The role of interleukin 1 in human B cell activation: Inhibition of B cell proliferation and the generation of immunoglobulin-secreting cells by an antibody against human leukocytic pyrogen. J. Immunol. 1983, 130, 2708–2714. [Google Scholar]
- Lee, Y.; Schulte, D.J.; Shimada, K.; Chen, S.; Crother, T.R.; Chiba, N.; Fishbein, M.C.; Lehman, T.J.; Arditi, M. Interleukin-1beta is crucial for the induction of coronary artery inflammation in a mouse model of Kawasaki disease. Circulation 2012, 125, 1542–1550. [Google Scholar] [CrossRef]
- Tremoulet, A.H.; Jain, S.; Jaggi, P.; Jimenez-Fernandez, S.; Pancheri, J.M.; Sun, X.; Kanegaye, J.T.; Kovalchin, J.P.; Printz, B.F.; Ramilo, O.; et al. Infliximab for intensification of primary therapy for Kawasaki disease: A phase 3 randomised, double-blind, placebo-controlled trial. Lancet 2014, 383, 1731–1738. [Google Scholar] [CrossRef]
- Mori, M.; Hara, T.; Kikuchi, M.; Shimizu, H.; Miyamoto, T.; Iwashima, S.; Oonishi, T.; Hashimoto, K.; Kobayashi, N.; Waki, K.; et al. Infliximab versus intravenous immunoglobulin for refractory Kawasaki disease: A phase 3, randomized, open-label, active-controlled, parallel-group, multicenter trial. Sci. Rep. 2018, 8, 1994. [Google Scholar] [CrossRef] [PubMed]
- Newburger, J.W.; Takahashi, M.; Beiser, A.S.; Burns, J.C.; Bastian, J.; Chung, K.J.; Colan, S.D.; Duffy, C.E.; Fulton, D.R.; Glode, M.P.; et al. A single intravenous infusion of gamma globulin as compared with four infusions in the treatment of acute Kawasaki syndrome. N. Engl. J. Med. 1991, 324, 1633–1639. [Google Scholar] [CrossRef]
- Newburger, J.W.; Sleeper, L.A.; McCrindle, B.W.; Minich, L.L.; Gersony, W.; Vetter, V.L.; Atz, A.M.; Li, J.S.; Takahashi, M.; Baker, A.L.; et al. Randomized trial of pulsed corticosteroid therapy for primary treatment of Kawasaki disease. N. Engl. J. Med. 2007, 356, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Kobayashi, T.; Morikawa, A.; Ikeda, K.; Seki, M.; Shimoyama, S.; Ishii, Y.; Suzuki, T.; Nakajima, K.; Sakamoto, N.; et al. Efficacy of intravenous immunoglobulin combined with prednisolone following resistance to initial intravenous immunoglobulin treatment of acute Kawasaki disease. J. Pediatr. 2013, 163, 521–526. [Google Scholar] [CrossRef]
- Kuo, H.C.; Guo, M.M.; Lo, M.H.; Hsieh, K.S.; Huang, Y.H. Effectiveness of intravenous immunoglobulin alone and intravenous immunoglobulin combined with high-dose aspirin in the acute stage of Kawasaki disease: Study protocol for a randomized controlled trial. BMC Pediatr. 2018, 18, 200. [Google Scholar] [CrossRef]
- Murata, H. Experimental candida-induced arteritis in mice. Relation to arteritis in the mucocutaneous lymph node syndrome. Microbiol. Immunol. 1979, 23, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Schulte, D.J.; Yilmaz, A.; Shimada, K.; Fishbein, M.C.; Lowe, E.L.; Chen, S.; Wong, M.; Doherty, T.M.; Lehman, T.; Crother, T.R.; et al. Involvement of innate and adaptive immunity in a murine model of coronary arteritis mimicking Kawasaki disease. J. Immunol. 2009, 183, 5311–5318. [Google Scholar] [CrossRef]
- Chan, W.C.; Duong, T.T.; Yeung, R.S. Presence of IFN-gamma does not indicate its necessity for induction of coronary arteritis in an animal model of Kawasaki disease. J. Immunol. 2004, 173, 3492–3503. [Google Scholar] [CrossRef] [PubMed]
