An Update on Interleukin-9: From Its Cellular Source and Signal Transduction to Its Role in Immunopathogenesis
Abstract
:1. Introduction
2. IL-9 and Its Receptor
3. IL-9 Receptor Signaling
4. Cellular Sources of IL-9
5. Role of IL-9 in Inflammatory Condition and Immune Tolerance
5.1. Airway and Allergic Inflammation
5.2. Autoimmune Diseases
5.2.1. Lupus Nephritis
5.2.2. Inflammatory Bowel Diseases
5.2.3. Multiple Sclerosis
5.2.4. Myasthenia Gravis
5.2.5. Inflammatory Arthritis
5.3. Immune Tolerance
6. Outlook
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AHR | Airway Hyperresponsiveness |
BAL | Broncho Alveolar Lavage |
CCR | C-C Chemokine Receptor |
CD | Crohn’s Disease |
CIS | Cytokine-Inducible SH2-Containing Protein |
COPD | Chronic Obstructive Pulmonary Disease |
DSS | Dextran Sulfate Sodium |
EAE | Experimental Autoimmune Encephalomyelitis |
EIB | Exercise-Induced Bronchoconstriction |
IRS | Insulin Receptor Substrate |
IBD | Inflammatory Bowel Diseases |
JAK | Janus Kinases |
MEA | Mast Cell Growth Enhancing Activity |
MG | Myasthenia Gravis |
MS | Multiple Sclerosis |
NKT | Natural Killer T Cells |
PDK | PI-3K Dependent KINASE |
PI-3K | Phosphatidylinositol-3 KINASE |
PIAS | Protein Inhibitors of Activated STATs |
PTB | Protein Tyrosine Binding |
RA | Rheumatoid Arthritis |
RR | Relapsing Remitting (RR) |
SH2 | Src Homology 2 |
SOCS | Suppressors Of Cytokine Signaling |
SLE | Systemic Lupus Erythematous |
STAT | Signal Transducer and Activator of Transcription |
TCGF | T Cell Growth Factor |
TNBS | Tri Nitro Benzene Sulfonic |
UC | Ulcerative Colitis |
References
- Uyttenhove, C.; Simpson, R.J.; Van Snick, J. Functional and structural characterization of P40, a mouse glycoprotein with T-cell growth factor activity. Proc. Natl. Acad. Sci. USA 1988, 85, 6934–6938. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, E.; Bopp, T. Discovery and initial characterization of Th9 cells: The early years. Semin. Immunopathol. 2017, 39, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, E.; Van Brandwijk, R.; Van Snick, J.; Siebold, B.; Rüde, E. TCGF III/P40 is produced by naive murine CD4+ T cells but is not a general T cell growth factor. Eur. J. Immunol. 1989, 19, 2167–2170. [Google Scholar] [CrossRef] [PubMed]
- Van Snick, J.; Goethals, A.; Renauld, J.C.; Van Roost, E.; Uyttenhove, C.; Rubira, M.R.; Moritz, R.L.; Simpson, R.J. Cloning and characterization of a cDNA for a new mouse T cell growth factor (P40). J. Exp. Med. 1989, 169, 363–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hultner, L.; Moeller, J.; Schmitt, E.; Jäger, G.; Reisbach, G.; Ring, J.; Dörmer, P. Thiol-sensitive mast cell lines derived from mouse bone marrow respond to a mast cell growth-enhancing activity different from both IL-3 and IL-4. J. Immunol. 1989, 142, 3440–3446. [Google Scholar] [PubMed]
- Moeller, J.; Hultner, L.; Schmitt, E.; Dormer, P. Partial purification of a mast cell growth-enhancing activity and its separation from IL-3 and IL-4. J. Immunol. 1989, 142, 3447–3451. [Google Scholar] [PubMed]
- Hültner, L.; Druez, C.; Moeller, J.; Uyttenhove, C.; Schmitt, E.; Rüde, E.; Dörmer, P.; Van Snick, J. Mast cell growth-enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9). Eur. J. Immunol. 1990, 20, 1413–1416. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.C.; Ricciardi, S.; Ciarletta, A.; Calvetti, J.; Kelleher, K.; Clark, S.C. Expression cloning of cDNA encoding a novel human hematopoietic growth factor: Human homologue of murine T-cell growth factor P40. Blood 1989, 74, 1880–1884. [Google Scholar]
