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Abstract: Oxidative stress (OS) is associated with many diseases ranging from cancer to
neurodegenerative disorders. Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) is one of
the most effective cytoprotective controller against OS. Modulation of Nrf2 pathway constitutes a
remarkable strategy in the antineoplastic treatments. A big number of Nrf2-antioxidant response
element activators have been screened for use as chemo-preventive drugs in OS associated diseases
like cancer even though activation of Nrf2 happens in a variety of cancers. Research proved that
hyperactivation of the Nrf2 pathway produces a situation that helps the survival of normal as
well as malignant cells, protecting them against OS, anticancer drugs, and radiotherapy. In this
review, the modulation of the Nrf2 pathway, anticancer activity and challenges associated with the
development of an Nrf2-based anti-cancer treatment approaches are discussed.

Keywords: Nrf2 inhibitors; antineoplastic drugs; cancer; chemoresistance; cancer chemoprevention
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1. Introduction

Cancer is the second leading cause of death both for men and women, behind cardiovascular
diseases [1]. According to the World Health Organization (WHO), 9.5 million people died of cancer,
mostly in low- and middle-income countries, in 2018 [1]. New cancer cases are expected to rise about
64% worldwide by 2040 [1]. During carcinogenesis, a normal cell evolves into a tumor cell, which
is a multi-stage process involving multiple epigenetic and genetic events in three stages: initiation,
promotion, and progression [2]. Cancer is still a major threat to our health, despite the extensive
research efforts to develop new treatments. Hence, it is necessary to develop novel strategies to improve
the outcomes of patients suffering from aggressive or treatment-resistant malignancies. Recent studies
have showed that oxidative stress (OS) is one of the crucial causes responsible for cancer and may lead
to tumor aggressiveness, malignant progression and resistance to treatment [3].

There are many types of cancer treatment. The types of treatment that that patient will receive will
depend on the type of cancer and how advanced it is. Today, we can talk about surgery, radiotherapy,
chemotherapy, immunotherapy, targeted therapy, hormone therapy and stem cell transplants processes
that are there to treat cancer. In addition, precision medicine helps doctors select treatments that are
most likely to help patients, based on a genetic understanding of their disease.

Types of immunotherapy that help the immune system act directly against the cancer include:
Checkpoint inhibitors, adoptive cell transfer, monoclonal antibodies, treatment vaccines, cytokines,
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BCG (Bacillus Calmette-Guérin). Although there are good advantages, immunotherapy is not yet as
widely used as surgery, chemotherapy, and radiation therapy. Many new immunotherapies are being
studied in clinical trials [4,5].

Targeted therapy is the foundation of precision medicine. Most targeted therapies are either
small-molecule drugs or monoclonal antibodies. Generally, targeted therapies help the immune system
destroy cancer cells, stop cancer cells from growing, stop signals that help form blood vessels, deliver
cell-killing substances to cancer cells, cause cancer cell death, starve cancer of the hormones it needs to
grow. The important drawbacks of targeted therapy include resistance of cancer cells to the therapy
and difficulties of developing drugs to some targets [6,7].

Stem cell transplants are most often used to help people with leukemia and lymphoma. They
may also be used for neuroblastoma and multiple myeloma. Stem cell transplants for other types of
cancer are being studied in clinical trials [8,9].

Precision medicine may be called personalized medicine. The idea of this treatment is to develop
a treatment that will be tailored to the genetic changes in each person’s cancer. However, the precision
medicine approach to cancer treatment is not yet part of routine care for most patients [10,11].

OS plays a crucial role in determining cell fate. As a reaction to the excessive reactive oxygen
species (ROS) load, apoptotic-signaling pathway is stimulated to promote normal cell death. Nuclear
factor-erythroid 2 p45-related factor 2 (Nrf2) looks as if to be as a chief regulator, which defends
cells [12]. Nrf2 is usually degraded in cytoplasm by interaction with Keap1 inhibitor. However, excess
amount of ROS stimulates tyrosine kinases to separate Nrf2. Deregulation of Nrf2 and/or Keap1 due to
mutation and stimulated upstream oncogenes is related with nuclear accumulation and activation of
Nrf2 to protect cells from apoptosis and induce proliferation, metastasis and chemoresistance. Nrf2
modulation appears to be significant in the personalization of cancer therapy [13]. In this review, we
focus our attention on the role of Nrf2 in cancer progression and pharmacological applications of Nrf2
inhibitors as potential antineoplastic drugs.