- Yeung, R.S. Kawasaki disease: Update on pathogenesis. Curr. Opin. Rheumatol. 2010, 22, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Dou, J.; Li, H.; Sun, L.; Yan, W.; Lv, H.; Ding, Y. Histopathological and ultrastructural examinations of rabbit coronary artery vasculitis caused by bovine serum albumin: An animal model of Kawasaki disease. Ultrastruct. Pathol. 2013, 37, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Orenstein, J.M.; Shulman, S.T.; Fox, L.M.; Baker, S.C.; Takahashi, M.; Bhatti, T.R.; Russo, P.A.; Mierau, G.W.; de Chadarevian, J.P.; Perlman, E.J.; et al. Three linked vasculopathic processes characterize Kawasaki disease: A light and transmission electron microscopic study. PLoS ONE 2012, 7, e38998. [Google Scholar] [CrossRef] [PubMed]
- Orenstein, J.M.; Rowley, A.H. An evaluation of the validity of the animal models of Kawasaki disease vasculopathy. Ultrastruct. Pathol. 2014, 38, 245–247. [Google Scholar] [CrossRef] [PubMed]
- De Inocencio, J.; Hirsch, R. Evidence for superantigen mediated process in Kawasaki disease. Arch. Dis. Child. 1995, 73, 275–276. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Oharaseki, T.; Naoe, S.; Wakayama, M.; Yokouchi, Y. Neutrophilic involvement in the damage to coronary arteries in acute stage of Kawasaki disease. Pediatr. Int. 2005, 47, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Fujiwara, H.; Nakano, H. Pathological features of coronary arteries in children with Kawasaki disease in which coronary arterial aneurysm was absent at autopsy. Quantitative analysis. Circulation 1988, 78, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, T.W.; Biezeveld, M.; Achterhuis, A.; Kuipers, I.; Lam, J.; Hack, C.E.; Becker, A.E.; van der Wal, A.C. Longstanding obliterative panarteritis in Kawasaki disease: Lack of cyclosporin A effect. Pediatrics 2003, 112, 986–992. [Google Scholar] [CrossRef]
- Rowley, A.H.; Eckerley, C.A.; Jack, H.M.; Shulman, S.T.; Baker, S.C. IgA plasma cells in vascular tissue of patients with Kawasaki syndrome. J. Immunol. 1997, 159, 5946–5955. [Google Scholar] [PubMed]
- Brown, T.J.; Crawford, S.E.; Cornwall, M.L.; Garcia, F.; Shulman, S.T.; Rowley, A.H. CD8 T lymphocytes and macrophages infiltrate coronary artery aneurysms in acute Kawasaki disease. J. Infect. Dis. 2001, 184, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Hernandez, E.; Horvath, J.; Shiloh-Malawsky, Y.; Sangha, N.; Martinez-Lage, M.; Dalmau, J. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis. Neurology 2011, 77, 589–593. [Google Scholar] [CrossRef] [Green Version]
- Takuma, K.; Kamisawa, T.; Igarashi, Y. Autoimmune pancreatitis and IgG4-related sclerosing cholangitis. Curr. Opin. Rheumatol. 2011, 23, 80–87. [Google Scholar] [CrossRef]
- Krumbholz, M.; Derfuss, T.; Hohlfeld, R.; Meinl, E. B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat. Rev. Neurol. 2012, 8, 613–623. [Google Scholar] [CrossRef]
- Wouters, M.C.A.; Nelson, B.H. Prognostic significance of tumor-infiltrating B cells and plasma cells in human cancer. Clin. Cancer Res. 2018, 24, 6125–6135. [Google Scholar] [CrossRef] [PubMed]
- Butman, S.; Espinoza, L.R.; Del Carpio, J.; Osterland, C.K. Rheumatoid pericarditis. Rapid deterioration with evidence of local vasculitis. JAMA 1977, 238, 2394–2396. [Google Scholar] [CrossRef] [PubMed]
