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Abstract: Since imatinib (Glivec or Gleevec) has been used to target the BCR-ABL fusion protein,
chronic myeloid leukemia (CML) has become a manageable chronic disease with long-term survival.
However, 15%–20% of CML patients ultimately develop resistance to imatinib and then progress to
an accelerated phase and eventually to a blast crisis, limiting treatment options and resulting in a
poor survival rate. Thus, we investigated whether histone deacetylase inhibitors (HDACis) could be
used as a potential anticancer therapy for imatinib-resistant CML (IR-CML) patients. By applying a
noninvasive apoptosis detection sensor (NIADS), we found that panobinostat significantly enhanced
cell apoptosis in K562 cells. A further investigation showed that panobinostat induced apoptosis
in both K562 and imatinib-resistant K562 (IR-K562) cells mainly via H3 and H4 histone acetylation,
whereas panobinostat targeted cancer stem cells (CSCs) in IR-K562 cells. Using CRISPR/Cas9 genomic
editing, we found that HDAC1 and HDAC2 knockout cells significantly induced cell apoptosis,
indicating that the regulation of HDAC1 and HDAC2 is extremely important in maintaining K562 cell
survival. All information in this study indicates that regulating HDAC activity provides therapeutic
benefits against CML and IR-CML in the clinic.
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1. Introduction

Chronic myeloid leukemia (CML) is a hematological disease with reciprocal translocation between
the break-point cluster (BCR) gene on chromosome 22 and the Abelson leukemia virus oncogene
(ABL) gene on chromosome 9, also termed the Philadelphia (Ph) chromosome. The BCR-ABL fusion
protein constitutively activates tyrosine kinase activity and induces many downstream signaling
pathways, such as the AKT and mitogen-activated protein kinase (MAPK) pathways, contributing to
cell proliferation and resistance to cell apoptosis and causing the disruption of genetic stability [1].
With the discovery of effective tyrosine kinase inhibitors (TKIs), such as imatinib (Glivec or Gleevec) and
its derivatives dasatinib, nilotinib, bosutinib, and ponatinib, CML has become a manageable chronic
disease with a long-term survival exceeding 85% [2]. The inhibitory mechanism of imatinib mesylate
involves binding to the ATP-binding pocket of BCR-ABL, preventing substrate phosphorylation and
activation from BCR-ABL. However, in the clinic, imatinib resistance has become a major problem
for CML treatment, mainly as a consequence of BCR-ABL mutations, BCR-ABL overexpression and
other BCR-ABL-independent pathways. Accordingly, approximately 15%–20% of these CML patients
ultimately develop resistance to imatinib and then progress to an accelerated phase and eventually to
a blast crisis [3]. Thus, overcoming imatinib resistance has attracted increased attention during the
treatment of CML.

The histone deacetylase (HDAC) family is a group of proteins that maintains the
acetylation/deacetylation balance of histones and nonhistone proteins, resulting in epigenetic regulation
of gene expression by changing the structure of chromatin and modulating the accessibility of
transcription factors to their target DNA sequences [4]. Deacetylation of histones causes chromatin
condensation, while decondensation is caused by increased acetylation [5], implying that this DNA
remodeling might result in decreased or increased gene transcription for cell survival or cell death.
Some studies have noted that histone deacetylase inhibitors (HDACis) transcriptionally activate
CDKN1A (known as p21) and force cells to undergo cell cycle arrest and apoptosis [6]. In the
clinic, five FDA-approved HDACis have been used against peripheral T-cell lymphoma, multiple
myeloma or even bipolar disorders [7]. For other chemotherapies, HDACis provide optimal benefits in
combinatory schedules, showing high therapeutic efficacy on cancer therapy, such as triple negative
breast cancer [8,9] and acute myeloid leukemia [10].

Epigenetic therapy has been proven to be a successful approach for the treatment of several
human malignancies, including liver [11], blood [12,13], lung [14] and colon [15] cancers. In the present
study, we investigated whether FDA-approved HDACi drugs (panobinostat, belinostat, vorinostat,
and valproic acid) show anticancer activity on both CML (K562) and imatinib-resistant CML (IR-K562)
cells. These experiments helped us to reveal the potent mechanism that induced drug resistance in
CML. Furthermore, we developed a powerful tool combining lentivirus transfection and a noninvasive
apoptosis detection sensor (NIADS), which has the advantages of being easy to handle and allowing
quantitative and kinetic analyses of apoptotic cell death [8]. Here, we will not only use this platform to
detect HDAC-induced apoptosis through in vivo image system (IVIS) observation but also further
apply NIADS detection to flow cytometry measurements for individual cell analysis. This strategy will
largely improve the detection of this live-cell-based apoptosis detection platform. Furthermore, using
genomic editing of clustered regularly interspaced short palindromic repeat (CRISPR/Cas9) targeting
HDAC genes, we tried to elucidate the regulatory mechanism behind epigenetic gene alternation and
prevent side effects in future HDACi drug design. In this study, using HDAC inhibitors that induce
selective chromatin remodeling events to alter specific gene expression patterns with accurate dosage
settings and specificity will trigger a new wave of drugs with refined strategies for the treatment of
human CML or IR CML malignancies.
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2. Results