2. Nrf2 Domains and Their Functions

Nrf2 (also known as NFE2L2) belongs to the cap ’n’ collar type of basic region leucine zipper factor
family (CNC-bZip) that is a group of transcription factors that are activated in response to cellular
stress [14]. Nrf2 is the most-known CNC family member and regulates the expression of antioxidants
phase I-II metabolizing enzymes and endogenous antioxidants [15]. The human Nrf2 gene was first
identified and characterized in 1994, which encodes a protein of 605 amino acids [14,16]. Nrf2 has highly
conserved seven functional domains, called Nrf2-ECH homology (Neh1 to Neh7) [12]. Neh1, Neh3
and Neh6 domain are located in the C-terminal region. Neh1 comprises a conserved CNC-bZIP region
binds to antioxidant responsive elements (AREs), which are crucial for the transcriptional activity of
Nrf2, and it is also needed for homo-hetero dimerization with Maf proteins (MafF, MafG and MafK) [12].
The Neh2 domain is located at the N-terminal of the Nrf2 and it contains DLG and ETGE motifs.
Kelch-like ECH-associated protein 1 (Keap1) binds directly to these motifs and negatively regulates
Nrf2 levels via proteasomal degradation of excess protein under homeostatic conditions [16,17]. Neh3,
4, and 5 are known transactivation domains that are involved in transactivation by transcription
factors. The Neh3 domain is present at the C-terminal regions and binds to chromo-ATPase/helicase
DNA binding protein 6 (CHD6) [18]. The Neh4 and Neh5 are transactivation domains that bind
cAMP response element binding protein (CREB) and/or the receptor-associated co-activator (RAC) [19].
The Neh6 domain is localized between Neh7 and Neh1 domains, and it plays a key role in the
Keap1-independent degradation of Nrf2 by recruiting the dimeric β-transducin repeat-containing
protein (β-TrCP) under redox stress conditions [20]. The most recently identified domain of Nrf2 is
Neh7, which interacts with the retinoid X receptor alpha (RXRα) and inhibits the NRF2–ARE signaling
pathway [21].
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3. Regulation of Nrf2 Signaling Pathway

The Nrf2 signaling pathway contributes to the maintenance of cellular and tissue homeostasis
and protects cells against OS. The repressor protein Keap1, an adaptor component of Cullin 3-based
ubiquitin E3 ligase complex, tightly regulates the activities and the protein level of Nrf2 [22]. Under
basal homeostatic conditions, Nrf2 is localized in the cytoplasm and binds to its inhibitor protein Keap1,
which inhibits transcriptional activity of Nrf2 via ubiquitination and proteasomal degradation [23].
Under stress conditions Keap1 cysteine residues are modified with thiols and proteasomal degradation
of Nrf2 is inhibited. As a consequence, Nrf2 dissociates from Keap1 and translocates into the
nucleus, forms heretodimers with small Maf proteins and induces transcription of cytoprotective gene
expression, such as NADPH quinone oxidoreductase (NQO-1), glutathione S-transferases (GSTs), heme
oxygenase-1 (HMOX1), and glutamate-cysteine ligase (GCL) subunits after ARE-sequence binding
(Figure 1A) [23–25]. Although, Keap1 is the main regulator of Nrf2, there are other alternative pathways
that can impact Nrf2 activity. For example, glycogen synthase kinase 3 (GSK-3β) phosphorylates serine
amino acid residues located in the Neh6 domain that directs to Nrf2 ubiquitination and proteosomal
degradation in Keap1 independent manner [26]. In addition, researchers showed that a novel E3
ubiquitin ligase, Hrd1, interacts with the Neh4/Neh5 domains of Nrf2, which results in enhanced
Nrf2 ubiquitylation and degradation [27]. Studies demonstrate that Nrf2 is also regulated at the
transcriptional level. Oncogenic KRAS, BRAF and C-MYC can increase the mRNA levels of Nrf2
by binding to its promoter [28,29]. While some transcription factors (such as cFos, p53, p65, Fra1,
Bach1, C/EB, ATF1, ATF3, estrogen receptors (ER), short-form estrogen-related receptor (SFERR),
peroxisome proliferator activated receptor α (PPAR-α) and retinoic acid receptor, (RAR-α)) regulate
Nrf2 transcription negatively, other transcriptional factors (such as JDP2, Jun, CBP, BRG1 and p21) can
induce Nrf2 activation [21,30–39]. In addition, a nuclear receptor retinoic X receptor alpha (RXRα) was
recently identified that interacts with the Neh7 domain of Nrf2 and, specifically, inhibits Nrf2 activity
in the nucleus [40].
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Figure 1. Nrf2 status in normal and cancer cells. (A) In a normal cell, under normal conditions Keap1
inhibits transcriptional activity of Nrf2 via ubiquitination and proteasomal degradation, under stress
conditions Keap1 and Nrf2 interaction does not occur, causing Nrf2 stabilization and accumulation
in nucleus, which in turn induces cytoprotective gene expression. (B) In a cancer cell, somatic
mutations in NRF2 (gain of function mutations) and KEAP1 (loss of function mutations) result in
constitutive activation of Nrf2 inducing expression of genes related to tumorigenity. Nrf2, nuclear factor
erythroid 2-related factor 2; Keap1, Kelch-like ECH-associated protein 1; Maf, small musculoaponeurotic
fibrosarcoma protein; Pol II; Polimerase II; ARE: Antioxidant response element
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4. Nrf2 Function in Oxidative Stress and Toxicity