- Pajor, L.; Lacza, A.; Kereskai, L.; Jakso, P.; Egyed, M.; Ivanyi, J.L.; Radvanyi, G.; Dombi, P.; Pal, K.; Losonczy, H. Increased incidence of monoclonal B-cell infiltrate in chronic myeloproliferative disorders. Mod. Pathol. 2004, 17, 1521–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzo, A.; Pitzalis, C. Lymphoid tissue reactions in rheumatoid arthritis. Autoimmun. Rev. 2007, 7, 30–34. [Google Scholar] [CrossRef]
- Brusselle, G.G.; Demoor, T.; Bracke, K.R.; Brandsma, C.A.; Timens, W. Lymphoid follicles in (very) severe COPD: Beneficial or harmful? Euro. Respir. J. 2009, 34, 219–230. [Google Scholar] [CrossRef]
- Brandtzaeg, P.; Carlsen, H.S.; Halstensen, T.S. The B-cell system in inflammatory bowel disease. Adv. Exp. Med. Biol. 2006, 579, 149–167. [Google Scholar]
- Thaunat, O.; Nicoletti, A. Lymphoid neogenesis in chronic rejection. Curr. Opin. Organ Transplant. 2008, 13, 16–19. [Google Scholar] [CrossRef]
- O’Brien, P.M.; Tsirimonaki, E.; Coomber, D.W.; Millan, D.W.; Davis, J.A.; Campo, M.S. Immunoglobulin genes expressed by B-lymphocytes infiltrating cervical carcinomas show evidence of antigen-driven selection. Cancer Immunol. Immunother. 2001, 50, 523–532. [Google Scholar] [CrossRef]
- Simsa, P.; Teillaud, J.L.; Stott, D.I.; Toth, J.; Kotlan, B. Tumor-infiltrating B cell immunoglobulin variable region gene usage in invasive ductal breast carcinoma. Pathol. Oncol. Res. 2005, 11, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Hjelmstrom, P. Lymphoid neogenesis: De novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines. J. Leukoc. Biol. 2001, 69, 331–339. [Google Scholar]
- Mason, W.H.; Jordan, S.C.; Sakai, R.; Takahashi, M.; Bernstein, B. Circulating immune complexes in Kawasaki syndrome. Pediatr. Infect. Dis. 1985, 4, 48–51. [Google Scholar] [CrossRef]
- Ikeda, K.; Yamaguchi, K.; Tanaka, T.; Mizuno, Y.; Hijikata, A.; Ohara, O.; Takada, H.; Kusuhara, K.; Hara, T. Unique activation status of peripheral blood mononuclear cells at acute phase of Kawasaki disease. Clin. Exp. Immunol. 2010, 160, 246–255. [Google Scholar] [CrossRef]
- Giordani, L.; Quaranta, M.G.; Marchesi, A.; Straface, E.; Pietraforte, D.; Villani, A.; Malorni, W.; Del Principe, D.; Viora, M. Increased frequency of immunoglobulin (Ig)A-secreting cells following Toll-like receptor (TLR)-9 engagement in patients with Kawasaki disease. Clin. Exp. Immunol. 2011, 163, 346–353. [Google Scholar] [CrossRef]
- Rowley, A.H.; Shulman, S.T.; Spike, B.T.; Mask, C.A.; Baker, S.C. Oligoclonal IgA response in the vascular wall in acute Kawasaki disease. J. Immunol. 2001, 166, 1334–1343. [Google Scholar] [CrossRef]
- Rowley, A.H.; Baker, S.C.; Shulman, S.T.; Garcia, F.L.; Guzman-Cottrill, J.A.; Chou, P.; Terai, M.; Kawasaki, T.; Kalelkar, M.B.; Crawford, S.E. Detection of antigen in bronchial epithelium and macrophages in acute Kawasaki disease by use of synthetic antibody. J. Infect. Dis. 2004, 190, 856–865. [Google Scholar] [CrossRef]
- Rowley, A.H.; Baker, S.C.; Shulman, S.T.; Rand, K.H.; Tretiakova, M.S.; Perlman, E.J.; Garcia, F.L.; Tajuddin, N.F.; Fox, L.M.; Huang, J.H.; et al. Ultrastructural, immunofluorescence, and RNA evidence support the hypothesis of a “new” virus associated with Kawasaki disease. J. Infect. Dis. 2011, 203, 1021–1030. [Google Scholar] [CrossRef]
