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Plants are constantly exposed to a diverse group of pathogens and have evolved sophisticated
immune systems to combat pathogen attacks [1–3]. Upon pathogen attack, plasma membrane-localized
pattern recognition receptors (PRRs), including receptor-like kinases (RLKs) or receptor-like proteins
(RLPs), recognize pathogen-associated molecular patterns (PAMPs) to activate PAMP-triggered
immunity (PTI) [2]. In response, some pathogens can deliver effector proteins into host cells to
suppress the PTI. As a counter measure, the pathogen effectors can be recognized by the intracellular
nucleotide-binding leucine-rich repeat (NLR) immune receptors either directly or indirectly, which
in turn can activate effector-triggered immunity (ETI) [2,3]. Both PTI and ETI share significant
overlapping downstream defense signaling events, but ETI is much faster-acting and mounts a more
effective response than PTI [2,4]. The downstream signal transduction events may include NAPDH
oxidase-dependent reactive oxygen species (ROS) production, activation of Ca2+, mitogen-activated
protein kinase (MAPK) and trimeric G-protein signaling pathways, induction of salicylic acid (SA)
biosynthesis, Pathogenesis-Related (PR) genes, callose deposition and biosynthesis of phytoalexins, as
well as transcriptome reprogramming [2,5–9]. The defense signaling pathways are interconnected
to form a defense network, in which numerous transcription factors, biochemical pathways, and
phytohormones are involved.

This Special Issue consists of nine research articles and seven review articles. One feature of this
Special Issue is that the “-omics” approach is widely used among the research articles, representing a
new trend in research. However, because of the dynamic nature of the “-omics” experiments, how to
extract the biologically meaningful information from big data is still a challenge. The review articles in
this Special Issue summarize and integrate the latest advances in many different aspects of plant defense
signaling, which will serve as valuable resources for those who are interested in plant immunity.

Bacterial pathogens gain entry into the leaf apoplasts through open stomatal pores [10]. Plants
have evolved a mechanism to close stomata upon sensing PAMPs, known as stomatal defense [10,11].
It has been shown previously that a small GTPase, Nucleolar GTP-Binding Protein 12 (NOG1-2), acts
as a positive regulator of stomatal closure in response to both abiotic and biotic stresses [12]. In this
Special Issue, Lee et al. (2018) took a step further and showed that NOG1-2 participates in stomatal
closure through interacting with JAZ9 and multiple other JAZ proteins [13]. NOG1-2 inhibits the
interaction between JAZ9 and COI1, and both NOG1-2 and JAZ9 co-regulate a set of the core genes
involved in jasmonic acid (JA) and abscisic acid (ABA) signaling pathways, implying that NOG1-2 is
involved in the coordination and integration of JA and ABA pathways to modulate stomatal closure in
response to biotic and abiotic stresses.

Leaf chlorosis is the most common viral infection symptom, which has been assumed to be
the result of virus-induced changes in chloroplast structure and components [14–16]. However, the
molecular mechanism that underlies chlorosis as a result of viral infection is not fully understood.
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Zhao et al. (2018) identified 66 nuclear-encoded chloroplast proteins that failed to be transported
to the target plastids during Rice stripe virus (RSV) infection in N. benthamiana using an elegantly
designed experiment in combination with a label-free nano LC-MS/MS. Among these 66 proteins,
three nuclear-encoded chloroplast proteins are involved in the chloroplast-targeting biological process
itself [17]. Thus the authors proposed that RSV infection blocks the normal localization and functions of
these three proteins, resulting in the mis-targeting of many chloroplast-targeted proteins subsequently.
As a consequence, both the structure and function of the chloroplasts are severely impaired. This is
one of the successful examples showing the power of the “-omics” approach in understanding the
molecular mechanism underlying a specific phenomenon or phenotype.