ROS and reactive nitrogen species (RNS) are continuously produced in humans from internal
metabolism and external exposure [41]. Oxidant species are produced due to physiological action
in order to control some vital procedures, such as cell division, inflammation, immune function,
autophagy, and stress response [42]. Excessive production of oxidants can cause OS-related cellular
damage and this process plays a critical role in the development of metabolic and chronic disease, such
as cancer, autoimmune disorders, and neurodegenerative diseases [43,44].

Nrf2 acts as a mediator to induce drug-metabolizing enzymes (DMEs) with the help of species
like antioxidants and electrophiles [45]. Research over the past decade demonstrates an important
initial role for Nrf2 in OS resistance. Nrf2 is physiologically very effective against anticancer agents to
protect cells from OS [46].

Nrf2, a transcription factor with a great affection to OS, binds to AREs in the nucleus and stimulates
the transcription of many antioxidant genes. OS makes Nrf2 separate from Keap1 and to transfer
into the nucleus, which results in its binding to AREs [47,48]. Excess Nrf2 has been confirmed to be
cytoprotective in numerous tissues [49,50]. Heme oxygenase-1 (HO-1) is known as an Nrf2-dependent
gene that mimics many critical properties of Nrf2 [51], which is responsible for eliminating toxic
heme and produces biliverdin, iron ions and carbon monoxide. HO-1 and related molecules show
beneficial effects via defense against oxidative damage and involvement to angiogenesis. Instabilities
in the proper HO-1 level are linked to some disorders, such as neurodegeneration, cancer or macular
degeneration. HO-1 contribution in cancer development is well recognized, but also HO-1 might
be defensive for cancer cells in some tumor types [52]. HO-1 introduction stops cell transformation
through an antioxidant defensive mechanism in healthy cells. Unfortunately, malignant cells benefit
from HO-1 upregulation supporting tumor growth, invasion, and metastasis [53].

ROS and other endogenous reactive molecules may promote the release of Nrf2 that binds to
the ARE in the nucleus. This binding motivates gene transcription and stimulates the antioxidant
defenses [54,55]. The activation of Nrf2 has been thought to be responsible for the antioxidant action of
many antioxidants capable of disrupting straight or ultimately the Keap1-Nrf2 complex [56].

Nrf2 is a main controller of the antioxidant reaction and xenobiotic metabolism via several of
antioxidant and Phase II detoxification genes [57]. Nrf2 defends cells from ROS radiation, and toxic
substances. Motivation of the Nrf2 pathway could be a promising approach for chemoprevention,
as well as prevention against chronic diseases, such as cardiovascular disease, neurodegenerative
diseases and pulmonary injury [58].

5. Nrf2 in Cancer

5.1. Molecular Basis of Nrf2 Activation in Cancer Cells

It is widely accepted that Nrf2 is an important player in the cellular defense mechanism that
protects cells from cancer progression and promotes cell survival under stress conditions in normal
cells (Figure 1A). However, emerging data indicate that the Nrf2 defense mechanism also shields tumor
cells from chemotherapeutic agents, radiation therapy and anti-cancer drugs and aberrant elevation of
Nrf2 causes therapeutic resistance and metastatic invasion of cancer cells [31] (Figure 1B). Increased
Nrf2 levels have been shown in many clinical cancer studies including melanoma, lung, ovarian and
endometrial carcinomas, pancreatic cancer, renal cancer, breast, colorectal cancer and hepatocellular
carcinoma, and etc. Table 1 [59–78]. High level of Nrf2 activity in cancer cells reduces susceptibility
to chemotherapeutic agents, and repression of Nrf2 reverses drug resistance and sensitivity against
radiation therapy [75,79,80]. Nrf2-signaling pathway is compromised by multiple mechanisms
including genetic, epigenetic and transcriptional changes.
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Table 1. The collection of clinical studies related to the role of Nrf2 in various cancer types.