- Rowley, A.H.; Shulman, S.T.; Garcia, F.L.; Guzman-Cottrill, J.A.; Miura, M.; Lee, H.L.; Baker, S.C. Cloning the arterial IgA antibody response during acute Kawasaki disease. J. Immunol. 2005, 175, 8386–8391. [Google Scholar] [CrossRef]
- Rowley, A.H.; Baker, S.C.; Shulman, S.T.; Garcia, F.L.; Fox, L.M.; Kos, I.M.; Crawford, S.E.; Russo, P.A.; Hammadeh, R.; Takahashi, K.; et al. RNA-containing cytoplasmic inclusion bodies in ciliated bronchial epithelium months to years after acute Kawasaki disease. PLoS ONE 2008, 3, e1582. [Google Scholar] [CrossRef]
- Geme, J.W., Jr. A biological perspective of slow virus infection and chronic disease. West. J. Med. 1978, 128, 382–389. [Google Scholar] [PubMed]
- Shimizu, C.; Shike, H.; Baker, S.C.; Garcia, F.; van der Hoek, L.; Kuijpers, T.W.; Reed, S.L.; Rowley, A.H.; Shulman, S.T.; Talbot, H.K.; et al. Human coronavirus NL63 is not detected in the respiratory tracts of children with acute Kawasaki disease. J. Infect. Dis. 2005, 192, 1767–1771. [Google Scholar] [CrossRef]
- Klein, C.; Sustmann, C.; Thomas, M.; Stubenrauch, K.; Croasdale, R.; Schanzer, J.; Brinkmann, U.; Kettenberger, H.; Regula, J.T.; Schaefer, W. Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies. MAbs 2012, 4, 653–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaefer, W.; Regula, J.T.; Bahner, M.; Schanzer, J.; Croasdale, R.; Durr, H.; Gassner, C.; Georges, G.; Kettenberger, H.; Imhof-Jung, S.; et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc. Natl. Acad. Sci. USA 2011, 108, 11187–11192. [Google Scholar] [CrossRef] [Green Version]
- Rowley, A.H. Kawasaki disease: Novel insights into etiology and genetic susceptibility. Annu. Rev. Med. 2011, 62, 69–77. [Google Scholar] [CrossRef]
- Kopito, R.R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000, 10, 524–530. [Google Scholar] [CrossRef]
- Alonso, L.M.; Cortes, A.; Barrutia, M.G.; Romo, T.; Varas, A.; Zapata, A.G. Bronchial epithelium associated to lymphoid tissue does not selectively express vimentin. Histol. Histopathol. 1997, 12, 931–935. [Google Scholar]
- Thomas, M.G.; Loschi, M.; Desbats, M.A.; Boccaccio, G.L. RNA granules: The good, the bad and the ugly. Cell. Signal. 2011, 23, 324–334. [Google Scholar] [CrossRef]
- Goggin, K.; Beaudoin, S.; Grenier, C.; Brown, A.A.; Roucou, X. Prion protein aggresomes are poly(A)+ ribonucleoprotein complexes that induce a PKR-mediated deficient cell stress response. Biochim. Biophys. Acta 2008, 1783, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Lelouard, H.; Ferrand, V.; Marguet, D.; Bania, J.; Camosseto, V.; David, A.; Gatti, E.; Pierre, P. Dendritic cell aggresome-like induced structures are dedicated areas for ubiquitination and storage of newly synthesized defective proteins. J. Cell Biol. 2004, 164, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, Y.; Furuta, A.; Kikuchi, H.; Aizawa, S.; Hatanaka, Y.; Konya, C.; Uchida, K.; Yoshimura, A.; Tamai, Y.; Wada, K.; et al. Discovery of a novel type of autophagy targeting RNA. Autophagy 2013, 9, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Beaudoin, S.; Goggin, K.; Bissonnette, C.; Grenier, C.; Roucou, X. Aggresomes do not represent a general cellular response to protein misfolding in mammalian cells. BMC Cell Biol. 2008, 9, 59. [Google Scholar] [CrossRef]