- Sonoda, Y.; Maekawa, T.; Kuzuyama, Y.; Clark, S.C.; Abe, T. Human interleukin-9 supports formation of a subpopulation of erythroid bursts that are responsive to interleukin-3. Am. J. Hematol. 1992, 41, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.E.; Morrissey, P.J.; Mochizuki, D.Y.; de Vries, P.; Anderson, D.; Cosman, D.; Boswell, H.S.; Cooper, S.; Grabstein, K.H.; Broxmeyer, H.E. T-cell growth factor P40 promotes the proliferation of myeloid cell lines and enhances erythroid burst formation by normal murine bone marrow cells in vitro. Blood 1990, 76, 906–911. [Google Scholar] [PubMed]
- Donahue, R.E.; Yang, Y.C.; Clark, S.C. Human P40 T-cell Growth Factor (Interleukin-9) Supports Erythroid Colony Formation. Blood 1990, 75, 2271–2275. [Google Scholar]
- Holbrook, S.T.; Ohls, R.K.; Schibler, K.R.; Yang, Y.C.; Christensen, R.D. Effect of interleukin-9 on clonogenic maturation and cell-cycle status of fetal and adult hematopoietic progenitors. Blood 1991, 77, 2129–2134. [Google Scholar]
- Mock, B.A.; Krall, M.; Kozak, C.A.; Nesbitt, M.N.; McBride, O.W.; Renauld, J.C.; Van Snick, J. IL9 maps to mouse chromosome 13 and human chromosome 5. Immunogenetics 1990, 31, 265–270. [Google Scholar] [CrossRef]
- Modi, W.S.; Pollock, D.D.; Mock, B.A.; Banner, C.; Renauld, J.C.; Van Snick, J. Regional localization of the human glutaminase (GLS) and interleukin-9 (IL9) genes by insitu hybridization. Cytogenet. Cell Genet. 1991, 57, 114–116. [Google Scholar] [CrossRef]
- Simpson, R.J.; Moritz, R.L.; Rubira, M.R.; Gorman, J.J.; Van Snick, J. Complete amino acid sequence of a new murine T-cell growth factor P40. Eur. J. Biochem. 1989, 183, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Druez, C.; Coulie, P.; Uyttenhove, C.; Van Snick, J. Functional and biochemical characterization of mouse P40/IL-9 receptors. J. Immunol. 1990, 145, 2494–2499. [Google Scholar] [PubMed]
- Demoulin, J.B.; Renauld, J.C. Signalling by cytokines interacting with the interleukin-2 receptor gamma chain. Cytokines Cell. Mol. Ther. 1998, 4, 243–256. [Google Scholar] [PubMed]
- Renauld, J.C.; Druez, C.; Kermouni, A.; Houssiau, F.; Uyttenhove, C.; Van Roost, E.; Van Snick, J. Expression cloning of the murine and human interleukin 9 receptor cDNAs. Proc. Natl. Acad. Sci. USA 1992, 89, 5690–5694. [Google Scholar] [CrossRef]
- Kimura, Y.; Takeshita, T.; Kondo, M.; Ishii, N.; Nakamura, M.; Van Snick, J.; Sugamura, K. Sharing of the IL-2 receptor gamma chain with the functional IL-9 receptor complex. Int. Immunol. 1995, 7, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Malka, Y.; Hornakova, T.; Royer, Y.; Knoops, L.; Renauld, J.C.; Constantinescu, S.N.; Henis, Y.I. Ligand-independent homomeric and heteromeric complexes between interleukin-2 or -9 receptor subunits and the gamma chain. J. Biol. Chem. 2008, 283, 33569–33577. [Google Scholar] [CrossRef]
- Knoops, L.; Renauld, J.C. IL-9 and its receptor: From signal transduction to tumorigenesis. Growth Factors 2004, 22, 207–215. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Sun, H.B.; Tsang, M.L.; McMahel, J.; Grigsby, S.; Yin, T.; Yang, Y.C. Critical cytoplasmic domains of human interleukin-9 receptor α chain in interleukin-9-mediated cell proliferation and signal transduction. J. Biol. Chem. 1997, 272, 21334–21340. [Google Scholar] [CrossRef]
- Demoulin, J.B.; Uyttenhove, C.; Van Roost, E.; de Lestre, B.; Donckers, D.; Van Snick, J.; Renauld, J.C. A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol. Cell. Biol. 1996, 16, 4710–4716. [Google Scholar] [CrossRef]
- Ihle, J.N.; Kerr, I.M. Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet. 1995, 11, 69–74. [Google Scholar] [CrossRef]