Root restriction (RR) is a commonly used cultivation practice to improve the nutritional values of
grape berries, by restricting the root volume and shoot growth [18–20]. Leng et al., (2018) investigated
the effects of RR treatment on the accumulation levels of major phytohormones as well as on the
transcriptome during berry development and ripening of an early-ripening seedless grape using
Ultra Performance Liquid Chromatography-High Resolution Mass Spectrometry (UPLC-HRMS) and
RNA sequencing (RNAseq), respectively [21]. Their results showed that RR treatment increased the
levels of stress-related phytohormones but decreased the levels of phytohormones involved in growth
and development. Most of the RR-responsive genes are involved in the phytohormone biosynthesis
and signal transduction pathways. These results provided partial explanations for the RR-induced
improvement of berry quality and the acceleration of berry ripening.

Satellite RNAs (satRNAs) depend on their cognate helper viruses for their replication in host cells.
satRNAs usually decrease helper virus titers and attenuate symptom severity [22,23]. However, the
molecular mechanism underpinning this reduced virulence remains an enigma. Wrzesinska et al. (2018)
performed proteomic and phosphoproteomic analyses on plants infected with Peanut stunt virus (PSV)
either alone or co-infected with its satellite RNA (satRNA) in N. benthamiana and found that PSV-only
infection caused a strong reduction in the number of phosphorylated proteins and the phosphorylation
levels, whereas PSV+satRNA co-infection resulted in significant reductions in overall protein levels in
N. benthamiana plants [24]. The differentially phosphorylated proteins were mostly associated with
photosynthesis, carbon metabolism, and RNA processing. Although these results are helpful for
understanding the molecular mechanisms of the reduced virulence resulting from the PSV+satRNA
co-infection, much work is still needed to identify the specific targets of the phosphorylation and the
protein targets that can account for the reduced virulence observed in co-infected plants.

Zhang et al (2018) identified a nuclear-localized Squamosa-promoter binding protein (SBP) from
pepper (Capsicum annuum), CaSBP12, as a negative regulator of defense response [25]. Silencing
CaSBP12 enhanced the resistance against Phytophthora capsici, whereas over-expressing CaSBP12 had
the opposite effect. Using a gain-of-function approach, Huang et al. (2018) showed that Stilbene
Synthase 36 from Chinese wild Vitis quinquangularis (VqSTS36) plays a positive role in the resistance
against the biotrophic fungal pathogen, powdery mildew, but a negative role in the resistance against
the necrotrophic fungal pathogen, Botrytis cinereal [26]. In addition, VqSTS36 also positively regulates
salt and drought resistance.

SD20 is one of few cultivars of potatoes that are resistant to a super race isolate of Phytophthora
infestans (Pi), CN152. Yang et al (2018) performed an RNAseq analysis to systematically identify the
SD20-specific late blight-responsive genes by comparing the gene expression profiles between SD20
and a susceptible cultivar upon CN152 infection [27]. They identified the differentially expressed genes
(DEGs) enriched in the GO-terms that have been previously shown to be involved in immune responses
and hypersensitive responses. Tariq et al (2018) performed a comparative transcriptomic profiling of
two near-isogenic lines (NILs) of rice, CBB23 (harboring the R gene Xa23) and JG30 (without Xa23),
before and after infection with the Xanthomonas oryzae pv oryzae strain PXO99A, to identify genes
associated with the disease resistance [28]. The vast majority of DEGs identified between CBB23 and
JG30 are enriched in phenylpropanoid biosynthesis, followed by phytohormone pathways, flavonoid
biosynthesis, and glycolysis/gluconeogenesis. Heat-stable activity factor (HSAF) is produced in many
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microbes with a broad-spectrum antifungal activity. Alternaria alternata (Fries) Keissler is a lethal fungal
pathogen that causes leaf black spot disease in pear. He et al. (2018) showed that HSAF inhibited the
mycelial growth of A. alternata in a dose-dependent manner [29]. Transcriptomic analysis revealed that
the HSAF treatment disrupted multiple signaling networks and essential cellular metabolisms and
breached metabolic networks and induced thickening of the cell wall and apoptosis in A. alternata.
This study can potentially help to develop novel bio-fungicides.