- Sakurai, Y. Autoimmune aspects of Kawasaki disease. J. Investig. Allergol. Clin. Immunol. 2018, 29. [Google Scholar] [CrossRef]
- Cunningham, M.W.; Meissner, H.C.; Heuser, J.S.; Pietra, B.A.; Kurahara, D.K.; Leung, D.Y. Anti-human cardiac myosin autoantibodies in Kawasaki syndrome. J. Immunol. 1999, 163, 1060–1605. [Google Scholar]
- Gupta, M.; Johann-Liang, R.; Bussel, J.B.; Gersony, W.M.; Lehman, T.J. Elevated IgA and IgM anticardiolipin antibodies in acute Kawasaki disease. Cardiology 2002, 97, 180–182. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.K.; Lee, T.J.; Choi, K.M.; Lee, K.H.; Kim, D.S. Elevated anti-alpha-enolase antibody levels in Kawasaki disease. Scand. J. Rheumatol. 2008, 37, 48–52. [Google Scholar] [CrossRef]
- Cines, D.B.; Lyss, A.P.; Reeber, M.; Bina, M.; DeHoratius, R.J. Presence of complement-fixing anti-endothelial cell antibodies in systemic lupus erythematosus. J. Clin. Investig. 1984, 73, 611–625. [Google Scholar] [CrossRef]
- Savage, C.O.; Williams, J.M. Anti endothelial cell antibodies in vasculitis. J. Am. Soc. Nephrol. 2007, 18, 2424–2426. [Google Scholar] [CrossRef]
- Barron, K.S. Kawasaki disease in children. Curr. Opin. Rheumatol. 1998, 10, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.Y.; Collins, T.; Lapierre, L.A.; Geha, R.S.; Pober, J.S. Immunoglobulin M antibodies present in the acute phase of Kawasaki syndrome lyse cultured vascular endothelial cells stimulated by gamma interferon. J. Clin. Investig. 1986, 77, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.Y.; Geha, R.S.; Newburger, J.W.; Burns, J.C.; Fiers, W.; Lapierre, L.A.; Pober, J.S. Two monokines, interleukin 1 and tumor necrosis factor, render cultured vascular endothelial cells susceptible to lysis by antibodies circulating during Kawasaki syndrome. J. Exp. Med. 1986, 164, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Fujieda, M.; Oishi, N.; Kurashige, T. Antibodies to endothelial cells in Kawasaki disease lyse endothelial cells without cytokine pretreatment. Clin. Exp. Immunol. 1997, 107, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, K.; Savage, C.O.; Pottinger, B.E.; Shah, V.; Pearson, J.D.; Dillon, M.J. Antiendothelial cell antibodies can be cytotoxic to endothelial cells without cytokine pre-stimulation and correlate with ELISA antibody measurement in Kawasaki disease. Clin. Exp. Immunol. 1994, 98, 264–269. [Google Scholar] [CrossRef]
- Grunebaum, E.; Blank, M.; Cohen, S.; Afek, A.; Kopolovic, J.; Meroni, P.L.; Youinou, P.; Shoenfeld, Y. The role of anti-endothelial cell antibodies in Kawasaki disease - in vitro and in vivo studies. Clin. Exp. Immunol. 2002, 130, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Van Zelm, M.C.; van der Burg, M.; van Dongen, J.J. Homeostatic and maturation-associated proliferation in the peripheral B-cell compartment. Cell Cycle 2007, 6, 2890–2895. [Google Scholar] [CrossRef]
- Nutt, S.L.; Hodgkin, P.D.; Tarlinton, D.M.; Corcoran, L.M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 2015, 15, 160–171. [Google Scholar] [CrossRef]
- Wrammert, J.; Smith, K.; Miller, J.; Langley, W.A.; Kokko, K.; Larsen, C.; Zheng, N.Y.; Mays, I.; Garman, L.; Helms, C.; et al. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 2008, 453, 667–671. [Google Scholar] [CrossRef]