- Bianchi, M.; Meng, C.; Ivashkiv, L.B. Inhibition of IL-2-induced Jak-STAT signaling by glucocorticoids. Proc. Natl. Acad. Sci. USA 2000, 97, 9573–9578. [Google Scholar] [CrossRef] [Green Version]
- Demoulin, J.B.; Grasso, L.; Atkins, J.M.; Stevens, M.; Louahed, J.; Levitt, R.C.; Nicolaides, N.C.; Renauld, J.C. Role of insulin receptor substrate-2 in interleukin-9-dependent proliferation. FEBS Lett. 2000, 482, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Yin, T.; Keller, S.R.; Quelle, F.W.; Witthuhn, B.A.; Tsang, M.L.; Lienhard, G.E.; Ihle, J.N.; Yang, Y.C. Interleukin-9 induces tyrosine phosphorylation of insulin receptor substrate-1 via JAK tyrosine kinases. J. Biol. Chem. 1995, 270, 20497–20502. [Google Scholar] [CrossRef]
- Myers, M.G., Jr.; Backer, J.M.; Sun, X.J.; Shoelson, S.; Hu, P.; Schlessinger, J.; Yoakim, M.; Schaffhausen, B.; White, M.F. IRS-1 activates phosphatidylinositol 3’-kinase by associating with src homology 2 domains of p85. Proc. Natl. Acad. Sci. USA 1992, 89, 10350–10354. [Google Scholar] [CrossRef]
- Demoulin, J.B.; Louahed, J.; Dumoutier, L.; Stevens, M.; Renauld, J.C. MAP kinase activation by interleukin-9 in lymphoid and mast cell lines. Oncogene 2003, 22, 1763–1770. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Yin, T.; Wang, X.Y.; Uchida, T.; Chung, J.; White, M.F.; Yang, Y.C. Specificity of interleukin-2 receptor gamma chain superfamily cytokines is mediated by insulin receptor substrate dependent pathway. J. Biol. Chem. 2002, 277, 8091–8098. [Google Scholar] [CrossRef]
- Hilton, D.J. Negative regulators of cytokine signal transduction. Cell. Mol. Life Sci. 1999, 55, 1568–1577. [Google Scholar] [CrossRef] [PubMed]
- Lejeune, D.; Demoulin, J.B.; Renauld, J.C. Interleukin 9 induces expression of three cytokine signal inhibitors: Cytokineinducible SH2-containing protein, suppressor of cytokine signalling (SOCS)-2 and SOCS-3, but only SOCS-3 overexpression suppresses interleukin 9 signalling. Biochem. J. 2001, 353, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Imbert, V.; Reichenbach, P.; Renauld, J.C. Duration of STAT5 activation influences the response of interleukin-2 receptor alpha gene to different cytokines. Eur. Cytokine Netw. 1999, 10, 71–78. [Google Scholar]
- Yen, C.H.; Yang, Y.C.; Ruscetti, S.K.; Kirken, R.A.; Dai, R.M.; Li, C.C. Involvement of the ubiquitin-proteasome pathway in the degradation of nontyrosine kinase-type cytokine receptors of IL-9, IL-2, and erythropoietin. J. Immunol. 2000, 165, 6372–6380. [Google Scholar] [CrossRef] [PubMed]
- Else, K.J.; Hültner, L.; Grencis, R.K. Cellular immune responses to the murine nematode parasite Trichuris muris. II. Differential induction of TH-cell subsets in resistant versus susceptible mice. Immunology 1992, 75, 232–237. [Google Scholar]
- Gessner, A.; Blum, H.; Röllinghoff, M. Differential regulation of IL-9-expression after infection with Leishmania major in susceptible and resistant mice. Immunobiology 1993, 189, 419–435. [Google Scholar] [CrossRef]
- Dardalhon, V.; Awasthi, A.; Kwon, H.; Galileos, G.; Gao, W.; Sobel, R.A.; Mitsdoerffer, M.; Strom, T.B.; Elyaman, W.; Ho, I.-C.; et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat. Immunol. 2008, 9, 1347–1355. [Google Scholar] [CrossRef]
- Veldhoen, M.; Uyttenhove, C.; van Snick, J.; Helmby, H.; Westendorf, A.; Buer, J.; Martin, B.; Wilhelm, C.; Stockinger, B. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 2008, 9, 1341–1346. [Google Scholar] [CrossRef]