Plants are constantly exposed to a variety of abiotic and biotic stresses simultaneously. It is critical
to understand how plants recognize and respond to these distinct stimuli and integrate the various
responsive signals to combat these stresses. Ku et al. (2018) thoroughly reviewed how the crosstalks
among different signaling pathways coordinate and balance the defense signaling in response to biotic
and abiotic stresses [30]. Understanding the integrated actions of these different signaling pathways
enables the rational design of strategies to cope with multiple stresses using transgenic approaches.
Ali et al. (2018) extensively reviewed the molecular interactions between plants and nematodes,
with a major focus on the mechanism by which the nematodes use for parasitizing their hosts [31].
The authors described how the nematode feeding sites (NFSs) are established by CLAVATA3-RELATED
peptide (CLE) mimicry and other mechanisms. Nematodes produce and deliver a repertoire of
effector proteins into plant cells to suppress or evade defense responses (both PTI and ETI), shift
metabolic pathways, and change developmental programs in the hosts for their own benefit, through
reprogramming the transcriptomes and modulating phytohormone pathways of their hosts [32,33].
Plants have evolved strategies to deter herbivores and yet attract insect pollinators and other beneficial
insects [34]. Meanwhile, insects have evolved strategies to overcome the plant defense barriers in order
to feed on plants [34,35]. In this Special Issue, Li et al. reviewed how plants and insects use miRNAs
to regulate their biological processes, respectively, and co-opt each other’s miRNA systems for their
own purposes [36]. However, the insect- and plant-derived miRNAs and their respective targets have
not been identified yet and the impact of these miRNAs on insect physiology remains controversial.
Unlike other plant-pathogen interactions, in which the NLR-type R genes play the major roles, the
resistance of rice against X. oryzae is mostly associated with the transcription activator-like effector
(TALEs) [37]. The resistance against X. oryzae by rice uses two main strategies: activating the host’s
innate immunity upon perception of the pathogen effectors, and abolishing the host’s susceptibility
through a loss of interaction with effectors [38]. Ji et al. (2018) further categorized these mechanisms
into five different routes and described these routes individually in detail [39].

Accumulated evidence indicates that BRs are actively involved in plant–environment interactions.
Yu et al. (2018) highlighted the recent advances in the understanding of brassinosteroid (BR) functions
in modulating plant interactions with different pathogenic microbes, with a particular focus on
how BR signaling primes the plant innate immunity pathways and achieves a trade-off between
growth and immunity [40]. The authors summarized almost all aspects of BR involvements in
regulating plant-microbe interactions. As master regulators of numerous downstream target genes,
the transcription factors (TFs) involved in defense responses are also subjected to regulations. Ng et al
(2018) extensively reviewed the regulation of TFs at the epigenetic, transcriptional/post-transcriptional,
and translational/post-translational levels [41]. The authors also proposed the potential applications of
TFs in crop improvement.

Three major wheat fungal pathogens belonging to different trophic types use distinct strategies to
infect wheat. Duba et al (2018) reviewed the current status of disease resistance research in wheat,
ranging from the mapping and identification of resistance genes to the unraveling of mechanisms of
resistance at the anatomical, morphological, and molecular levels [42].

We hope that this Special Issue will provide our readers with a framework for understanding the
defense signaling pathways and provide insights into new research directions in this field. We thank
all authors for their contributions and thank the reviewers for their critical assessment of these articles.



Int. J. Mol. Sci. 2019, 20, 2335 4 of 6

Author Contributions: J.-Z.L. and H.-M.L. have made substantial, direct and intellectual contributions to the
work, and approved it for publication.