Type of Cancer Number of
Patients Conclusion Ref.

Brain Glioma 75 The expression of Nrf2 and p62 was associated with
tumor grade and survival in patients with gliomas [64]

Bladder cancer 44 Nrf2 expression is associated with short overall survival
in bladder cancer patients [65]

Breast cancer 106 Nrf2 protein plays important roles in the proliferation
and/or progression of breast carcinoma [66]

Cervical cancer 89
Strong nuclear expression of NRF2 was significantly
associated with reduced cytoplasmic Keap1 expression
in cervical cancers due to hypermethylation.

[67]

Colorectal cancer 76 Nrf2 was highly expressed in CRC tissues compared
with adjacent non-tumor tissues [68]

Esophageal squamous cell
carcinoma 82 Oncogenic Nrf2 mutation induces dependence on the

mTOR pathway during carcinogenesis [69]

Gastric cancer 175
Nrf2 expression is closely associated with
clinicopathological factors and the prognosis of gastric
cancer patients

[70]

Head and neck squamous cell
carcinoma 302 Nrf2 activation is potentially clinically relevant as a

prognostic indicator in HNSCC [71]

Hepatocellular carcinoma 65
Nrf2 was up-regulated in HCC, and expression of Nrf2
was correlated with tumor differentiation metastasis,
and tumor size

[72]

Non-small cell lung cancer 443 NRF2 regulates serine biosynthesis in non-small cell
lung cancer [73]

Melanoma 121 Nrf2 influences prognosis in melanoma [74]

Ovarian cancer 64
Nrf2 may serve as an important therapeutic target for
novel drugs capable of preventing or reversing
resistance to chemotherapy in ovarian cancer

[75]

Pancreatic adenocarcinoma 103 Nuclear Nrf2 expression is related to a poor survival in
pancreatic adenocarcinoma [76]

Renal cell cancer 89 Keap1/Nrf2 axis deregulation is an important prognostic
marker in renal cell carcinoma [77]

Tyroid carcinoma 42 Nrf2 pathway has potential diagnostic, prognostic,
and/or therapeutic utility in papillary thyroid carcinoma [78]

5.1.1. Somatic Mutations in Nrf2-Signaling Pathway

Somatic mutations in NRF2 (gain of function mutations) and KEAP1 (loss of function mutations)
result in constitutive activation of Nrf2 and its target genes, and these mutations have been identified in
many different cancers [62,69,75,81,82]. KEAP1 mutations occur more frequently than NRF2 and these
mutations are found in different positions in the coding region. On the other hand, NRF2 mutations are
located in KEAP1 binding motifs (DLG1 or ETGE motifs) of Neh2 domain [83]. KEAP1 mutations cause
conformational changes that reduce its affinity for Nrf2 and lead to aberrant activation of Nrf2 [82].
Loss of exon 2 of NFE2L2 (Keap1 binding domain loss) was recently reported to be a new mechanism
that also causes aberrant Nrf2 accumulation in the nucleus and promotes cell survival in lung, head
and neck cancers [84]. Keap1 or Nrf2 independent mutations in oncogenes, including EGFR, Kras,
Braf, Myc, and the Bcr-Abl fusion may also increase Nrf2 levels, resulting in ROS detoxification and
chemo-resistance in cancer [29,85].

5.1.2. Epigenetic Modifications in Nrf2-Signaling Pathway

Besides somatic mutations of KEAP1, epigenetic alterations in promoter regions of the KEAP1
gene can lead to aberrant activation and nuclear accumulation of Nrf2 protein in cancer cells.
Hypermethylation of the promoter region of KEAP1 was reported in several cancers, including lung
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and prostate cancer, causing down-regulation of Keap1 expression and accumulation of Nrf2 [86,87].
On the other hand, demethylation of NRF2 promoter regions was shown in colon cancer cells, resulting
in the upregulation of Nrf2 [88]. Because deregulation of the Nrf2 signaling is linked to chemo-resistance
in a variety of tumor types, the reversal of KEAP1 methylation or NRF2 demethylation could be a
novel strategy to increase anticancer drug sensitivity.