- Kaplan, M.H.; Hufford, M.M.; Olson, M.R. The development and in vivo function of T helper 9 cells. Nat. Rev. Immunol. 2015, 15, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.C.; Sehra, S.; Goswami, R.; Yao, W.; Yu, Q.; Stritesky, G.L.; Jabeen, R.; McKinley, C.; Ahyi, A.N.; Han, L.; et al. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat. Immunol. 2010, 11, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Nowak, E.C.; Weaver, C.T.; Turner, H.; Begum-Haque, S.; Becher, B.; Schreiner, B.; Coyle, A.J.; Kasper, L.H.; Noelle, R.J. IL-9 as a mediator of Th17-driven inflammatory disease. J. Exp. Med. 2009, 206, 1653–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elyaman, W.; Bradshaw, E.M.; Uyttenhove, C.; Dardalhon, V.; Awasthi, A.; Imitola, J.; Bettelli, E.; Oukka, M.; van Snick, J.; Renauld, J.C.; et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc. Natl. Acad. Sci. USA 2009, 106, 12885–12890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beriou, G.; Bradshaw, E.M.; Lozano, E.; Costantino, C.M.; Hastings, W.D.; Orban, T.; Elyaman, W.; Khoury, S.J.; Kuchroo, V.K.; Baecher-Allan, C.; et al. TGF-beta induces IL-9 production from human Th17 cells. J. Immunol. 2010, 185, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Noelle, R.J.; Nowak, E.C. Cellular sources and immune functions of interleukin-9. Nat. Rev. Immunol. 2010, 10, 683–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eller, K.; Wolf, D.; Huber, J.M.; Metz, M.; Mayer, G.; McKenzie, A.N.; Maurer, M.; Rosenkranz, A.R.; Wolf, A.M. IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-induced immune suppression. J. Immunol. 2011, 186, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Hong, B.; Li, H.; Zheng, Y.; Zhang, M.; Wang, S.; Qian, J.; Yi, Q. Tumor-specific IL-9-producing CD8+ Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers. Proc. Natl. Acad. Sci. USA 2014, 111, 2265–2270. [Google Scholar] [CrossRef] [PubMed]
- Stassen, M.; Arnold, M.; Hültner, L.; Müller, C.; Neudörfl, C.; Reineke, T.; Schmitt, E. Murine bone marrow-derived mast cells as potent producers of IL-9: Costimulatory function of IL-10 and kit ligand in the presence of IL-1. J. Immunol. 2000, 164, 5549–5555. [Google Scholar] [CrossRef] [PubMed]
- Gounni, A.S.; Nutku, E.; Koussih, L.; Aris, F.; Louahed, J.; Levitt, R.C.; Nicolaides, N.C.; Hamid, Q. IL-9 expression by human eosinophils: Regulation by IL-1beta and TNF-alpha. J. Allergy Clin. Immunol. 2000, 106, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zhu, L.; Tao, Y.; Sun, H.X.; Li, Y.; Wang, P.; Hou, Y.; Zhao, Y.; Zhang, X.; Zhang, L.; et al. Characterization and allergic role of IL-33-induced neutrophil polarization. Cell. Mol. Immunol. 2018, 15, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.E.; Morrison, P.J.; Wilhelm, C.; Wilson, M.; Ahlfors, H.; Renauld, J.C.; Panzer, U.; Helmby, H.; Stockinger, B. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J. Exp. Med. 2013, 210, 2951–2965. [Google Scholar] [CrossRef]
- Lauwerys, B.R.; Garot, N.; Renauld, J.C.; Houssiau, F.A. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J. Immunol. 2000, 165, 1847–1853. [Google Scholar] [CrossRef]
- Jones, T.G.; Hallgren, J.; Humbles, A.; Burwell, T.; Finkelman, F.D.; Alcaide, P.; Austen, K.F.; Gurish, M.F. Antigen-induced increases in pulmonary mast cell progenitor numbers depend on IL-9 and CD1d-restricted NKT cells. J. Immunol. 2009, 183, 5251–5260. [Google Scholar] [CrossRef] [PubMed]
- Nagato, T.; Kobayashi, H.; Kishibe, K.; Takahara, M.; Ogino, T.; Ishii, H.; Oikawa, K.; Aoki, N.; Sato, K.; Kimura, S.; et al. Expression of interleukin-9 in nasal natural killer/T-cell lymphoma cell lines and patients. Clin. Cancer Res. 2005, 11, 8250–8257. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Wang, Y.; Tao, C.; Wang, Z.; Yang, J.; Chen, Z.; Zou, Z.; Li, M.; Liu, A.; Jia, C.; et al. Osteoblasts support megakaryopoiesis through production of interleukin-9. Blood 2017, 129, 3196–3209. [Google Scholar] [CrossRef] [PubMed]