2.1. FDA-Approved HDACi-Induced K562 Cell Apoptosis

CML (K562) cells were treated with different concentrations of four FDA-approved clinical HDACi
drugs (panobinostat, belinostat, vorinostat, and valproic acid) for the cell viability assay (Figure 1A,B).
After 24 h of drug exposure, panobinostat had the lowest cell viability at 0.1 µM (27.6%) treatment
compared to the belinostat (68.5%), vorinostat (95%), and valproic acid (98.1%) treatments. In addition,
with increasing panobinostat concentrations, K562 cells showed the same cell viability at 1 and 10 µM
(18.8% and 16.5%), whereas belinostat and vorinostat reached the maximum anticancer effect at 10 µM
(15.7% and 21.6%) treatments, respectively. Using a viability assay (Figure 1C), we found that the IC50
of panobinostat was 0.04 µM, whereas belinostat and vorinostat had IC50 concentrations of 1.4 and
2.94 µM, respectively.
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Figure 1. Food and Drug Administration (FDA)-approved HDACis significantly suppressed K562 cell
viability in a dose-dependent manner. (A) Chemical structures of panobinostat, belinostat, vorinostat
and valproic acid. (B) MTT cell viability after four HDACi (0.001, 0.01, 0.1, 1 and 10 µM) treatments on
K562 cells for 24 h. The values are presented as the means and standard errors. The experiment was
performed at least in triplicate. (C) The IC50 of HDACi is the drug concentration that induced a 50%
inhibition of cell viability.

In our previous study, we established a bioluminescence-based live cell NIADS system to evaluate
the quantitative and kinetic analyses of apoptotic cell death [8,16]. Using this assay, we determined
apoptotic events by simply measuring bioluminescence activities from live cells. Here, we used the
NIADS system to assess stably expressing K562 cells (NIADS-K562) treated with various concentrations
of HDACis for 24 h and measured bioluminescence activity by IVIS (Figure 2A). The bioluminescence
activities from NIADS-K562 showed a significant increase after the 0.1 µM panobinostat, belinostat
and vorinostat treatments compared with dimethyl sulfoxide (DMSO) treatment. Next, we want to
know whether or not the apoptotic cell population in NIADS platform can be quantified by flow
cytometry. To achieve that, we measured the spectrum of bioluminescence of NIADS through the light
wavelength from 400 to 750 nm (Figure 2B). The wavelength spectrum clearly demonstrated that the
bioluminescence emitted photons at 560 to 620 nm, which is applicable for the FL2 channel of flow
cytometry (564–606 nm, red column), whereas the FL1 channel detects green fluorescence (515–545 nm,
green column). Next, using FL2 channel flow cytometry for bioluminescent detection, we found that
panobinostat and belinostat induced significant cell apoptosis of 90.4% and 58.6% in total NIADS-K562
cells, whereas DMSO, vorinostat and valproic did not induce apoptosis (Figure 2C).
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Figure 2. HDACi induced K562 cell apoptosis in bioluminescence-based live cell measurement. (A) The IVIS
image of HDACi-induced cell apoptosis in NIADS stably expressed K562 (NIADS-K562) cells. The cells
received HDACis or DMSO at various concentrations (0.1 and 1 µM) for 12 h and measured luciferase
activity (present by photos influx). The cells in a 24-well plate were exposed to luciferin at a concentration
of 1.5 µg/mL and calculated in an IVIS 200 Spectrum image system. The yellow and red colors indicate
high photons of bioluminescence activity, whereas the green and blue colors indicate low photons of
bioluminescence activity. The intense luciferase activity indicates apoptotic signals from NIADS. The bar
figure illustrates the 100% mean and standard deviation of the photons compares to DMSO addition. Data
were analyzed with Student’s t-test; all p-values were two-sided. p-values less than 0.01 are presented
with two asterisks. (B) The emission wavelength spectrum of the NIADS protein. NIADS-K562 cells were
exposed to luciferin, and the wavelength spectrum was measured every 5 nm from 400 nm to 750 nm.
The green bar in the background indicates the fluorescent wavelength that can be detected in the FL1
channel, whereas the red bar indicates the fluorescent wavelength in the FL2 channel of flow cytometry.
(C) Apoptosis detection in HDACi-treated NIADS-K562 cells. The cells were exposed to 1.5 µg/mL luciferin,
and bioluminescence was measured in the FL2 channel of a flow cytometer. Apoptotic NIADS-K562 cells
with bioluminescence were calculated in the whole cell population.