Micro RNAs (miRNAs) are small non-coding RNA molecules containing about 18–25 nucleotides
that regulate the post-transcriptional activity of many genes by sequence-specific binding to mRNA [89].
Interestingly, recent studies have shown that microRNAs play a crucial role in the regulation of Nrf2
signaling. miR-144 was the first miRNA to be characterized as a negative regulator of Nrf2 expression in
sickle cell disease [90]. miR-144 represses Nrf2 expression, together with its targets, such as superoxide
dismutase 1, catalase, and glutamate-cysteine ligase subunits [21]. Similarly, overexpression of miR-28
in MCF7 breast-cancer cell lines decreased mRNA and protein levels of Nrf2 [91]. On the other hand,
Nrf2 is upregulated indirectly by miR-200a that targets KEAP1 mRNA and leads to degradation [92].
These miRNAs can be potentially novel anticancer drug targets for preventing the deregulation of
Nrf2-signaling pathway in cancer.

5.1.3. Cooperation between Nrf2 and Other Proteins

Studies have demonstrated that different proteins in cancer progression can deregulate Nrf2
signaling by altering the Nrf2–Keap1 binding [93]. Nrf2 signaling is negatively regulated by p53, which
suppresses Nrf2 target genes (such as x-ct, NQO1, and GST1) [94]. These results suggest that, under
stressful conditions, induction of p53 inhibits Nrf2 by reducing antioxidant defense to promote cell
death. On the other hand, p21, a direct downstream target of p53, regulates Nrf2 expression positively
by disrupting Nrf2 and Keap1 binding [44] As a result, cytoprotective genes targeted by Nrf2 are
reduced in the absence of p21, but these target genes are increased in the presence of p21 [39]. p62 is an
adapter protein that binds to ubiquitinated substrates for selective autophagy [95]. Phosphorylated p62
binds to Keap1 and prevents to Nrf2 ubiquitination, causing Nrf2 stabilization. Importantly, abnormal
accumulation of p62 is observed in studies about hepatocellular carcinoma [96], resulting in Nrf2
activity that could contribute to cancer progression.

It has been reported that Nrf2 level is also modulated through protein-protein interactions with
Nrf2 or Keap1. Wilms tumor gene on the X chromosome (WTX) prevents Nrf2 degradation by binding
to Keap1 [97]. Similarly, the partner and localizer of BRCA2 (PALB2) was also shown to promote
nuclear accumulation of Nrf2 by suppressing Keap-1 mediated ubiquitination of Nrf2 [98]. Recently,
the dipeptidyl peptidase III (DPP3) was identified as a Keap1 interacting protein, which blocks
Nrf2-Keap1 interactions and activates Nrf2-dependent transcription in cancer cells [99]. Furthermore,
the tumor-suppressor gene BRCA1 has been shown to activate Nrf2 signaling by physically binding to
Nrf2 [39]. In another study, KAP1 (KRAB (Krüppel-associated box)-associated protein 1) was identified
as a novel Nrf2-NT-interacting protein, which participates in the oxidative stress response by enhancing
Nrf2-dependent transcription [100]. On the other hand, c-Myc was shown as an interaction partner of
Nrf2, which reduced the half-life of Nrf2 [101]. Therefore, these interaction partners can be targeted in
combination with Nrf2 for cancer treatment.

6. Nrf2 Inhibitors as Potential Antineoplastic Drugs

Some Nrf2 inhibitors have been stated for the treatment of Nrf2-addicted cancers. One of them
is brusatol, which is a natural quassinoid. It was found that brusatol stimulates poly-ubiquitination
of Nrf2, which decreases the Nrf2 protein level. The inhibitory effect of brusatol to Nrf2 is revealed
to not be dependent of its repressor Keap1. Brusatol was found beneficial for the inhibition of Nrf2
signaling [102].

It has been established that stimulation of Nrf2 helps to lower chemo-resistance in NSCLC
cells [103]. Many flavonoids are stated to induce Nrf2-dependent gene expression in several cancer cell
lines [104]. Luteolin was found as an inhibitor of antioxidant response element-driven gene expression.
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Using non-small-cell lung cancer cell lines (A549 cells), which have active Nrf2, luteolin provoked an
intense decrease in Nrf2 at both the mRNA and the protein levels. Moreover, luteolin considerably
sensitized A549 cells to the neoplastic drugs oxaliplatin, bleomycin, and doxorubicin [105].