- Balakrishnan, T.; Bela-Ong, D.B.; Toh, Y.X.; Flamand, M.; Devi, S.; Koh, M.B.; Hibberd, M.L.; Ooi, E.E.; Low, J.G.; Leo, Y.S.; et al. Dengue virus activates polyreactive, natural IgG B cells after primary and secondary infection. PLoS ONE 2011, 6, e29430. [Google Scholar] [CrossRef] [PubMed]
- Lee, F.E.; Falsey, A.R.; Halliley, J.L.; Sanz, I.; Walsh, E.E. Circulating antibody-secreting cells during acute respiratory syncytial virus infection in adults. J. Infect. Dis. 2010, 202, 1659–1666. [Google Scholar] [CrossRef]
- Garcia, M.; Iglesias, A.; Landoni, V.I.; Bellomo, C.; Bruno, A.; Cordoba, M.T.; Balboa, L.; Fernandez, G.C.; Sasiain, M.D.; Martinez, V.P.; et al. Massive plasmablast response elicited in the acute phase of hantavirus pulmonary syndrome. Immunology 2017, 151, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Wrammert, J.; Onlamoon, N.; Akondy, R.S.; Perng, G.C.; Polsrila, K.; Chandele, A.; Kwissa, M.; Pulendran, B.; Wilson, P.C.; Wittawatmongkol, O.; et al. Rapid and massive virus-specific plasmablast responses during acute dengue virus infection in humans. J. Virol. 2012, 86, 2911–2918. [Google Scholar] [CrossRef] [PubMed]
- Di Niro, R.; Lee, S.J.; Vander Heiden, J.A.; Elsner, R.A.; Trivedi, N.; Bannock, J.M.; Gupta, N.T.; Kleinstein, S.H.; Vigneault, F.; Gilbert, T.J.; et al. Salmonella infection drives promiscuous B cell activation followed by extrafollicular affinity maturation. Immunity 2015, 43, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, R.C.; Bhuiyan, T.R.; Nakajima, R.; Mayo-Smith, L.M.; Rashu, R.; Hoq, M.R.; Chowdhury, F.; Khan, A.I.; Rahman, A.; Bhaumik, S.K. Single-cell analysis of the plasmablast response to vibrio cholerae demonstrates expansion of cross-reactive memory B cells. MBio 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.X.; Chen, X.; Munshaw, S.; Zhang, R.; Marshall, D.J.; Vandergrift, N.; Whitesides, J.F.; Lu, X.; Yu, J.S.; Hwang, K.K.; et al. Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated. J. Exp. Med. 2011, 208, 2237–2249. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Yu, Y.; Li, S.; Yue, Y.; Tao, C.; Su, K.; Zhang, Z. Circulating plasmablasts from chronically human immunodeficiency virus-infected individuals predominantly produce polyreactive/autoreactive antibodies. Front. Immunol. 2017, 8, 1691. [Google Scholar] [CrossRef]
- Odendahl, M.; Mei, H.; Hoyer, B.F.; Jacobi, A.M.; Hansen, A.; Muehlinghaus, G.; Berek, C.; Hiepe, F.; Manz, R.; Radbruch, A.; et al. Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood 2005, 105, 1614–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchard-Rohner, G.; Pulickal, A.S.; Jol-van der Zijde, C.M.; Snape, M.D.; Pollard, A.J. Appearance of peripheral blood plasma cells and memory B cells in a primary and secondary immune response in humans. Blood 2009, 114, 4998–5002. [Google Scholar] [CrossRef] [Green Version]
- Fink, K. Origin and function of circulating plasmablasts during acute viral infections. Front. Immunol. 2012, 3, 78. [Google Scholar] [CrossRef] [PubMed]
- Rivas, J.R.; Ireland, S.J.; Chkheidze, R.; Rounds, W.H.; Lim, J.; Johnson, J.; Ramirez, D.M.; Ligocki, A.J.; Chen, D.; Guzman, A.A.; et al. Peripheral VH4+ plasmablasts demonstrate autoreactive B cell expansion toward brain antigens in early multiple sclerosis patients. Acta Neuropathol. 2017, 133, 43–60. [Google Scholar] [CrossRef]
