Nephrocalcinosis: A Review of Monogenic Causes and Insights They Provide into This Heterogeneous Condition
Abstract
:1. Introduction
2. Monogenic Causes of Nephrocalcinosis
2.1. CLCN5 Mutations
2.2. CYP24A1 Mutations
2.3. SLC34A1 Mutations
2.4. CLDN16 and CLDN19 Mutations
2.5. Bartter Syndromes
2.6. CASR Mutations
2.7. ADCY10 Mutations
2.8. Primary Distal Renal Tubular Acidosis
2.9. Primary Hyperoxaluria
2.10. GDNF Mutations
3. Other Genetic Conditions That May Feature Nephrocalcinosis within Their Clinical Phenotype
4. Conclusions
Funding
Conflicts of Interest
Appendix A
Gene | Encoded Protein | Site of Action | Clinical Condition | Inheritance | Phenotype |
---|---|---|---|---|---|
CLCN5 | ClC-5 chloride transporter | Renal proximal tubule | Dent disease 1 | X-linked recessive | Low molecular-weight (LMW) proteinuria, hypercalciuria, nephrocalcinosis/nephrolithiasis, progression to ESRD 1 by middle-age |
OCRL | Inositol polyphosphate 5-phosphatase OCRL-1 | Renal proximal tubule | Dent disease 2; Lowe oculocerebrorenal syndrome | X-linked recessive | Low molecular-weight (LMW) proteinuria, hypercalciuria, nephrocalcinosis/nephrolithiasis (less frequently than in Dent disease 1) Mild intellectual disability, cataracts Lowe oculocerebrorenal syndrome: more severe phenotype including ocular abnormalities, intellectual disability, amino aciduria, renal dysfunction, vitamin-D resistant rickets |
CYP24A1 | 1,25-hydroxyvitamin-D3-24-hydroxylase | Kidney | Hypercalcemia, Infantile, 1: HCINF1 2 | AR 3 | Hypercalcemia, hypercalciuria, high 1,25-dihydroxyvitamin D3
|
SLC34A1 | Sodium-phosphate co-transporter NaPi2a | Renal proximal tubule | Hypercalcemia, Infantile 2: HCINF2 4 | AR | Hypercalcemia, hypercalciuria, high 1,25-dihydroxyvitamin D3, hypophosphatemia, vomiting, dehydration, failure to thrive, nephrocalcinosis |
CLDN16 | Tight junction protein claudin-16 | Thick ascending limb (TAL) | FHHNC 5 | AR | Hypomagnesaemia, high urinary Mg2+/Ca2+, polyuria/polydipsia, failure to thrive, nephrocalcinosis, progression to ESRD in adolescence |
CLDN19 | Tight junction protein claudin-19 | Thick ascending limb (TAL) | FHHNC with severe ocular involvement | AR | Hypomagnesaemia, high urinary Mg2+/Ca2+, polyuria/polydipsia, failure to thrive, nephrocalcinosis, progression to ESRD in adolescence severe ocular abnormalities |
SLC12A1 | Sodium-potassium-chloride cotransporter NKCC2 | Thick ascending limb (TAL) | Bartter syndrome Type 1, Antenatal (BARTS1) | AR | Antenatal/neonatal presentation with polyhydramnios, premature birth and low-birth weight, nephrocalcinosis, hypokalaemia, metabolic alkalosis, secondary hypoaldosteronism |
KCNJ1 | ROMK potassium channel | Thick ascending limb (TAL) | Bartter syndrome Type 2, Antenatal (BARTS2) | AR | Often antenatal/neonatal presentation with polyhydramnios, premature birth and low-birth weight, nephrocalcinosis, hypokalaemia, metabolic alkalosis, secondary hypoaldosteronismFew reports of later-onset (adult) presentation with nephrocalcinosis and CKD 6 |
CLCNKB | Chloride channel ClC-Kb | Thick ascending limb (TAL) | Bartter syndrome, Type 3 (BARTS3) | AR | Severe hypokalaemic metabolic alkalosis, secondary hypoaldosteronism Usually later symptom-onset but few cases of neonatal onset |
BSND | Barttin, chaperone protein for ClC-Ka and ClC-Kb | Thick ascending limb (TAL) | Bartter syndrome, Type 4: BSND 7 | AR | Severe hypokalaemic metabolic alkalosis, secondary hypoaldosteronism, sensorineural deafness, development of CKD in childhood |
CASR | Gain-of-function mutation in Calcium-sensing receptor (CaSR) | Thick ascending limb (TAL), parathyroid gland | Hypocalcemia, autosomal dominant 1 (HYPOC1) | AD 8 | Serum hypocalcaemia, low serum PTH, hypercalciuria, nephrocalcinosis |
ADCY10 | Soluble Adenylate cyclase 10 | Increased intestinal calcium reabsorption | Familial idiopathic hypercalciuria | AD | Hypercalciuria, calcium nephrolithiasis, nephrocalcinosis |