Another Nrf2 inhibitor, halofuginone, was established to develop a chemosensitizing influence on
Nrf2-addicted cancer cells [106]. In this study, halofuginone was shown to decrease Nrf2 at protein
level, through suppression prolyl-tRNA synthetase activity. A chalcone derivative 4-methoxy-chalcone
(4-MC) showed suppression on the transcriptional activity of Nrf2 in A549 cells but to activate it
in HEK293 cells. 4-MC was also found to down-regulate expression of Nrf2. Inhibition of Nrf2
signaling has effects on the enhanced production of ROS. Use of 4-MC was found promising to
improve the sensitivity of tumor cells to the pharmacological effect of cisplatin over the regulation
of Nrf2/ARE signaling [107]. Bardoxolone methyl (BM) resembles the natural product oleanolic acid
is a semisynthetic triterpenoid effectively induces Nrf2 and has been examined in different types of
cancer, such as leukemia and some solid tumors [108,109]. BM display Michael acceptor activity and
act as the most potent inducers of Nrf2 [110]. Camptothecin is another novel Nrf2 inhibitor that might
be suggested in combination with other anticancer drugs to improve their effectiveness in treating
high Nrf2-expressing cancers. It was found that camptothecin evidently inhibited Nrf2 expression
and transcriptional action in different types of cancer cell lines, including HepG2, SMMC-7721 and
A549 [111].

The effective protection activity of Nrf2 has been stated generally during tumor initiation.
However, it is now well recognized that Nrf2 shows a dual effect in carcinogenesis. Growing number
of research showed the oncogenic properties of Nrf2 in lung cancer, esophagus and skin and renal cell
cancer [40,73,112–114].

Nrf2 is found in practically all cell types and tissues, but it is prominent in tissues where main
detoxification reactions take place, such as intestine, lung, and kidney. It has a protective role against
oxidative damage and carcinogenesis through binding to AREs [115].

Recent studies specify that targeting Nrf2 may be a new therapy to diminish tumor and develop a
defense. It has been established that Nrf2 is defending normal cells under OS. The excess Nrf2 in tumor
cells carry on its defense toward cytoprotection. This might help to defend tumor cells against OS.
This process by which cancer cells adjust themselves to survive in augmented OS and resist treatment
is called “redox adaptation”. Therefore, it is debatable whether the activation, or the inhibition, of Nrf2
is beneficial for the prevention or treatment of cancer [116].

Numerous compounds modulate the Nrf2 pathway to perform anticancer activity. It is obvious
that both Nrf2 inducers and inhibitors could be valuable as anticancer policy. Nevertheless, due to
modulating effects of Nrf2, it is active in the detoxification procedure of anticancer drugs, and its
activation in cancer cells possibly will lead to chemo-resistance. A beneficial or unfavorable process of
Nrf2 in cancer cells basically depends on the close control of its action, surroundings of tumor and
cell type [117]. Over the last decade, Nrf2 has been known as a critical biomarker in cancer prognosis
and therapy [118]. High expression of Nrf2 in cancer patients did not get the highest benefit from
anticancer drugs and radiotherapy [119]. A risk-score system established on Nrf2-mediated gene
expression was established to provide estimation on recurrence-free survival and overall survival
in cancer patients [120]. It is crucial to find out the genetic polymorphisms in the NRF2 gene in
cancer patients before their cancer treatment in the clinic [121]. In some tumors, Nrf2 is determinedly
stimulated because of somatic mutations in either Nrf2 or Keap1, and, therefore, upholding tumor
development and resistance to oxidants and anticancer drugs [29,122]. Nrf2 mutations that allow this
transcription factor to avoid Keap-1-mediated repression have been found in 10% of patients with lung
cancer [123]. In some cases, higher quantities and activity of Nrf2 reduces the effectiveness of some
anticancer drugs, such as carboplatin, cisplatin, 5-fluorouracil, and doxorubicin [124].

Nrf2 is crucial to providing defense against OS and also preventing tumor promotion and
progression [125,126]. Studies showed that Nrf2-knockout organisms display bigger injury in vital
organs after exposition to toxic substances. Lack of Nrf2 develops weakness to experimental ischemic
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acute kidney injury. Increasing Nrf2 motivation by synthetic triterpenoid CDDO-imidazolide showed
that treated mice had enhanced renal histology with a reduction in tubular damage, as well as a
lessening in pro-inflammatory cytokine and chemokine construction [126].

The role of Nrf2 in defense against toxic effects of chemicals was proven on Nrf2 knockout mice
using acetaminophen (N-acetyl-4-aminophenol (APAP)) [127]. The mice were orally given a single
dose of APAP at 0, 150, 300, or 600 mg/kg. Doses of 300 mg/kg APAP or higher doses caused death
in the homozygous knockout mice only. The surviving mice exhibited more brutality in hepatic
injury than the wild-type mice, as confirmed by improved plasma alanine aminotransferase activity,
reduced hepatic non-protein sulfhydryl content, and centrilobular hepatocellular necrosis. The data
demonstrated that Nrf2 has a defending role against APAP hepatotoxicity.