2.2. HDACi Induced Histone Acetylation and Apoptosis-Related Protein Expression

We next examined the acetylation sites of the histone complex that would be activated by HDACi
drugs on K562 cells (Figure 3A). After 6 h of HDACi treatment, panobinostat significantly induced
histone H3 acetylation at amino acids 9, 18 and 56, whereas histone H4 was acetylated at sites 8 and 16;
vorinostat and belinostat had mild acetylation effects at the H3 and H4 acetylation sites. In the deeper
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apoptosis investigation, we found that panobinostat induced dramatic p21 induction and activated
apoptosis signaling cascades, including Caspase 3 and PARP activation, whereas vorinostat and
belinostat treatments of K562 cells showed weak p21, Caspase 3 and PARP activation. This evidence
indicated that HDACi-induced H3 and H4 acetylation may not be the only factor that triggers cell
cycle arrest and apoptosis in CML cells. Other panobinostat-induced functional changes may be
involved in the anticancer activity. Next, we used a fluorescence-based live/dead cell viability assay to
investigate the dose-dependent nature of panobinostat-induced apoptosis in K562 cells. After 24 h of
panobinostat treatment, PI-stained dead cells (red) were significantly induced in the 0.1, 1 and 1 µM
treatment groups (p < 0.05 at 0.1 µM treatment, p < 0.01 at 1 and 1 µM treatment), whereas the calcein
AM-stained live cells (green) were gradually reduced compared to DMSO-treated K562 cells.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 6 of 17 

 

 161 
Figure 3. HDACi induced histone acetylation, cell cycle arrest and apoptosis-related protein 162 
expression. (A) K562 cells were treated with 1 μM HDACi for 6 h, and the cell lysates were 163 
immunoblotted with different H3 (H3K9AC, H3K18AC and H3K56AC) and H4 (H4K8AC and 164 
H4K16AC) histone acetylation antibodies. H3, H4 and glyceraldehyde-3-phosphate dehydrogenase 165 
(GAPDH) immunoblots served as internal controls. (B) K562 cell lysates treated with 1 μM HDACi 166 
for 24 h were examined for cell cycle (p21 and p27) and apoptotic-related protein (C-Caspase 3: 167 
cleaved Caspase 3 and C-PARP: cleaved PARP) expression. GAPDH immunoblotting served as an 168 
internal control. (C) Live/Dead cell viability assays. Fluorescence images of K562 cells exposed to 169 
different concentrations of panobinostat (0.01 to 10 μM) for 24 h. The cells were costained with 1  μM 170 
calcein-AM/10  μM PI and excited with light at 488 nm (green emission) to show viable cells. The 171 
same image of the cells also excited with 532 nm light (red emission) to show the dead cells. The scale 172 
bar on the right-bottom corner indicates 100 μM. Data are presented as the mean and standard 173 

Figure 3. HDACi induced histone acetylation, cell cycle arrest and apoptosis-related protein expression.
(A) K562 cells were treated with 1 µM HDACi for 6 h, and the cell lysates were immunoblotted with
different H3 (H3K9AC, H3K18AC and H3K56AC) and H4 (H4K8AC and H4K16AC) histone acetylation
antibodies. H3, H4 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) immunoblots served as
internal controls. (B) K562 cell lysates treated with 1 µM HDACi for 24 h were examined for cell cycle
(p21 and p27) and apoptotic-related protein (C-Caspase 3: cleaved Caspase 3 and C-PARP: cleaved
PARP) expression. GAPDH immunoblotting served as an internal control. (C) Live/Dead cell viability
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assays. Fluorescence images of K562 cells exposed to different concentrations of panobinostat
(0.01 to 10 µM) for 24 h. The cells were costained with 1 µM calcein-AM/10 µM PI and excited
with light at 488 nm (green emission) to show viable cells. The same image of the cells also excited with
532 nm light (red emission) to show the dead cells. The scale bar on the right-bottom corner indicates
100 µM. Data are presented as the mean and standard deviation. Data were analyzed with Student’s
t-test; all p-values were two-sided. p-values less than 0.05 are indicated with an asterisk, and values
less than 0.01 are presented with two asterisks.

2.3. Protein Analysis of Panobinostat-Treated K562 and K562-IR Cells

In clinical analyses, imatinib has provided a dramatic improvement in outcomes for CML patients,
increasing the five-year survival rate from 45% to more than 80%. However, resistance or failure to
respond to imatinib treatment has emerged as a significant clinical problem affecting approximately
1/3 of all CML patients and leading to cancer progression. To find an alternative treatment for
imatinib-resistant CML patients, we developed a K562-IR cell line. To reveal the drug sensitivity to
imatinib of either K562-IR or K562 cells, we added various concentrations of imatinib from 0.01 µM
to 10 µM for 24 h (Figure 4A). Using the MTT cell viability assay, we found that K562-IR showed
extremely high cell survival when exposed to imatinib at 0.1, 1 and 10 µM compared to K562 cells
(p < 0.01). The IC50 values of imatinib on both K562-IR and K562 are 2.796 µM and 0.093 µM,
respectively, confirming the imatinib-resistant character of K562-IR (Figure 4C). However, with various
concentrations of panobinostat treatment, we found that both K562-IR and K562 cells had significant
decreases in cell viability after 0.1 µM treatment (Figure 4B). The IC50 values of panobinostat for both
K562-IR and K562 were 0.2032 µM and 0.0385 µM, implying that panobinostat therapy would also be
applicable for imatinib-resistant patients in the clinic.