ATP6V1B1 | B1 subunit vacuolar H+-ATPase pump | Collecting duct | distal RTA 9 with deafness | AR | Hyperchloremic normal anion-gap metabolic acidosis, alkaline urine sensorineural deafness, nephrocalcinosis Good renal prognosis once on treatment |
ATP6V0A4 | A4 subunit vacuolar H+-ATPase pump | Collecting duct | distal RTA | AR | Hyperchloremic normal anion-gap metabolic acidosis, alkaline urine, sensorineural deafness, nephrocalcinosis Good renal prognosis once on treatment |
SLC4A1 | AE1 | Collecting duct | distal RTA | AD or AR | Hyperchloremic normal anion-gap metabolic acidosis, alkaline urine nephrocalcinosis, red blood cell abnormalities Good renal prognosis once on treatment |
FOXI1 | Forkhead box protein I1 | Collecting duct | distal RTA | AR | Hyperchloremic normal anion-gap metabolic acidosis, alkaline urine, nephrocalcinosis. Good renal prognosis once on treatment |
WDR72 | WD repeat-containing protein 72 | Collecting duct | distal RTA | AR | Hyperchloremic normal anion-gap metabolic acidosis, alkaline urine nephrocalcinosis. Good renal prognosis once on treatment |
AGXT | Alanine-glyoxylate aminotransferase | Hepatic peroxisomes | Hyperoxaluria, primary, type 1 | AR | Early onset recurrent calcium oxalate nephrolithiasis, nephrocalcinosis Frequent progression to ESRD Systemic oxalosis affecting multiple organs including kidney, bones, heart, liver |
GRHPR | Glyoxylate reductase/hydroxypyruvate reductase | Liver, leucocytes, kidney | Hyperoxaluria, primary, type 2 | AR | Recurrent nephrolithiasis, nephrocalcinosis Milder phenotype than PH1, only some patients progress to ESRD |
HOGA1 | 4-hydroxy-2-oxoglutarate aldolase | Liver | Hyperoxaluria, primary, type 3 | AR | Nephrolithiasis ± rarely nephrocalcinosis, renal impairment rare |
GDNF | Glial cell-derived neurotrophic factor | Kidney | Medullary sponge kidney | Sporadic or AD | Nephrolithiasis, nephrocalcinosis, recurrent urinary tract infection, urinary acidification defects |
References
- Shavit, L.; Jaeger, P.; Unwin, R.J. What is nephrocalcinosis? Kidney Int. 2019, 88, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, B.; Kleta, R.; Bockenhauer, D.; Walsh, S.B. Genetic, pathophysiological, and clinical aspects of nephrocalcinosis. Am. J. Physiol. 2016, 311, F1243–F1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barratt, J.; Harris, K.; Topham, P. Oxford Desk Reference Nephrology; Oxford University Press: New York, NY, USA, 2008; pp. 278–279. [Google Scholar]
- Glazer, G.M.; Callen, P.W.; Filly, R.A. Medullary nephrocalcinosis: Sonographic evaluation. Am. J. Roentgenol. 1982, 138, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Dick, P.T.; Shuckett, B.M.; Tang, B.; Daneman, A.; Kooh, S.W. Observer reliability in grading nephrocalcinosis on ultrasound examinations in children. Pediatr. Radiol. 1999, 29, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Moor, M.B.; Bonny, O. Ways of calcium reabsorption in the kidney. Am. J. Physiol. 2016, 310, F1337–F1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daga, A.; Majmundar, A.J.; Braun, D.A.; Gee, H.Y.; Lawson, J.A.; Shril, S.; Jobst-Schwan, T.; Vivante, A.; Schapiro, D.; Tan, W.; et al. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int. 2018, 93, 204–213. [Google Scholar] [CrossRef] [Green Version]
- Weigert, A.; Hoppe, B. Nephrolithiasis and nephrocalcinosis in childhood- risk factor related current and future treatment options. Front. Pediatr. 2018, 6, 98. [Google Scholar] [CrossRef]
- He, G.; Zhang, H.; Cao, S.; Xiao, H.; Yao, Y. Dent’s disease complicated by nephrotic syndrome: A case report. Intractable Rare Dis. Res. 2016, 5, 297–300. [Google Scholar] [CrossRef] [Green Version]
- Alexander, R.; Law, L.; Gil-Pena, H.; Greenbaum, L.; Santos, F. Hereditary distal tubular acidosis. In GeneReviews, 2019; Adam, M., Ardinger, H., Pagon, R., Wallace, S., Bean, L., Stephens, K., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2019. Available online: https://www.ncbi.nlm.nih.gov/pubmed/31600044/ (accessed on 24 November 2019).