- Erpenbeck, V.J.; Hohlfeld, J.M.; Discher, M.; Krentel, H.; Hagenberg, A.; Braun, A.; Krug, N. Increased expression of interleukin-9 messenger RNA after segmental allergen challenge in allergic asthmatics. Chest 2003, 123 (Suppl. 3), 370. [Google Scholar] [CrossRef]
- Shimbara, A.; Christodoulopoulos, P.; Soussi-Gounni, A.; Olivenstein, R.; Nakamura, Y.; Levitt, R.C.; Nicolaides, N.C.; Holroyd, K.J.; Tsicopoulos, A.; Lafitte, J.J.; et al. IL-9 and its receptor in allergic and nonallergic lung disease: Increased expression in asthma. J. Allergy Clin. Immunol. 2000, 105, 108–115. [Google Scholar] [CrossRef]
- Sherkat, R.; Yazdani, R.; Ganjalikhani Hakemi, M.; Homayouni, V.; Farahani, R.; Hosseini, M.; Rezaei, A. Innate lymphoid cells and cytokines of the novel subtypes of helper T cells in asthma. Asia Pac. Allergy 2014, 4, 212–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoppenot, D.; Malakauskas, K.; Lavinskienė, S.; Bajoriūnienė, I.; Kalinauskaitė, V.; Sakalauskas, R. Peripheral blood Th9 cells and eosinophil apoptosis in asthma patients. Medicina 2015, 51, 10–17. [Google Scholar] [CrossRef]
- Erpenbeck, V.J.; Hohlfeld, J.M.; Volkmann, B.; Hagenberg, A.; Geldmacher, H.; Braun, A.; Krug, N. Segmental allergen challenge in patients with atopic asthma leads to increased IL-9 expression in bronchoalveolar lavage fluid lymphocytes. J. Allergy Clin. Immunol. 2003, 111, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Temann, U.A.; Geba, G.P.; Rankin, J.A.; Flavell, R.A. Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J. Exp. Med. 1998, 188, 1307–1320. [Google Scholar] [CrossRef] [PubMed]
- Levitt, R.C.; McLane, M.P.; MacDonald, D.; Ferrante, V.; Weiss, C.; Zhou, T.; Holroyd, K.J.; Nicolaides, N.C. IL-9 pathway in asthma: New therapeutic targets for allergic inflammatory disorders. J. Allergy Clin. Immunol. 1999, 103, S485–S491. [Google Scholar] [CrossRef]
- Zou, S.C.; Pang, L.L.; Mao, Q.S.; Wu, S.Y.; Xiao, Q.F. IL-9 exacerbates the development of chronic obstructive pulmonary disease through oxidative stress. Eur Rev. Med. Pharmacol. Sci. 2018, 22, 8877–8884. [Google Scholar]
- Nouri-Aria, K.T.; Pilette, C.; Jacobson, M.R.; Watanabe, H.; Durham, S.R. IL-9 and c-Kit+ mast cells in allergic rhinitis during seasonal allergen exposure: Effect of immunotherapy. J. Allergy Clin. Immunol. 2005, 116, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Steenwinckel, V.; Louahed, J.; Lemaire, M.M.; Sommereyns, C.; Warnier, G.; McKenzie, A.; Brombacher, F.; Van Snick, J.; Renauld, J.C. IL-9 promotes IL-13-dependent paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa. J. Immunol. 2009, 182, 4737–4743. [Google Scholar] [CrossRef] [PubMed]
- Brough, H.A.; Cousins, D.J.; Munteanu, A.; Wong, Y.F.; Sudra, A.; Makinson, K.; Stephens, A.C.; Arno, M.; Ciortuz, L.; Lack, G.; et al. IL-9 is a key component of memory TH cell peanut-specific responses from children with peanut allergy. J. Allergy Clin. Immunol. 2014, 134, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- McLane, M.P.; Tepper, J.; Weiss, C.; Tomer, Y.; Tobin, P.; Tumas, D.; Zhou, Y.; Haczku, A.; Nicolaides, N.C.; Levitt, R.C. Lung delivery of blocking IL9 antibody inhibits airway hyperresponsiveness, Bal eosinophilia, mucin production, serum IgE elevation to natural antigens in a murine model of asthma [abstract]. Am. J. Respir. Crit. Care Med. 2000, 161, A593. [Google Scholar]