We next investigated whether panobinostat-induced histone acetylation and apoptosis signals in
K562 cells differed from those in K562-IR cells (Figure 4D). After treatment with various concentrations
of panobinostat on K562 cells for 6 h, we found that 0.01 µM panobinostat significantly induced histone
H3 acetylation at the 9, 18 and 56 amino acids, whereas histone H4 was acetylated at sites 8 and
16 (Figure 4E). In contrast, panobinostat activated these acetylation sites on the H3 and H4 histone
proteins at 0.1 µM in IR-K562 cells (Figure 4E). Furthermore, p21 expression, activated Caspase 3
and PARP were strongly induced in 0.01 µM panobinostat-treated K562 cells, whereas these proteins
increased in 0.1 µM panobinostat-treated K562-IR cells. These results clearly showed that even though
K562-IR cells may have low sensitivity to panobinostat compared to K562 cells, panobinostat treatment
may still be used in imatinib-resistant CML cells, which had with a low IC50 of 0.2032 µM.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 17 
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Figure 4. Panobinostat has anticancer effects on imatinib-resistant K562 cells. Both K562 and
imatinib-resistant K562 (K562-IR) cells were seeded overnight and treated with 0.001, 0.01, 0.1, 1 and
10 µM of (A) imatinib or (B) panobinostat for 24 h. The cells were assessed for cell viability by MTT
determination. Data are presented as the mean and standard deviation. Data were analyzed with
Student’s t-test; all p-values were two-sided. p-values less than 0.05 are indicated with an asterisk, and
values less than 0.01 are presented with two asterisks. (C) The IC50 values of imatinib and panobinostat
treatments were calculated as the drug concentration that induced a 50% inhibition in cell viability.
Immunoblot analyses of histone acetylation (H3K9AC, H3K18AC, H3K56AC, H4K8AC and H4K16AC),
cell cycle arrest (p27 and p27) and apoptotic-related protein (C-Caspase 3 and C-PARP) expression
following various panobinostat treatments for 6 h and 24 h on both (D) K562 and (E) K562-IR cells. H3,
H4 and GAPDH immunoblots served as internal controls.

2.4. HDAC1 and HDAC2 Gene Knockout through the CRISPR/CAS9 System

Next, we investigated the utility of CRISPR/Cas9 genome editing by targeting two custom-designed
protospacers on HDAC1 on chromosome 1 and the HDAC2 locus on chromosome 6 with a lentivirus
delivery system using the MIT CRISPR Design website (http://crispr.mit.edu) with the sequence
of HDAC1 (NM_004964.2) and HDAC2 (NM_001527.3). As shown in the HDAC1 genomic map
(Figure 5A), the protospacer 1 sgRNA targets the negative strand, and the protospacer 2 sgRNA
targets the plus strand of the exon 2 HDAC1 gene. Transduction of K562 cells with the scrambled
target (SC) lentivirus produced a wild-type HDAC1 sequence, as assessed by Sanger sequencing
(Supplementary Figure S1A,B), with no evidence of gene editing. However, K562 cells transduced
with HDAC1-1 gene-edited lentivirus (Supplementary Figure S1C) had multiple gene disruptions at
the predicted cleavage sites (red arrowhead) compared to K562 cells transduced with the HDAC1-2
gene-edited lentivirus (Supplementary Figure S1D). In addition, through TIDE analysis, lentivirus
infection with HDAC1-1 gene-edited cells (Figure 5B) had stronger gene editing efficiency than
HDAC1-2 gene-edited cells (Figure 5C), with 98.5% and 14.2% of the cell pool edited, respectively.
The most frequent mutation in the HDAC1-1 gene-edited cell pool was other mutations (85.2%), whereas
the frequently predicted mutation in the HDAC1-2 gene-edited cell pool was 1-bp insertions (4.4%).
Compared to HDAC1-2 gene-edited cells, K562 cells transduced with the HDAC1-1 gene showed
more significant gene disruptions in the targeted regions, with mutations primarily at the predicted
cleavage sites (Supplementary Figure S1E,F). However, both protospacer 1 sgRNA and protospacer