- Wen, M.; Shen, T.; Wang, Y.; Li, Y.; Shi, X.; Dang, X. Next-Generation Sequencing in Early Diagnosis of Dent Disease 1: Two Case Reports. Front. Med. 2018, 5, 347. [Google Scholar] [CrossRef]
- Lieske, J.C.; Milliner, D.S.; Beara-Lasic, L.; Harris, P.; Cogal, A.; Abrash, E. Dent Disease. In GeneReviews, 2017; Adam, M., Ardinger, H., Pagon, R., Wallace, S., Bean, L., Stephens, K., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK99494/ (accessed on 20 November 2019).
- Hodgin, J.B.; Corey, H.E.; Kaplan, B.S.; D’Agati, V.D. Dent disease presenting as partial Fanconi syndrome and hypercalciuria. Kidney Int. 2008, 73, 1320–1323. [Google Scholar] [CrossRef] [Green Version]
- Bökenkamp, A.; Ludwig, M. The oculocerebrorenal syndrome of Lowe: An update. Pediatr. Nephrol. 2016, 31, 2201–2212. [Google Scholar] [CrossRef] [Green Version]
- Elmonem, M.A.; Veys, K.R.; Soliman, N.A.; van Dyck, M.; van den Heuvel, L.P.; Levtchenko, E. Cystinosis: A review. Orphanet J. Rare Dis. 2016, 11, 47. [Google Scholar] [PubMed] [Green Version]
- Anglani, F.; D’Angelo, A.; Bertizzolo, L.M.; Tosetto, E.; Ceol, M.; Cremasco, D.; Bonfante, L.; Addis, M.A.; Del Prete, D. Nephrolithiasis, kidney failure and bone disorders in Dent disease patients with and without CLCN5 mutations. Springerplus 2015, 4, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anglani, F.; Gianesello, L.; Beara-Lasic, L.; Lieske, J. Dent disease: A window into calcium and phosphate transport. J. Cell. Mol. Med. 2019, 23, 7132–7142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchard, A.; Curis, E.; Guyon-Roger, T.; Kahila, D.; Treard, C.; Baudouin, V.; Bérard, E.; Champion, G.; Cochat, P.; Dubourg, J.; et al. Observations of a large Dent disease cohort. Kidney Int. 2016, 90, 430–439. [Google Scholar] [CrossRef]
- Hill, F.; Sayer, J.A. Clinical and biochemical features of patients with CYP24A1 mutations. In A Critical Evaluation of Vitamin D, 1st ed.; Gowder, S., Ed.; IntechOpen: London, UK, 2017; pp. 91–101. [Google Scholar] [CrossRef] [Green Version]
- British Paediatric Association. Hypercalcemia in infants and vitamin D. Br. Med. J. 1956, 2, 149. [Google Scholar] [CrossRef] [Green Version]
- Schlingmann, K.P.; Kaufmann, M.; Weber, S.; Irwin, A.; Goos, C.; John, U.; Misselwitz, J.; Klaus, G.; Kuwertz-Bröking, E.; Fehrenbach, H.; et al. Mutations in CYP24A1 and Idiopathic Infantile Hypercalcemia. N. Engl. J. Med. 2011, 365, 410–421. [Google Scholar] [CrossRef]
- Dganit, D.; Pazit, B.; Liat, G.; Karen, T.; Zemach, E.; Holtzman, E.J. Loss-of-Function Mutations of CYP24A1, the Vitamin D 24-Hydroxylase Gene, Cause Long-standing Hypercalciuric Nephrolithiasis and Nephrocalcinosis. J. Urol. 2013, 190, 552–557. [Google Scholar]
- Sayers, J.; Hynes, A.M.; Srivastava, S.; Dowen, F.; Quinton, R.; Datta, H.K.; Sayer, J.A. Successful treatment of hypercalcaemia associated with a CYP24A1 mutation with fluconazole. Clin. Kidney J. 2018, 8, 453–455. [Google Scholar] [CrossRef] [Green Version]
- Hawkes, C.P.; Li, D.; Hakonarson, H.; Meyers, K.E.; Thummel, K.E.; Levine, M.A. CYP3A4 Induction by Rifampin: An Alternative Pathway for Vitamin D Inactivation in Patients With CYP24A1 Mutations. J. Clin. Endocrinol. Metab. 2017, 102, 1440–1446. [Google Scholar] [CrossRef]