Nrf2 stabilizes oxidative tissue damage and inflammation through transcriptional activation via
the ARE. Protecting activity of Nrf2 in the development of emphysema was observed [128] by testing
cigarette smoke-induced Nrf2-knockout mice. Emphysema was first detected at 8 weeks and worsened
by 16 weeks following cigarette smoke-exposure, while no pathological anomalies were detected in the
control group. The results show that Nrf2 is able to defend against the development of emphysema by
adjusting the oxidant/antioxidant balance.

Citrus coumarin auraptene was studied in order to identify the possible effect on premalignant
mammary lesions via activation of Nrf2/ARE [129]. While the mice introduced with carcinogen
displayed premalignant wounds, Nrf2 knockout mice showed significant proliferation in mammary
carcinoma growth percentage. There was no significant difference in general survival, but the
Nrf2 knockout mice had significantly lower mammary tumor-free survival. It is noteworthy that
the frequencies of lung adenomas in the Nrf2 knockout mice were very much higher than in the
control group.

ROS and RNS are believed to be a main cause underlying the contribution of chronic inflammation
to cancerogenic alteration [130]. Nrf2 shows an important role in defending many tissues against
inflammation, which is a probable treatment for colorectal and many other cancers. Nrf2 supports
defense against dextran sulfate sodium (DSS)-induced colitis/inflammation and protects against
inflammation-associated colorectal carcinogenesis [131]. This result was supported by an experiment
using azoxymethane/DSS-treated Nrf2 knockout mice [132]. Nrf2 knockout mice augmented occurrence,
and size of all colorectal tumors, including adenomas, versus treated wild-type mice. The knockout
mice also had augmented cyclooxygenase-2 and 5-lipoxygenase expressions, and prostaglandin E2
and leukotriene B4 levels in tumor. These results represented that Nrf2 has a significant importance in
defending against colorectal cancer.

The pharmacological significance of Nrf2 has been revealed by many studies mainly using
Nrf2-deficient mice and research of single nucleotide polymorphism in the NRF2 gene [133]. Nrf2
activation successfully avoids chemical carcinogenesis by modulating antioxidant and detoxification
abilities and makes anticancer immunity. Nrf2 successfully inhibits the action of myeloid-derived
suppressor cells and stops apoptotic Treg cell-mediated immunosuppression by defending Treg cells
from apoptosis [134,135]. Various clinical studies have revealed strong correlations between Nrf2
stimulation in tumor tissues. Data show Nrf2 increase generally related with poor diagnosis in many
cancer types. Somatic mutations of NRF2 are also prognostic markers of many cancer types like
non-small cell lung cancers, esophageal cancers, and head and neck cancers [71,136].

Since Nrf2 shows boundless benefits on cancer cells, including therapeutic resistance, improved
antioxidant capability and aggressive tumorigenic ability, cancer cells with Nrf2 activation often
develop “Nrf2 addiction”. Even though constant stimulation of Nrf2 helps growth and survival
benefits on cancer cells, high stimulation of Nrf2 in normal cells is quite toxic. These findings suggest
that definite requirements allow for the formation of Nrf2-addicted cancers [137].

Some Nrf2 inhibitors have been stated for the treatment of Nrf2-addicted cancers. Brusatol,
a natural quassinoid, stimulates poly-ubiquitination of Nrf2 and decreases the Nrf2 protein level [102].
Halofuginone creates a chemosensitizing action on Nrf2-addicted cancer cells. Nrf2 protein level
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is decreased by halofuginone, which is consistent with a short half-life of the Nrf2 protein [106].
Development of anticancer immunity in cancer-bearing hosts has been revealed to be very active
for eliminating cancers since Nrf2 stimulation inhibits immunosuppressive procedures made by
myeloid-derived suppressor cell and apoptotic Treg cells [135]. Cancer therapy with Nrf2 inducers may
cause potential malignant development consequences of Nrf2 stimulation in cancer cells. Thankfully,
the effects of Nrf2 inducers on Nrf2-addicted cancer cells are estimated to be insignificant.

Inhibition of Nrf2 is an encouraging approach for the treatment of Nrf2-addicted cancers.
Nevertheless, using systemic Nrf2 inhibitors may have unwanted effects on cancer-bearing hosts,
seeing the essential roles of Nrf2 in cytoprotection. Finding novel therapeutic targets besides Nrf2 for
Nrf2-addicted cancers have been still under investigation.