http://crispr.mit.edu
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2 sgRNAs target the plus strand of the exon 1 of the HDAC2 gene. Sanger sequencing showed
no evidence of gene editing in SC lentivirus-transduced K562 cells (Supplementary Figure S1G,H).
Compared to HDAC2-2 gene-edited lentivirus (Supplementary Figure S1J)-transfected K562 cells,
HDAC2-1 gene-edited cell lentivirus cells (Supplementary Figure S1I) showed significant multiple gene
disruptions at the predicted cleavage sites (red arrowhead). With TIDE analysis, lentivirus infection
of the HDAC2-1 gene-edited virus (Figure 5G) also showed stronger gene editing efficiency than the
HDAC2-2 gene-edited population (Figure 5H), with 84% and 2.4% of the cell pool edited, respectively.
The most frequent mutation in the HDAC2-1 gene-edited cell pool (Figure 5I) was other mutations
(69%), whereas the most frequently predicted mutation in the HDAC2-2 gene-edited cell pool (Figure 5J)
was a 1-bp insertion (1.2%). In addition, only HDAC2-1 gene-edited cells caused significant gene
disruptions in the targeted regions, whereas no gene disruptions were found in HDAC2-2 gene-edited
K562 cells, with mutations primarily at the predicted cleavage sites (Supplementary Figure S1K,L).

2.5. HDAC1 and HDAC2 gene knockout Promotes K562 Cell Apoptosis

Next, we evaluated HDAC1 and HDAC2 protein expression by western blotting of the gene-edited
K562 cells (Figure 6A,B). As shown in the above genomic results, the protein levels of both HDAC1
and HDAC2 sgRNA-introduced K562 cells were significantly decreased compared to those of SC
virus-transfected cells. In addition, HDAC1 gene-edited cells showed increased HDAC2 protein
expression, whereas HDAC2 gene-edited cells showed increased HDAC1 protein expression in K562
cells. This observation proves that HDAC1 and HDAC2 have complementary effects. Next, we wanted
to determine the biofunctional effect in HDAC1 and HDAC2 gene-edited K562 cells. The apoptosis
measurement (determined by sub-G1) by flow cytometry showed a significant elevation in HDAC2-1
gene-edited cells, with 16.4%, followed by HDAC1-1 gene-edited cells, with 9.6% of all cell populations,
whereas SC cells and HDAC1-2 and HDAC2-2 gene-edited cells remained unchanged (Figure 6C). In the
signal transduction and apoptosis molecule analysis (Figure 6D), we found that the phospho-AKT and ERK
proteins were inhibited in both HDAC1-1 and HDAC2-1 gene-edited K562 cells, whereas p21, cleavage PARP
and Caspase 3 were significantly induced. Furthermore, we discovered that both AKT phosphorylation
and the activated forms of PARP and Caspase 3 showed stronger effects in HDAC2-1 than HDAC1-1
gene-edited cells. Through flow cytometry and protein analysis, we found that the HDAC2 protein may
play an important role in preventing cell apoptosis during CML disease development.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 10 of 17 
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Figure 5. HDAC1 and HDAC2 gene editing in K562 cells using the CRISPR/Cas9 system. (A) Schematic
representation of the human HDAC1 DNA locus and two protospacer sequences (blue underline) for
editing. The arrowhead indicates the expected Cas9 cleavage site. The protospacer adjacent motif (PAM,
red underline) is the motif required for Cas9 nuclease activity. Scrambled (SC) and HDAC1 gene-edited
cells were delivered to K562 cells by lentivirus. After transduction, DNA from virus-infected cells was
purified and subjected to Sanger sequencing of HDAC1 exon 2. The TIDE algorithm analysis is shown
for (B) HDAC1-1 and (C) HDAC1-2 gene-edited virus transfected into K562 cells compared to SC K562
cells. The pie charts show the percentages of indels in the HDAC1 gene edited by (D) HDAC1-1 and
(E) HDAC1-2 gene-edited lentivirus. The gene editing efficiency of the two-gene edited virus introduced
cells is presented in pink, while the two most common other mutations and +1 are presented in brown
and yellow colors, respectively. (F) Schematic representation of the human HDAC2 DNA locus and
two protospacer sequences (blue underline) for editing, and PAM sequences for Cas9 recognition
(red underline). The arrowhead indicates the expected Cas9 cleavage site. PAM is the motif required
for Cas9 nuclease activity. SC- and HDAC2-edited cells were delivered to K562 cells by lentivirus.
After transduction, DNA from virus-infected cells was purified and subjected to Sanger sequencing of
HDAC2 exon 2. The TIDE algorithm analysis is shown for (G) HDAC2-1 and (H) HDAC2-2 gene-edited
cells virus transfected into K562 cells compared to SC K562 cells. The pie charts show the percentages
of indels in the HDAC2 gene edited by (I) HDAC2-1 and (J) HDAC2-2 gene-edited lentivirus. The gene
editing efficiency of the two gene-edited cells is presented in pink, while the two most common other
mutations and +1 are presented in brown and yellow colors.