- Schlingmann, K.P.; Ruminska, J.; Kaufmann, M.; Dursun, I.; Patti, M.; Kranz, B.; Pronicka, E.; Ciara, E.; Akcay, T.; Bulus, D.; et al. Autosomal-Recessive Mutations in SLC34A1 Encoding Sodium-Phosphate Cotransporter 2A Cause Idiopathic Infantile Hypercalcemia. J. Am. Soc. Nephrol. 2016, 27, 604–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Paolis, E.; Scaglione, G.; De Bonis, M.; Minucci, A.; Capoluongo, E. CYP24A1 and SLC34A1 genetic defects associated with idiopathic infantile hypercalcemia: From genotype to phenotype. Clin. Chem. Lab. Med. 2019, 57, 1650. [Google Scholar] [CrossRef]
- Kang, S.J.; Lee, R.; Kim, H.S. Infantile hypercalcemia with novel compound heterozygous mutation in SLC34A1 encoding renal sodium-phosphate cotransporter 2a: A case report. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 64–67. [Google Scholar] [CrossRef]
- Claverie-Martin, F. Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis: Clinical and molecular characteristics. Clin. Kidney J. 2015, 8, 656–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viering, D.H.H.M.; de Baaij, J.H.F.; Walsh, S.B.; Kleta, R.; Bockenhauer, D. Genetic causes of hypomagnesemia, a clinical overview. Pediatr. Nephrol. 2017, 32, 1123–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikora, P.; Zaniew, M.; Haisch, L.; Pulcer, B.; Szczepańska, M.; Moczulska, A.; Rogowska-Kalisz, A.; Bieniaś, B.; Tkaczyk, M.; Ostalska-Nowicka, D.; et al. Retrospective cohort study of familial hypomagnesaemia with hypercalciuria and nephrocalcinosis due to CLDN16 mutations. Nephrol. Dial. Transplant. 2014, 30, 636–644. [Google Scholar] [CrossRef] [Green Version]
- Vianna, J.G.P.; Simor, T.G.; Senna, P.; De Bortoli, M.R.; Costalonga, E.F.; Seguro, A.C.; Luchi, W.M. Atypical presentation of familial hypomagnesemia with hypercalciuria and nephrocalcinosis in a patient with a new claudin-16 gene mutation. Clin. Nephrol. Case Stud. 2019, 7, 27–34. [Google Scholar] [CrossRef]
- Brochard, K.; Boyer, O.; Blanchard, A.; Loirat, C.; Niaudet, P.; Macher, M.A.; Deschenes, G.; Bensman, A.; Decramer, S.; Cochat, P.; et al. Phenotype-genotype correlation in antenatal and neonatal variants of Bartter syndrome. Nephrol. Dial. Transplant. 2008, 24, 1455–1464. [Google Scholar] [CrossRef] [Green Version]
- Gollasch, B.; Anistan, Y.M.; Canaan-Kühl, S.; Gollasch, M. Late-onset Bartter syndrome type II. Clin. Kidney J. 2017, 10, 594–599. [Google Scholar] [CrossRef] [Green Version]
- Walsh, P.R.; Tse, Y.; Ashton, E.; Iancu, D.; Jenkins, L.; Bienias, M.; Kleta, R.; van’t Hoff, W.; Bockenhauer, D. Clinical and diagnostic features of Bartter and Gitelman syndromes. Clin. Kidney J. 2017, 11, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Luiken, G.P.M.; van Riemsdijk, I.C.; Petrij, F.; Zandbergen, A.A.M.; Dees, A. Nephrocalcinosis as adult presentation of Bartter syndrome type II. Neth. J. Med. 2014, 72, 91–93. [Google Scholar] [PubMed]
- Jeck, N.; Reinalter, S.C.; Henne, T.; Marg, W.; Mallmann, R.; Pasel, K.; Vollmer, M.; Klaus, G.; Leonhardt, A.; Seyberth, H.W.; et al. Hypokalemic Salt-Losing Tubulopathy With Chronic Renal Failure and Sensorineural Deafness. Pediatrics 2001, 108, e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Online Mendelian Inheritance in Man, OMIM. OMIM Entry-#300971. Available online: https://www.omin.org/entry/300971#editHistory (accessed on 29 December 2019).