- Tarlton, N.J.; Green, C.M.; Lazarus, N.H.; Rott, L.; Wong, A.P.; Abramson, O.N.; Bremer, M.; Butcher, E.C.; Abramson, T. Plasmablast frequency and trafficking receptor expression are altered in pediatric ulcerative colitis. Inflamm. Bowel Dis. 2012, 18, 2381–2391. [Google Scholar] [CrossRef]
- Hosomi, S.; Oshitani, N.; Kamata, N.; Sogawa, M.; Okazaki, H.; Tanigawa, T.; Yamagami, H.; Watanabe, K.; Tominaga, K.; Watanabe, T.; et al. Increased numbers of immature plasma cells in peripheral blood specifically overexpress chemokine receptor CXCR3 and CXCR4 in patients with ulcerative colitis. Clin. Exp. Immunol. 2011, 163, 215–224. [Google Scholar] [CrossRef]
- Mattoo, H.; Mahajan, V.S.; Della-Torre, E.; Sekigami, Y.; Carruthers, M.; Wallace, Z.S.; Deshpande, V.; Stone, J.H.; Pillai, S. De novo oligoclonal expansions of circulating plasmablasts in active and relapsing IgG4-related disease. J. Allergy Clin. Immunol. 2014, 134, 679–687. [Google Scholar] [CrossRef] [Green Version]
- Wallace, Z.S.; Mattoo, H.; Carruthers, M.; Mahajan, V.S.; Della Torre, E.; Lee, H.; Kulikova, M.; Deshpande, V.; Pillai, S.; Stone, J.H. Plasmablasts as a biomarker for IgG4-related disease, independent of serum IgG4 concentrations. Ann. Rheum. Dis. 2015, 74, 190–195. [Google Scholar] [CrossRef]
- Martin, M.; Wrotniak, B.H.; Hicar, M. Suppressed plasmablast responses in febrile infants, including children with Kawasaki disease. PLoS ONE 2018, 13, e0193539. [Google Scholar] [CrossRef]
- Ledergor, G.; Weiner, A.; Zada, M.; Wang, S.-Y.; Cohen, Y.C.; Gatt, M.E.; Snir, N.; Magen, H.; Koren-Michowitz, M.; Herzog-Tzarfati, K.; et al. Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nat. Med. 2018, 24, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
- Brochet, X.; Lefranc, M.P.; Giudicelli, V. IMGT/V-QUEST: The highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 2008, 36, W503–W508. [Google Scholar] [CrossRef] [PubMed]
- Shlomchik, M.J.; Marshak-Rothstein, A.; Wolfowicz, C.B.; Rothstein, T.L.; Weigert, M.G. The role of clonal selection and somatic mutation in autoimmunity. Nature 1987, 328, 805–811. [Google Scholar] [CrossRef] [PubMed]
Drug | Clinical Trials | Phase | Status | Closure Date | Results Summary or Comments |
---|---|---|---|---|---|
Infliximab | NCT02298062 | 3 | completed | September, 2015 | |
Infliximab | NCT00760435 | 3 | resulted | October, 2012 | Improved defervescence, well tolerated, variable z- score reduction [66]. |
Infliximab | NCT01596335 | 3 | resulted | October, 2014 | Improved defervescence, well tolerated [67]. |
Infliximab | NCT03065244 “KIDCARE” | 3 | recruiting | September, 2020 | |
Etanercept | NCT00841789 | 2 | Active, not recruiting | August, 2018 | |
Anakinra | NCT02179853 | 2 | recruiting | December, 2020 | |
Anakinra | NCT02390596 “Kawakinra” | 2 | Recruiting | April, 2019 | |
IVIG doses | NCT00000520 | 3 | Completed | November, 1989 | Single dose of IVIG is better than splitting doses [68]. |
IVIG + pulsed steroids | NCT00132080 | 3 | Completed | March, 2005 | No difference, refractory lower number than expected [69]. |
IVIG 1 g or 2 g | NCT02439996 | 3 | Completed | September, 2016 | |