2.6. Panobinostat Targets CSCs of K562-IR Cells

In the above experiment, pan-HDACi panobinostat activated several H3 and H4 acetylation sites,
such as H3K9 H3K18, H3K56, H4K8 and H4K16, causing dramatic apoptosis of both K562 and K562-IR
cells. However, more data were needed to determine whether panobinostat achieves similar anticancer
effects in both K562 and K562-IR cells (Figure 6E). Thus, we found that K562 IR cells showed more
phospho-AKT and ERK protein expression and less cleaved PARP and Caspase-3 proteins than K562
cells (lane 1 vs. lane 3). After 0.1 µM panobinostat treatment for 24 h, K562 showed extreme decreases
in phospho-AKT and ERK, whereas p21, cleaved PARP and Caspase 3 were significantly increased
(lane 1 vs. lane 2). In contrast, in the same panobinostat treatment, K562-IR cells showed less signal
transduction inhibition and apoptosis induction than panobinostat-treated K562 cells (lane 2 vs. lane 4).
Based on this observation, we suspected that the drug resistance from K562-IR may be due to an
increase in the cancer stem cell (CSC) population. Using real-time PCR (Q-PCR), we found that CML
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CSC genes, such as ALDH1, were dramatically elevated in K562-IR cells compared with K562 cells
(Figure 6F). Following treatment of 0.1 µM panobinostat for 24 h, the ALDH1 gene expression was
significantly decreased in K562-IR cells and was close to the gene expression of K562 cells. These data
indicated that long-term imatinib treatment induces CSC accumulation in K562-IR cells, which causes
decreased drug sensitivity to both imatinib and panobinostat treatments. However, panobinostat
treatment seems to target CSCs and reduce the CSC population in K562-IR cells, suggesting that
panobinostat can be applied to prevent imatinib resistance.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 12 of 17 
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Figure 6. HDAC1 and HDAC2 inhibition induced cell apoptosis in both K562 and K562-IR cells.
Immunoblot analysis of protein expression in (A) HDAC1 and (B) HDAC2 gene-edited K562 cells.
(C) HDAC1 and HDAC2 gene-edited K562 cells were analyzed for a sub-G1 population by flow
cytometry. (D) HDAC1 and HDAC2 gene-edited cells were analyzed for signal transduction (p-AKT
and p-ERK), cell cycle (p21) and apoptosis-related protein expression compared to control and SC
K562 cells. (E) K562 and K562IR cells with or without 0.1 µM panobinostat treatments were analyzed
for signal transduction (p-AKT and p-ERK), cell cycle (p21) and apoptosis-related protein expression.
GAPDH immunoblotting served as an internal control. (F) ALDH1 gene expression was analyzed in
K562 and K562IR cells with or without 0.1 µM panobinostat treatment for 24 h. The gene expression
was measured by real-time PCR (Q-PCR). Data are presented as the mean and standard deviation and
analyzed with Student’s t-test. All p-values were two-sided, and p-values less than 0.01 are presented
with two asterisks.

3. Discussion

Histone acetylation has been shown to be an important regulatory mechanism that controls
transcription of approximately 2%–10% of genes [4]. In fact, histones are not the only proteins that
can be activated by acetylation; many proteins are positively or negatively regulated by epigenetic
regulation, such as chromatin remodeling proteins, DNA-binding nuclear receptors, DNA repair
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enzymes, signaling mediators, structural proteins, transcription coregulators, and DNA-binding
transcription factors [17,18]. Microarray analyses showed that HDACis manipulate genes in several
biofunctional classes, such as cell cycle inhibition [19], β-catenin-related signaling, lineage-specific
differentiation [20] and apoptotic-related cell death. Previous studies have shown that HDACis
transcriptionally activated p21 promoter-associated histones by either acetylation or methylation,
whereas these factors were not altered in a multiple myeloma cell line [21]. As shown in this study,
p21 was significantly induced in panobinostat-treated K562 cells, further promoting apoptosis-related
proteins, such as PARP and caspases. In addition, gene edited of either the HDAC1 or HDAC2 gene
showed that HDAC2 may play a more important role in regulating the cell cycle and apoptosis than
HDAC1, with elevation of p21, c-PARP and c-Caspase 3 protein expression. HDAC2 may also be
involved in cell proliferation inhibition since p-AKT was dramatically suppressed in HDAC2 gene
edited cells, whereas p-AKT expression in HDAC1 gene edited cells remained unchanged.

HDAC1 and HDAC2 are closely related mammalian histone deacetylases that appear to mediate
complementary functions in transcriptional regulation at specific sites in chromatin [22]. This complementary
effect between HDAC1 and HDAC2 was also confirmed in this study. To investigate the functions of
HDAC1 and HDAC2 in CML, we used CRISPR/Cas9 to specifically gene edit HDAC1 and HDAC2
through lentivirus transfection of K562 cells. The results clearly showed that the HDAC proteins were
correspondently suppressed in both HDAC1 and HDAC2 sgRNA introduced cells. This highly effective
gene editing result was very similar to what we observed in breast and thyroid cancer cells [23,24].
Interestingly, in HDAC1 and HDAC2 sgRNA introduced cells, we observed a strong protein complementary
effect in both HDAC1 and HDAC2 gene edit K562 cells. This finding implies that HDAC absent CML
may try to retain HDAC activity by increasing the protein level of the other HDAC member. However,
even with this complementary effect, HDAC1 and HDAC2 gene edit cells still showed dramatic apoptotic
cell death, indicating the important roles of HDAC1 and HDAC2 in maintaining cell survival. In the
future, anticancer drugs targeting HDAC may be used as a strategy to design specific HDAC inhibitors,
preventing the side effects from the current pan-HDACi treatment.