7. Challenges in Nrf2 Inhibitor Drug Development

It is known that one of the chief pathways in charge for cell protection against OS is the
Nrf2/Keap1-signaling pathway [81]. Nrf2 has been commonly believed as a cytoprotective transcription
factor, and additionally, a tumor suppressor. Certainly, at lower levels, Nrf2 is able to remove
ROS, carcinogens [138]. However, there are various publications signifying that the stimulation of
Nrf2/Keap1-signaling pathway is not beneficial in all cancer types and stages [138,139]. Some studies
showed that, the augmented Nrf2 activity in several cancer types supports malignant cells in defending
against OS and anticancer drugs. In some cases, Nrf2 supports in avoiding apoptosis via stimulation
of cytoprotective genes [138]. Oncogenic character of Nrf2 at the early stages of cancer encourages the
researchers to design new inhibitors of Nrf2/Keap1-signaling pathway. Though, there are big numbers
of “reactive” indirect Nrf2 modulators, their pharmacological activity is not satisfactory and very
limited due to “off-target” side effects caused by the attack on cysteine residues of other important
cellular proteins [140].

The characterization of the crystal structure of Keap1 in complex with the Neh2 domain of Nrf2
may deliver chances to design molecules that specially and selectively interfere with the binding of
Keap1 and Nrf2 [141]. Nrf2 has a very short half-life, even after drug-induced stabilization. For this
reason, the most appropriate dosing schedule for a medicinal benefit needs to be conditional by
indirect indicators of its activation in the diseased organs [142]. There are some questions related
to the NRF2 inhibitors continue and must be resolved before more drugs are applied in anticancer
therapy. Nevertheless, challenges regarding target specificity, pharmacodynamic properties, efficacy
and safety remain.

8. Conclusions

Nrf2 has a significant part in cellular defense to OS and exogenous toxic materials, and it is
strictly associated to inflammatory reactions, respiratory system diseases, cardiovascular diseases, and
malignant tumors [47]. ROS elimination by the Nrf2-mediated induction of target genes could be one
way to explain the activity of chemo-preventive compounds, which are able to prevent or delay the
existence of malignancy [50].

OS is associated with cancer initiation and progression. The Nrf2 transcription factor is the main
regulator of antioxidant genes and has a critical role in regulating the metabolic pathways important
in cancer cells. Undeniably dissimilar results show that there are beneficial and harmful effects of
targeting Nrf2 in some cancer cells. Antioxidant agents may help explain the activity of Nrf2 in cancer,
as well as its power as a biomarker of cancer progression and therapy.

Both Nrf2 inducers and inhibitors could be beneficial in cancer treatment approaches. Nonetheless,
Nrf2 is able to modulate many systems possibly involved in the detoxification procedure of anticancer
drugs; its activation in cancer cells may cause chemo-resistance. The beneficial or disadvantageous
role of Nrf2 in cancer cells basically depends on the constricted control of its action [118]. Discovery,
development and improvement of Nrf2-centered approaches are critical and challenging tasks for the
treatments of cancer.



Int. J. Mol. Sci. 2019, 20, 2025 10 of 17

Author Contributions: All of the authors wrote and contributed to the final version of the manuscript.

Funding: The study has not received any funding.

Conflicts of Interest: There is no conflict of interest arising with this article.

Abbreviations

APAP N-acetyl-4-aminophenol
ARE Antioxidant response element
CREB cAMP Response element binding protein
CHD6 Chromo-ATPase/helicase DNA binding protein 6
CNC-bZip Cap’n’collar type of basic region leucine zipper factor family
DME Drug metabolizing enzymes
ER Estrogen receptors
GCL Glutamate-cysteine ligase
GSK-3β Glycogen synthase kinase 3
GSTs Glutathione S-transferases
HMOX1 Heme oxygenase-1
HO-1 Heme oxygenase
Keap1 Kelch like ECH associated protein
NQO-1 NADPH quinone oxidoreductase
Nrf2 Nuclear factor-erythroid 2 p45-related factor 2
OS Oxidative stress
PPAR-α Peroxisome proliferator activated receptor α
RAC Receptor-associated co-activator
RAR-α Retinoic acid receptor
RXR Retinoid X receptor alpha
RNS Reactive nitrogen species
ROS Reactive oxygen species
SFERR Short-form estrogen-related receptor
β-TrCP β-Transducin repeat-containing protein
Treg Regulatory T cells
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