Funding: J.-Z.L. is supported by funding from the National Science Foundation of China (31571423); H.-M.L. is
supported by the Hong Kong Research Grants Council Area of Excellence Scheme (AoE/M-403/16).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dangl, J.L.; Jones, J.D. Plant pathogens and integrated defence responses to infection. Nature 2001, 411, 826–833.
[CrossRef]

2. Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [CrossRef] [PubMed]
3. Chisholm, S.T.; Coaker, G.; Day, B.; Staskawicz, B.J. Host-microbe interactions: shaping the evolution of the

plant immune response. Cell 2006, 124, 803–814. [CrossRef]
4. Peng, Y.; van Wersch, R.; Zhang, Y. Convergent and Divergent Signaling in PAMP-Triggered Immunity and

Effector-Triggered Immunity. Plant Microbe Interact. 2018, 31, 403–409. [CrossRef] [PubMed]
5. Meng, X.; Zhang, S. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 2013,

51, 245–266. [CrossRef] [PubMed]
6. Kadota, Y.; Shirasu, K.; Zipfel, C. Regulation of the NADPH Oxidase RBOHD during Plant Immunity.

Plant Cell Physiol. 2015, 56, 1472–1480. [CrossRef] [PubMed]
7. Yuan, P.; Tanaka, K.; Du, L.; Poovaiah, B.W. Calcium Signaling in Plant Autoimmunity: A Guard Model for

AtSR1/CAMTA3-Mediated Immune Response. Mol. Plant 2018, 11, 637–639. [CrossRef]
8. Zhang, Y.; Li, X. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr. Opin.

Plant Biol. 2019, 50, 29–36. [CrossRef] [PubMed]
9. Zhong, C.L.; Zhang, C.; Liu, J.Z. Hetero-trimeric G protein signaling in plant immunity. J. Exp. Bot. 2018,

70, 1109–1118. [CrossRef]
10. Melotto, M.; Underwood, W.; Koczan, J.; Nomura, K.; He, S.Y. Plant stomata function in innate immunity

against bacterial invasion. Cell 2006, 126, 969–980. [CrossRef]
11. Melotto, M.; Zhang, L.; Oblessuc, P.R.; He, S.Y. Stomatal Defense a Decade Later. Plant Physiol. 2017,

174, 561–571. [CrossRef] [PubMed]
12. Lee, S.; Senthil-Kumar, M.; Kang, M.; Rojas, C.M.; Tang, Y.; Oh, S.; Choudhury, S.R.; Lee, H.-K.; Ishiga, Y.;

Allen, R.D.; et al. The small GTPase, nucleolar GTP-binding protein 1 (NOG1), has a novel role in plant
innate immunity. Sci. Rep. 2017, 7, 9260. [CrossRef]

13. Lee, S.; Rojas, C.M.; Oh, S.; Kang, M.; Choudhury, S.R.; Lee, H.-K.; Allen, R.D.; Pandey, S.; Mysore, K.S.
Nucleolar GTP-Binding Protein 1-2 (NOG1-2) Interacts with jasmonate-ZIMDomain Protein 9 (JAZ9) to
regulate stomatal aperture during plant immunity. Int. J. Mol. Sci. 2018, 19, 1922. [CrossRef]

14. Bhattacharyya, D.; Gnanasekaran, P.; Kumar, R.K.; Kushwaha, N.K.; Sharma, V.K.; Yusuf, M.A.; Chakraborty, S.
A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom
formation and inhibition of photosynthesis. J. Exp. Bot. 2015, 66, 5881–5895. [CrossRef]

15. Li, Y.; Cui, H.; Cui, X.; Wang, A. The altered photosynthetic machinery during compatible virus infection.
Curr. Opin. Virol. 2016, 17, 19–24. [CrossRef] [PubMed]

16. Zhao, J.; Zhang, X.; Hong, Y.; Liu, Y. Chloroplast in plant-virus interaction. Front. Microbiol. 2016, 7, 1565.
[CrossRef] [PubMed]

17. Zhao, J.; Xu, J.; Chen, B.; Cui, W.; Zhou, Z.; Song, X.; Chen, Z.; Zheng, H.; Lin, L.; Peng, J.; et al. Characterization
of proteins involved in chloroplast targeting disturbed by rice stripe virus by vovel protoplast–chloroplast
proteomics. Int. J. Mol. Sci. 2019, 20, 253. [CrossRef] [PubMed]