In a previous study [25], a panobinostat and ponatinib combination synergistically inhibited
imatinib-resistant CML through BCR-ABL and AKT signaling. To further investigate the mechanism
behind this finding, we used HDAC1 and HDAC2 as a model to demonstrate the anticancer activity
by HDACi drugs both with or without imatinib-resistant CML cells. Surprisingly, we found that
K562 cells were extremely sensitive to panobinostat treatment, with an IC50 of 0.04 µM (Figure 1C),
whereas a previous study showed that K562 cells did not respond to panobinostat exposure, with an
IC50 of 50 µM [25]. Despite this controversial issue, imatinib-resistant CML cells demonstrated equal
or lower cell viability than K562 cells with panobinostat treatment in both studies. In addition, this
study showed that HDACi treatment targets a CSC-like population in imatinib-resistant K562 cells,
indicating that panobinostat can be used for CML patients who show no response to imatinib.

To the best of our knowledge, this study is the first to detect bioluminescence in flow cytometry.
In a previous study, we developed a rapid and quantitative apoptosis detection assay based on caspase
cleavage with a specific peptide sequence, DEVD, on living cells. We detected the bioluminescence
of NIADS activation using a bioluminometer or IVIS instruments with total cell apoptosis status.
However, with the help of flow cytometry, we can now identify apoptotic signals from individual cells,
which is a major improvement in evaluating the apoptotic cell percentage of cells from clinical CML
patients. In future studies, the next step will be to use NIADS to determine whether this platform can
be applied for precision medicine in CML patients.

Although imatinib and its chemical derivatives are the best strategy for cancer therapy in CML
patients, the emerging understanding that key molecules can mediate the drug resistance mechanism in
disease progression provides the basis for novel therapeutic markers for cancer treatment in the clinic.
The main contribution of this study is the finding that panobinostat significantly suppressed HDAC
activity and forced histone acetylation, followed by cell cycle arrest and eventually cell apoptosis in
both K562 and K562IR cells. Although K562IR showed a slight resistance to panobinostat treatment,
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the effective cell death drug dosage from panobinostat remained low. In fact, the current evidence
showed that panobinostat seems to target the CSC population in K562IR cells. The combination of
imatinib and panobinostat may target CML cells, as well as the CSC population, preventing cancer
recurrence or drug resistance. HDAC1 and HDAC2 gene knockout through CRISPR/Cas9 provides
evidence that both HDAC1 and HDAC2 are unique in maintaining K562 cell survival. This result
contributed to our understanding of protein acetylation regulation from the HDAC family, indicating
that HDAC member-specific inhibitors would cause significant CML cancer cell death, as much as the
apoptotic effect was due to treatment with pan-HDAC inhibitors.

4. Materials and Methods

4.1. Cell Culture

The human leukemia K562 cell line (CML) was kindly provided by Dr. Kai-Wen Hsu, Graduate
Institute of New Drug Development and Biomedical Sciences, China Medical University, Taichung,
Taiwan. Imatinib-resistant K562 (IR-K562) cells were originally derived from K562 cells by treatment
with 0.05 µM imatinib for 2 months and treatment with 0.1, 0.5, 1 and 5 µM imatinib for one month.
While training IR-K562 cells, we changed the culture medium every week. The cells were maintained
in Dulbecco’s modified Eagle’s medium: Nutrient Mixture F-12 (DMEM/F-12) (Gibco, Carlsbad,
CA, USA). The cells were incubated with 10% (v/v) fetal bovine serum (FBS, Biological Industries,
Israel). Supplements of 100 units/mL penicillin and 100 mg/mL streptomycin were used and cultured
in a 37 ◦C incubator with 5.0% CO2.

4.2. MTT Cell Viability Assay

The cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
(MTT), which is based on the reduction of the yellow MTT to purple formazan by living cells [26,27].
In 96-well plates, 1 × 105 K562 cells were seeded overnight before exposure to different concentrations
of HDACis or imatinib according to the experimental protocol. After 24 h of treatment, the medium
was changed to fresh medium containing 1 µg/mL of MTT. Two hours later, 100 µL of DMSO was
added to each well, and the absorbance at 570 and 630 nm was determined. The cell viability
percentage was calculated using a formula [Percentage viability = (Average OD of sample/Average OD
of control) × 100].