- Kung, T.T.; Crawley, Y.; Luo, B.; Minnicozzi, M.; Jones, H.; Egan, R.W.; Kreutner, W.; Chapman, R.W. Effect of anti-mIL-9 antibody on the development of pulmonary eosinophilia and airway hyperresponsiveness in allergic mice [abstract]. Am. J. Respir. Crit. Care Med. 2000, 161, A844–A864. [Google Scholar]
- Parker, J.M.; Oh, C.K.; LaForce, C.; Miller, S.D.; Pearlman, D.S.; Le, C.; Robbie, G.J.; White, W.I.; White, B.; Molfino, N.A. MEDI-528 Clinical Trials Group: Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulm. Med. 2011, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.K.; Leigh, R.; McLaurin, K.K.; Kim, K.; Hultquist, M.; Molfino, N.A. A randomized, controlled trial to evaluate the effect of an anti-interleukin-9 monoclonal antibody in adults with uncontrolled asthma. Respir. Res. 2013, 14, 93. [Google Scholar] [CrossRef]
- Lerner, A.; Jeremias, P.; Matthias, T. The world incidence and prevalence of autoimmune diseases is increasing. Int. J. Celiac Dis. 2015, 3, 151–155. [Google Scholar] [CrossRef]
- Ouyang, H.; Shi, Y.; Liu, Z.; Feng, S.; Li, L.; Su, N.; Lu, Y.; Kong, S. Increased interleukin 9 and CD4+IL-9+ T cells in patients with systemic lupus erythematosus. Mol. Med. Rep. 2013, 7, 1031–1037. [Google Scholar] [CrossRef]
- Dantas, A.T.; Marques, C.D.; da Rocha Junior, L.F.; Cavalcanti, M.B.; Gonçalves, S.M.; Cardoso, P.R.; Mariz Hde, A.; Rego, M.J.; Duarte, A.L.; Pitta Ida, R.; et al. Increased Serum Interleukin-9 Levels in Rheumatoid Arthritis and Systemic Lupus Erythematosus: Pathogenic Role or Just an Epiphenomenon? Dis. Markers 2015, 2015, 519638. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, Q.; Yang, X.; Li, M. Interleukin-9 Is Associated with Elevated Anti-Double-Stranded DNA Antibodies in Lupus-Prone Mice. Mol. Med. 2015, 21, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Nalleweg, N.; Chiriac, M.T.; Podstawa, E.; Lehmann, C.; Rau, T.T.; Atreya, R.; Krauss, E.; Hundorfean, G.; Fichtner-Feigl, S.; Hartmann, A.; et al. IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut 2015, 64, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, K.; Hwang, Y.; Nikolaev, A.; Atreya, R.; Dornhoff, H.; Steiner, S.; Lehr, H.A.; Wirtz, S.; Vieth, M.; Waisman, A.; et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol. 2014, 15, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, K.; McKenzie, A.N.; Neurath, M.F.; Weigmann, B. IL-9 regulates intestinal barrier function in experimental T cell-mediated colitis. Tissue Barriers 2015, 3, e983777. [Google Scholar] [CrossRef] [Green Version]
- Yuan, A.; Yang, H.; Qi, H.; Cui, J.; Hua, W.; Li, C.; Pang, Z.; Zheng, W.; Cui, G. IL-9 antibody injection suppresses the inflammation in colitis mice. Biochem. Biophys. Res. Commun. 2015, 468, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Chung, D.H. IL-9-producing invariant NKT cells protect against DSS-induced colitis in an IL-4-dependent manner. Mucosal Immunol. 2013, 6, 347–357. [Google Scholar] [CrossRef]
- Feng, T.; Chen, B.; Li, L.; Huang, S.; Ben-Horin, S.; Qiu, Y.; Feng, R.; Li, M.; Mao, R.; He, Y.; et al. Serum Interleukin 9 Levels Predict Disease Severity and the Clinical Efficacy of Infliximab in Patients with Crohn’s Disease. Inflamm. Bowel Dis. 2017, 23, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Nourbakhsh, B.; Cullimore, M.; Zhang, G.X.; Rostami, A. IL-9 is important for T-cell activation and differentiation in autoimmune inflammation of the central nervous system. Eur. J. Immunol. 2011, 41, 2197–2206. [Google Scholar] [CrossRef] [PubMed]