IVIG + 5 days prednisolone | NCT03200561 | 3 | Recruiting | December, 2020 | Proposal published [70]. |
IVIG without Aspirin | NCT02951234 | na | Recruiting | August, 2019 | Proposal published [71]. |
Monoclonal Antibody Clones | Clonal Members | Exact Replicants | IG Isotypes | VH ^ CDR3 Length | Nucleotide Substitutions (%) | VH R/S * CDR1 | VH R/S * CDR2 | VL & CDR3 length | Nucleotide substitutions (%) | VL R/S * CDR1 | VL R/S * CDR2 |
---|---|---|---|---|---|---|---|---|---|---|---|
24-01 | 10 | 5 | G1 | 19 | 97.8 | 0 | 1/0 | 11 | 97.7 | 7 | 0 |
24-02 | 4 | 4 | M; G1 | 19 | 93.8 | 2/0 | 5 | 9 | 95.0 | 3/0 | 0 |
24-25 | 6 | 2 | G1,3 | 17 | 94.4 | 5/0 | 3/0 | 9 | 95.3 | 2/0 | 2/0 |
24-29 | 6 | 2 | G1,2,3 | 11 | 85.6 | 4.5 | 14/0 | 8 | 85.8 | 5 | 4 |
24-39 | 5 | 2 | G1 | 15 | 90.6 | 2.3 | 2.1 | 11 | 94.6 | 2 | 8/0 |
24-49 | 3 | 2 | G2 | 20 | 93.4 | 1.5 | 5 | 13 | 96.5 | 0 | 2/0 |
24-67 | 5 | G1 | 18 | 93.5 | 4.3 | 19.5 | 9 | 97.0 | 9/0 | 5 | |
24-377 | 4 | G1 | 14 | 92.3 | 8.0 | 6.0 | 9 | 96.2 | 9.0 | 0.5 | |
24-439 | 2 | M; G2 | 11 | 91.5 | 4.0 | 2.0 | 11 | 94.4 | 2/0 | 2/ | |
24-441/659 | 15 | M; G1 | 11 | 93.1 | 31.0 | 30.0 | 9 | 97.6 | 6.5 | 18/0 | |
24-595 | 5 | M; G1,2 | 15 | 93.0 | 9.5 | 13/0 | 9 | 95.6 | 2.7 | 0 | |
24-815 | 8 | M; G1 | 15 | 95.4 | 5.5 | 9.0 | 10 | 97.7 | 4 | 9/0 | |
24-893 | 4 | G1 | 12 | 91.7 | 2.3 | 2.4 | 10 | 94.4 | 19/0 | 8 | |
24-908 | 3 | M; G1,3 | 20 | 96.5 | 4.0 | 2.5 | 9 | 98 | 5 | 2 |
Possible Importance | Contrary Findings and Considerations | |
---|---|---|
Efficacy of IVIG | Theoretically can provide antibodies to specific etiology | Function in KD theoretical, many different potential functions of IVIG |
Treatment with anti-CD20 antibody | Directly downregulates IG production | Limited reports and no prospective trials |
Response to IL-1 inhibitors | Downregulates IG production, mouse models support IL-1 role | Many other broad affects |
Coronary plasma cell infiltrates | Seen on coronary path specimens, theorized direct response to infectious agent | Plasma cell infiltrates also seen in autoimmune disorders |
Anti-self antibodies | Can cause apoptosis of endothelial cells | Later finding, not universally seen; unclear if part of etiology or response to tissue damage |
Plasmablast (PB) level | Level similar to infection, may be set off by etiology of KD | Number of coinfections and IVIG may make defining specificity difficult |
PB timing | Similar to that of infection | Pure autoimmune has PB rise, but often higher/flare correlated |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindquist, M.E.; Hicar, M.D. B Cells and Antibodies in Kawasaki Disease. Int. J. Mol. Sci. 2019, 20, 1834. https://doi.org/10.3390/ijms20081834
Lindquist ME, Hicar MD. B Cells and Antibodies in Kawasaki Disease. International Journal of Molecular Sciences. 2019; 20(8):1834. https://doi.org/10.3390/ijms20081834
Chicago/Turabian StyleLindquist, Michael E., and Mark D. Hicar. 2019. "B Cells and Antibodies in Kawasaki Disease" International Journal of Molecular Sciences 20, no. 8: 1834. https://doi.org/10.3390/ijms20081834
APA StyleLindquist, M. E., & Hicar, M. D. (2019). B Cells and Antibodies in Kawasaki Disease. International Journal of Molecular Sciences, 20(8), 1834. https://doi.org/10.3390/ijms20081834