4.3. Live/Dead Cell Viability Assay

K562 cells were seeded in 12-well plates overnight and incubated with HDACis for 24 h in normal
culture conditions. The medium was removed and treated for 30 min in the dark with 1 µM calcein-AM
and 10 µM propidium iodide (PI) prepared in a normal culture medium. The live fluorescence images
were captured under a light wavelength of 488 nm (green emission) to show viable cells. The same
image of the cells was also excited with a light wavelength of 532 nm (red emission) to show the
dead cells.

4.4. Cellular Bioluminescence (IVIS) Assay

Bioluminescence imaging was performed with a highly sensitive, cooled CCD camera mounted
in a light-tight specimen box (In Vivo Imaging System—IVIS; Xenogen, Alameda, CA, USA). K562
cells were plated and treated with HDACis at 0.1 µM and 1 µM for 12 h. The multiple-well plate
was exposed to D-luciferin (1.5 µg/mL) and placed on a warmed stage inside the camera box during
imaging. The light emitted from the cells was detected by the IVIS camera system, integrated, digitized,
and displayed. Regions of interest on the displayed images were identified, and the total photon count
was quantified using Living Image® software 4.0 (Caliper, Alameda, CA, USA).
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4.5. Flow Cytometry Analysis

K562 and NIADS K562 cells with stable expression (NIADS-K562) (5 × 106 cells/dish) were plated
in 6-cm dishes and exposed to different concentrations of HDACis or imatinib for 24 h. For sub-G1
apoptosis analysis, K562 cells were collected, washed once with PBS, fixed with 75% alcohol and
analyzed with a sub-G1 cell population by flow cytometry (FACSCalibur, BD Biosciences, San Jose,
CA, USA). For bioluminescence detection, NIADS-K562 cells were collected, washed once with PBS
and exposed to D-luciferin (1.5 µg/mL) before flow cytometry analysis using FL2 channels.

4.6. Real-Time Quantitative Polymerase Chain Reaction (Q-PCR)

Primers for the ALDH1 region (forward 5′-GAGTGTTGAGCGGGCTAA-3′ and reverse
5′-CTCCTCCACATTCCAGTTTG-3′) were used for gene quantification. All oligo primers were
synthesized by Genomics BioSci and Tech (Taipei, Taiwan). A LightCycler thermocycler (Roche
Molecular Biochemicals, Mannheim, Germany) was used for Q-PCR analysis. One microliter of sample
and master mix were first denatured for 10 min at 95 ◦C and then subjected to 40 cycles (denaturation at
95 ◦C for 5 s; annealing at 60 ◦C for 5 s; and elongation at 72 ◦C for 10 s) with detection of fluorescence
intensity. All PCR samples underwent melting curve analysis to detect nonspecific PCR products.
Gene expression from the Q-PCR analysis was normalized to GUS expression using the built-in Roche
LightCycler Software, version 4 [24,27].

4.7. Protein Extraction, Western Blotting, and Antibodies

For western blot analysis, K562 and in vitro imatinib-resistant K562 (K562-IR) cells were collected
and washed once with ice-cold PBS, followed by radioimmunoprecipitation assay (RIPA) lysis buffer
addition, which contained protease inhibitors. Fifty microgram of protein from each sample was
resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to
a nitrocellulose membrane. The information of primary antibodies and the secondary antibodies used
in this study is provided in Supplementary Table S1. All primary antibodies were used at a 1:1000
dilution with overnight hybridization, followed by a one-hour incubation with a 1:4000 dilution of the
secondary antibodies.

4.8. Lentivirus Production

HDAC1 and HDAC2 targeting lentiviral particles and NIADS lentivirus were produced by
transient transfection of Phoenix-ECO cells (CRL-3214) using TransIT®-LT1 Reagent (Mirus Bio LLC,
Madison, WI, USA). Guide oligonucleotides were phosphorylated, annealed, and cloned into the
BsmBI site of the lentiCRISPR v2 vector (Addgene, 52961, kindly provided by Feng Zhang) according
to the Zhang laboratory protocol [28] (F. Zhang lab, MIT, Cambridge, MA, USA). All plasmid constructs
were verified by sequencing. The HDAC1, HDAC2 and NIADS plasmids were cotransfected with
pMD2.G (Addgene plasmid #12259) and psPAX2 (Addgene plasmid #12260, both kindly provided by
Didier Trono, EPFL, Lausanne, Switzerland). Lentiviral particles were collected at 36 and 72 h and
then concentrated with a Lenti-X Concentrator® (Clontech, Mountain View, CA, USA). The lentivirus
concentration for each gene was quantified by Q-PCR.

4.9. Statistical Methods

All data are expressed as the mean ± SD, and Student’s t-test analysis was performed for the
pairwise samples. All statistical comparisons were performed using SigmaPlot graphing software
(San Jose, CA, USA) and Statistical Package for the Social Sciences v.13 (SPSS, Chicago, IL, USA).
A p-value < 0.05 was considered statistically significant, and all statistical tests were two-sided.
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