- Ruocco, G.; Rossi, S.; Motta, C.; Macchiarulo, G.; Barbieri, F.; De Bardi, M.; Borsellino, G.; Finardi, A.; Grasso, M.G.; Ruggieri, S.; et al. T helper 9 cells induced by plasmacytoid dendritic cells regulate interleukin-17 in multiple sclerosis. Clin. Sci. 2015, 129, 291–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, T.; Nizri, E.; Irony-Tur-Sinai, M.; Hamra-Amitay, Y.; Wirguin, I. Acetylcholinesterase inhibitors and cholinergic modulation in myasthenia gravis and neuroinflammation. J. Neuroimmunol. 2008, 202, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Christadoss, P.; Poussin, M.; Deng, C. Animal models of myasthenia gravis. Clin. Immunol. 2000, 94, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Kong, Q.; Xie, X.; Wang, J.; Li, N.; Liu, Y.; Sun, B.; Li, Y.; Wang, G.; Li, W.; et al. Neutralization of interleukin-9 ameliorates symptoms of experimental autoimmune myasthenia gravis in rats by decreasing effector T cells and altering humoral responses. Immunology 2014, 143, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Ciccia, F.; Guggino, G.; Rizzo, A.; Manzo, A.; Vitolo, B.; La Manna, M.P.; Giardina, G.; Sireci, G.; Dieli, F.; Montecucco, C.M.; et al. Potential involvement of IL-9 and Th9 cells in the pathogenesis of rheumatoid arthritis. Rheumatology 2015, 54, 2264–2272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, K.; Kumar, U.; Das, S.; Chaudhuri, J.; Kumar, P.; Kanjilal, M.; Ghosh, P.; Sircar, G.; Basyal, R.K.; Kanga, U.; et al. Synovial IL-9 facilitates neutrophil survival, function and differentiation of Th17 cells in rheumatoid arthritis. Arthritis Res. Ther. 2018, 20, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauber, S.; Luber, M.; Weber, S.; Maul, L.; Soare, A.; Wohlfahrt, T.; Lin, N.Y.; Dietel, K.; Bozec, A.; Herrmann, M.; et al. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat. Med. 2017, 23, 938–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, T.P.; Schon, M.P.; Wallbrecht, K.; Gruber-Wackernagel, A.; Wang, X.J.; Wolf, P. Involvement of IL-9 in Th17-associated inflammation and angiogenesis of psoriasis. PLoS ONE 2013, 8, e51752. [Google Scholar] [CrossRef]
- Ciccia, F.; Guggino, G.; Ferrante, A.; Raimondo, S.; Bignone, R.; Rodolico, V.; Peralta, S.; Van Tok, M.; Cannizzaro, A.; Chinocca, C.; et al. Interleukin-9 Overexpression and Th9 Polarization Characterize the Inflamed Gut, the Synovial Tissue, and the Peripheral Blood of Patients With Psoriatic Arthritis. Arthritis Rheumatol. 2016, 68, 1922–1931. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.F.; Lind, E.F.; Gondek, D.C.; Bennett, K.A.; Gleeson, M.W.; Pino-Lagos, K.; Scott, Z.A.; Coyle, A.J.; Reed, J.L.; Van Snick, J.; et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 2006, 442, 997–1002. [Google Scholar] [CrossRef]
- Fábrega, E.; López-Hoyos, M.; San Segundo, D.; Casafont, F.; Moraleja, I.; Sampedro, B.; Pons-Romero, F. Interleukin-9 in stable liver transplant recipients. Transpl. Proc. 2012, 44, 1536–1538. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Tanaka, M.; Kasahara, A.; Hara, T.; Gotoh, Y.; Fujita, N.; Fukui, T.; Masuzawa, T. Age-Related Changes of Serum Soluble Interleukin 9 Receptor (sIL-9Rα) inHealthy Subjects. Indian J. Clin. Biochem. 2012, 27, 400–404. [Google Scholar] [CrossRef] [PubMed]
Inflammatory Conditions | Expression of IL-9 or IL-9R on Patient Samples | Animal Studies | References |
---|---|---|---|
Asthma and Allergy | Increased IL-9 levels in lungs, sputum and sera of asthmatic patients. Elevated expression of IL-9R in the lungs of asthmatic patients. High levels of IL-9 are also observed in patients with allergic rhinitis and peanut allergy. | Overexpression of IL-9 in the lungs of transgenic mice, systemic expression of IL-9 in transgenic animal, and instillation of recombinant IL-9 in the lungs of animals resulted in histopathological changes of lung characteristic of human asthma. Neutralizing IL-9 reduced the allergic inflammation in animal models | [55,56,57,58,59,60,61,63,64,65] |