- Pidasheva, S.; D’Souza-Li, L.; Canaff, L.; Cole, D.E.C.; Hendy, G.N. CASRdb: Calcium-sensing receptor locus-specific database for mutations causing familial (benign) hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum. Mutat. 2004, 24, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Poussou, R.; Huang, C.; Hulin, P.; Houillier, P.; Jeunemaître, X.; Paillard, M.; Planelles, G.; Déchaux, M.; Miller, R.T.; Antignac, C. Functional Characterization of a Calcium-Sensing Receptor Mutation in Severe Autosomal Dominant Hypocalcemia with a Bartter-Like Syndrome. J. Am. Soc. Nephrol. 2002, 13, 2259–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, S.H.S.; Williamson, C.; Kifor, O.; Bai, M.; Coulthard, M.G.; Davies, M.; Lewis-Barned, N.; McCredie, D.; Powell, H.; Kendall-Taylor, P.; et al. A Familial Syndrome of Hypocalcemia with Hypercalciuria Due to Mutations in the Calcium-Sensing Receptor. N. Engl. J. Med. 1996, 335, 1115–1122. [Google Scholar] [CrossRef]
- Vezzoli, G.; Arcidiacono, T.; Paloschi, V.; Terranegra, A.; Biasion, R.; Weber, G.; Mora, S.; Syren, M.L.; Coviello, D.; Cusi, D.; et al. Autosomal dominant hypocalcemia with mild type 5 Bartter syndrome. J. Nephrol. 2006, 19, 525–528. [Google Scholar]
- Hannan, F.M.; Thakker, R.V. Calcium-sensing receptor (CaSR) mutations and disorders of calcium, electrolyte and water metabolism. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 359–371. [Google Scholar] [CrossRef]
- Online Mendelian Inheritance in Man, OMIM. OMIM Entry-#143870. Available online: https://www.omim.org/entry/143870#8 (accessed on 29 December 2019).
- Reed, B.Y.; Heller, H.J.; Gitomer, W.L.; Pak, C.Y.C. Mapping a Gene Defect in Absorptive Hypercalciuria to Chromosome 1q23.3–q241. J. Clin. Endocrinol. Metab. 1999, 84, 3907–3913. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T. Improving outcomes for patients with distal renal tubular acidosis: Recent advances and challenges ahead. Pediatr Heal Med Ther. 2018, 9, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Enerbäck, S.; Nilsson, D.; Edwards, N.; Heglind, M.; Alkanderi, S.; Ashton, E.; Deeb, A.; Kokash, F.E.; Bakhsh, A.R.; van’t Hoff, W.; et al. Acidosis and Deafness in Patients with Recessive Mutations in FOXI1. J. Am. Soc. Nephrol. 2018, 29, 1041–1048. [Google Scholar] [CrossRef] [Green Version]
- Rungroj, N.; Nettuwakul, C.; Sawasdee, N.; Sangnual, S.; Deejai, N.; Misgar, R.A.; Pasena, A.; Khositseth, S.; Kirdpon, S.; Sritippayawan, S.; et al. Distal renal tubular acidosis caused by tryptophan-aspartate repeat domain 72 (WDR72) mutations. Clin. Genet. 2018, 94, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Cho, M.H.; Hyun, H.S.; Shin, J.I.; Lee, J.H.; Park, Y.S.; Choi, H.J.; Kang, H.G.; Cheong, H.I. Genotype-Phenotype Analysis in Pediatric Patients with Distal Renal Tubular Acidosis. Kidney Blood Press. Res. 2018, 43, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Strauss, S.B.; Waltuch, T.; Bivin, W.; Kaskel, F.; Levin, T.L. Primary hyperoxaluria: Spectrum of clinical and imaging findings. Pediatr. Radiol. 2017, 47, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Milliner, D.; Hoppe, B.; Groothoff, J. A randomised Phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 2018, 46, 313–323. [Google Scholar] [CrossRef]
- Cochat, P.; Basmaison, O. Current approaches to the management of primary hyperoxaluria. Arch. Dis. Child. 2000, 82, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Sas, D.J.; Harris, P.C.; Milliner, D.S. Recent advances in the identification and management of inherited hyperoxalurias. Urolithiasis 2019, 47, 79–89. [Google Scholar] [CrossRef]