18. Xie, Z.S.; Li, B.; Forney, C.F.; Xu, W.P.; Wang, S.P. Changes in sugar content and relative enzyme activity in
grape berry in response to root restriction. Sci. Hortic. 2009, 123, 39–45. [CrossRef]

19. Wang, B.; He, J.; Yang, B.; Yu, X.; Li, J.; Zhang, C.; Xu, W.; Bai, X.; Cao, X.; Wang, S. Root restriction affected
anthocyanin composition and up-regulated the transcription of their biosynthetic genes during berry
development in ‘summer black’ grape. Acta Physiol. Plant 2013, 35, 2205–2217. [CrossRef]

http://dx.doi.org/10.1038/35081161
http://dx.doi.org/10.1038/nature05286
http://www.ncbi.nlm.nih.gov/pubmed/17108957
http://dx.doi.org/10.1016/j.cell.2006.02.008
http://dx.doi.org/10.1094/MPMI-06-17-0145-CR
http://www.ncbi.nlm.nih.gov/pubmed/29135338
http://dx.doi.org/10.1146/annurev-phyto-082712-102314
http://www.ncbi.nlm.nih.gov/pubmed/23663002
http://dx.doi.org/10.1093/pcp/pcv063
http://www.ncbi.nlm.nih.gov/pubmed/25941234
http://dx.doi.org/10.1016/j.molp.2018.02.014
http://dx.doi.org/10.1016/j.pbi.2019.02.004
http://www.ncbi.nlm.nih.gov/pubmed/30901692
http://dx.doi.org/10.1093/jxb/ery426
http://dx.doi.org/10.1016/j.cell.2006.06.054
http://dx.doi.org/10.1104/pp.16.01853
http://www.ncbi.nlm.nih.gov/pubmed/28341769
http://dx.doi.org/10.1038/s41598-017-08932-9
http://dx.doi.org/10.3390/ijms19071922
http://dx.doi.org/10.1093/jxb/erv299
http://dx.doi.org/10.1016/j.coviro.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/26651024
http://dx.doi.org/10.3389/fmicb.2016.01565
http://www.ncbi.nlm.nih.gov/pubmed/27757106
http://dx.doi.org/10.3390/ijms20020253
http://www.ncbi.nlm.nih.gov/pubmed/30634635
http://dx.doi.org/10.1016/j.scienta.2009.07.017
http://dx.doi.org/10.1007/s11738-013-1257-2


Int. J. Mol. Sci. 2019, 20, 2335 5 of 6

20. Wang, B.; He, J.; Duan, C.; Yu, X.; Zhu, L.; Xie, Z.; Zhang, C.; Xu, W.; Wang, S. Root restriction affects
anthocyanin accumulation and composition in berry skin of ‘kyoho’ grape (vitis vinifera L. × vitis labrusca
L.) during ripening. Sci. Hortic. 2012, 137, 20–28. [CrossRef]

21. Leng, F.; Cao, J.; Wang, S.; Jiang, L.; Li, X.; Sun, C. Transcriptomic analyses of root restriction effects on
phytohormone content and signal transduction during grape berry development and ripening. Int. J. Mol. Sci.
2018, 19, 2300. [CrossRef] [PubMed]

22. Simon, A.E.; Roossinck, M.J.; Havelda, Z. Plant virus satellite and defective interfering RNAs: New paradigms
for a new century. Annu. Rev. Phytopathol. 2004, 42, 415–437. [CrossRef]

23. Liao, Q.; Zhu, L.; Du, Z.; Zeng, R.; Feng, J.; Chen, J. Satellite RNA-mediated reduction of cucumber mosaic
virus genomic RNAs accumulation in Nicotiana tabacum. Acta Biochim. Biophys. Sin. 2007, 39, 217–223.
[CrossRef]
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