COPD | - | IL-9 aggravates the lung injury in a mouse model of COPD by increasing inflammatory and oxidative stress in a STAT3 dependent manner. | [62] |
Systemic lupus erythematosus (SLE) | Higher levels of IL-9 in the serum of SLE patient compared to healthy controls. | In MRL/lpr mice treatment with a neutralizing anti-IL-9 antibody alleviated lupus nephritis. | [71,72,73] |
Inflammatory bowel diseases (IBDs) | Higher expression of Il9 in mucosal biopsies from patients with ulcerative colitis (UC) as compared to healthy controls. In patients with UC, expression of Il9 mRNA correlated with the activity of the disease, as assessed by endoscopy (Mayo score) More IL-9-expressing cells were observed in patients with Crohn’s disease (CD) than in control patients. IL-9R was overexpressed on gut epithelial cells in patients with UC or CD | IL-9 deficiency or neutralization protected mice from the development of acute colitis. IL-9-deficient mice were almost completely protected from TNBS induced colitis model. Contradictory reports in DSS induced colitis animal model. In one study, anti-IL-9 antibody injection for two weeks reduced the severity of inflammation in DSS induced colitis mice. In another study, IL-9 secreted from invariant natural killer T cells resulted in resolution in intestinal inflammation through suppression of IFN-γ and IL-17A, but enhancement of IL-10 and TGF-β. | [74,75,76,77,78] |
Multiple Sclerosis | No significant difference in the IL-9 level in the cerebrospinal fluid of relapsing remitting (RR) MS patients compared to healthy individuals | Contradictory observations, in one study IL-9 neutralization and IL-9R deficiency attenuated the disease. In another study, IL-9R KO mice exhibited a more severe course of experimental autoimmune encephalomyelitis (EAE). | [41,42,80,81] |
Myasthenia gravis | - | Neutralization of IL-9 improved disease in experimental autoimmune myasthenia gravis (EAMG). | [84] |
Rheumatoid Arthritis (RA) | In RA patients, increased expression of IL-9 and IL-9R is observed in the synovial tissue, which correlates with the degree of tissue inflammation | In animal model of RA, IL-9-producing type 2 innate lymphoid cells (ILC2s) play a role in resolution of chronic inflammation. | [85,86,87] |
Psoriasis | Increased expression of IL-9R and high frequency of Th9 is observed in skin lesions of patient | In an animal model of psoriasis, IL-9 promotes skin inflammation. | [88,89] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, S.; Kubatzky, K.F.; Mitra, D.K. An Update on Interleukin-9: From Its Cellular Source and Signal Transduction to Its Role in Immunopathogenesis. Int. J. Mol. Sci. 2019, 20, 2113. https://doi.org/10.3390/ijms20092113
Chakraborty S, Kubatzky KF, Mitra DK. An Update on Interleukin-9: From Its Cellular Source and Signal Transduction to Its Role in Immunopathogenesis. International Journal of Molecular Sciences. 2019; 20(9):2113. https://doi.org/10.3390/ijms20092113
Chicago/Turabian StyleChakraborty, Sushmita, Katharina F. Kubatzky, and Dipendra Kumar Mitra. 2019. "An Update on Interleukin-9: From Its Cellular Source and Signal Transduction to Its Role in Immunopathogenesis" International Journal of Molecular Sciences 20, no. 9: 2113. https://doi.org/10.3390/ijms20092113
APA StyleChakraborty, S., Kubatzky, K. F., & Mitra, D. K. (2019). An Update on Interleukin-9: From Its Cellular Source and Signal Transduction to Its Role in Immunopathogenesis. International Journal of Molecular Sciences, 20(9), 2113. https://doi.org/10.3390/ijms20092113