- Grujic, D.; Salido, E.C.; Shenoy, B.C.; Langman, C.B.; McGrath, M.E.; Patel, R.J.; Rashid, A.; Mandapati, S.; Jung, C.W.; Margolin, A.L. Hyperoxaluria Is Reduced and Nephrocalcinosis Prevented with an Oxalate-Degrading Enzyme in Mice with Hyperoxaluria. Am. J. Nephrol. 2009, 29, 86–93. [Google Scholar] [CrossRef]
- Matthew, L.; Victoria, B.; Meekah, C.; Ming, Y.; Qing-Shan, L.; Haifeng, L. MP03-06 Oxalate decarboxylase enzyme reduces hyperoxaluria in an animal model that mimics primary hyperoxaluria. J. Urol. 2019, 201, e22. [Google Scholar]
- National Kidney Foundation. Medullary Sponge Kidney. Available online: https://www.kidney.org/atoz/content/medullary-sponge-kidney (accessed on 29 December 2019).
- Fabris, A.; Anglani, F.; Lupo, A.; Gambaro, G. Medullary sponge kidney: State of the art. Nephrol. Dial. Transplant. 2012, 28, 1111–1119. [Google Scholar] [CrossRef] [Green Version]
- Torregrossa, R.; Anglani, F.; Fabris, A.; Gozzini, A.; Tanini, A.; Del Prete, D.; Cristofaro, R.; Artifoni, L.; Abaterusso, C.; Marchionna, N.; et al. Identification of GDNF gene sequence variations in patients with medullary sponge kidney disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 1205–1210. [Google Scholar] [CrossRef] [Green Version]
- Azizi, E.; Eshel, G.; Aladjem, M. Hypercalciuria and nephrolithiasis as a presenting sign in Wilson disease. Eur. J. Pediatr. 1989, 148, 548–549. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, V.; Lionetti, E.; Rotolo, N.; La Rosa, M.; Leonardi, S. Hypercalciuria and nephrocalcinosis as early feature of Wilson disease onset: Description of a pediatric case and literature review. Hepat. Mon. 2012, 12, e6233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sindhar, S.; Lugo, M.; Levin, M.D.; Danback, J.R.; Brink, B.D.; Yu, E.; Dietzen, D.J.; Clark, A.L.; Purgert, C.A.; Waxler, J.L.; et al. Hypercalcemia in Patients with Williams-Beuren Syndrome. J. Pediatr. 2016, 178, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Katz, S.M.; Krueger, L.J.; Falkner, B. Microscopic Nephrocalcinosis in Cystic Fibrosis. N. Engl. J. Med. 1988, 319, 263–266. [Google Scholar] [CrossRef]
- Elizabeth, J.; Lakshmi Priya, E.; Umadevi, K.M.R.; Ranganathan, K. Amelogenesis imperfecta with renal disease—A report of two cases. J. Oral Pathol. Med. 2007, 36, 625–628. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dickson, F.J.; Sayer, J.A. Nephrocalcinosis: A Review of Monogenic Causes and Insights They Provide into This Heterogeneous Condition. Int. J. Mol. Sci. 2020, 21, 369. https://doi.org/10.3390/ijms21010369
Dickson FJ, Sayer JA. Nephrocalcinosis: A Review of Monogenic Causes and Insights They Provide into This Heterogeneous Condition. International Journal of Molecular Sciences. 2020; 21(1):369. https://doi.org/10.3390/ijms21010369
Chicago/Turabian StyleDickson, Fay J., and John A. Sayer. 2020. "Nephrocalcinosis: A Review of Monogenic Causes and Insights They Provide into This Heterogeneous Condition" International Journal of Molecular Sciences 21, no. 1: 369. https://doi.org/10.3390/ijms21010369
APA StyleDickson, F. J., & Sayer, J. A. (2020). Nephrocalcinosis: A Review of Monogenic Causes and Insights They Provide into This Heterogeneous Condition. International Journal of Molecular Sciences, 21(1), 369. https://doi.org/10.3390/ijms21010369