Clustering of the ζ-Chain Can Initiate T Cell Receptor Signaling
Abstract
:1. Introduction
2. Results
2.1. An Optogenetic Tool to Control the Clustering of ζ-Chain
2.2. Clustered LIC-Z Induces Ca2+ Flux Independent of the TCR Complex
2.3. Lck Phosphorylated Clustered LIC-Z Efficiently in Reconstituted COS-7 Cells
2.4. LIC-Z Clustering Causes Cytosol to Plasma Translocation of Zap70 in COS-7 Cells
2.5. Diffusion Analysis of Lck
3. Discussion
4. Materials and Methods
4.1. Plasmids
4.2. Cell Culture and Light Treatment
4.3. Western Blotting
4.4. Imaging
4.5. Image Analysis
4.6. Fluorescence Spectral Correlation Spectroscopy
4.7. Data Availability
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LIC-Z | light-induced clustering of ζ |
LIC-Z-delCy2 | light-induced clustering of ζ without the Cry2 sequence |
LIC-Z-YFP | light-induced clustering of ζ attached with YFP |
Zap70tSH2 | the tandem SH2 domain of Zap70 fused to mCherry |
Appendix A
Primer Name | Primer Sequence (5′ to 3′) |
Lck10 OVLP RV | atcccctcctcctccttcagggtttgagctgcagacacatcccatggtggcctcgagatctgagtc |
Zeta cyto OVLP FW | aggaggaggaggggatagagtgaagttcagcaggagcgcaga |
Zeta cyto KpnI RV | atggtaccacttccaccgcctccagaaccgcgagggggcagggcctgcatg |
mCherry KpnI FW | agtggtaccatggtgagcaagggcgaggagga |
mCherry BsrGI RV | cttgtacagctcgtccatgccgccggtggagt |
Cy2PHR BsrGI FW | gctgtacaagggctcaactggaagtacaggaacaatgaagatggacaaaaagacta |
Cy2PHR NotI RV | gtcgcggccgctcatttgcaaccattttttccca |
mCherry stop NotI RV | gtcgcggccgctcagtacagctcgtccatgccgccggtggagtgg |
Venus KpnI FW | agtggtaccatggtgagcaagggcgaggagc |
Venus BsrGI RV | ccttgtacagctcgtccatgccggcggcggtcacgaactccagca |
Lck R154K RV | tctcgctctccttgatgaggaaggagccgtga |
Lck R154K FW | tccttcctcatcaaggagagcgagagcaccgc |
Lck K273R RV | cttcaggctccgcaccgccaccttcgtgt |
Lck K273R FW | gtggcggtgcggagcctgaagcagggca |
References
- Gil, D.; Schamel, W.W.; Montoya, M.; Sánchez-Madrid, F.; Alarcón, B. Recruitment of Nck by CD3ϵ Reveals a Ligand-Induced Conformational Change Essential for T Cell Receptor Signaling and Synapse Formation. Cell 2002, 109, 901–912. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.S.; Glassman, C.R.; Deshpande, N.R.; Badgandi, H.B.; Parrish, H.L.; Uttamapinant, C.; Stawski, P.S.; Ting, A.Y.; Kuhns, M.S. A Mechanical Switch Couples T Cell Receptor Triggering to the Cytoplasmic Juxtamembrane Regions of CD3zetazeta. Immunity 2015, 43, 227–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irving, B.A.; Weiss, A. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 1991, 64, 891–901. [Google Scholar] [CrossRef]
- Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.I.; Grupp, S.A.; Bagg, A.; June, C.H. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci. Transl. Med. 2011, 3, 95ra73. [Google Scholar] [CrossRef] [Green Version]
- Cochran, J.R.; Cameron, T.O.; Stern, L.J. The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 2000, 12, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Boniface, J.; Rabinowitz, J.D.; Wülfing, C.; Hampl, J.; Reich, Z.; Altman, J.D.; Kantor, R.M.; Beeson, C.; McConnell, H.M.; Davis, M.M. Initiation of Signal Transduction through the T Cell Receptor Requires the Multivalent Engagement of Peptide/MHC Ligands. Immunity 1998, 9, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Eshhar, Z.; Waks, T.; Gross, G.; Schindler, D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA 1993, 90, 720–724. [Google Scholar] [CrossRef] [Green Version]
- Letourneur, F.; Klausner, R.D. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor zeta family proteins. Proc. Natl. Acad. Sci. USA 1991, 88, 8905–8909. [Google Scholar] [CrossRef] [Green Version]
- Yokosuka, T.; Sakata-Sogawa, K.; Kobayashi, W.; Hiroshima, M.; Hashimoto-Tane, A.; Tokunaga, M.; Dustin, M.L.; Saito, T. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 2005, 6, 1253–1262. [Google Scholar] [CrossRef]
- Ike, H.; Kosugi, A.; Kato, A.; Iino, R.; Hirano, H.; Fujiwara, T.K.; Ritchie, K.; Kusumi, A. Mechanism of Lck Recruitment to the T-Cell Receptor Cluster as Studied by Single-Molecule-Fluorescence Video Imaging. ChemPhysChem 2003, 4, 620–626. [Google Scholar] [CrossRef]
- Varma, R.; Campi, G.; Yokosuka, T.; Saito, T.; Dustin, M.L. T Cell Receptor-Proximal Signals Are Sustained in Peripheral Microclusters and Terminated in the Central Supramolecular Activation Cluster. Immunity 2006, 25, 117–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Pandzic, E.; Nicovich, P.R.; Yamamoto, Y.; Kwiatek, J.; Pageon, S.; Benda, A.; Rossy, J.; Gaus, K. An intermolecular FRET sensor detects the dynamics of T cell receptor clustering. Nat. Commun. 2017, 8, 15100. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.J.; Husain, K.; Gartner, Z.J.; Mayor, S.; Vale, R.D. A DNA-Based T Cell Receptor Reveals a Role for Receptor Clustering in Ligand Discrimination. Cell 2017, 169, 108–119.e20. [Google Scholar] [CrossRef] [Green Version]
- Pageon, S.V.; Tabarin, T.; Yamamoto, Y.; Ma, Y.; Nicovich, P.R.; Bridgeman, J.S.; Cohnen, A.; Benzing, C.; Gao, Y.; Crowther, M.D.; et al. Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proc. Natl. Acad. Sci. USA 2016, 113, E5454–E5463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, D.; Wandless, T.; Schreiber, S.; Crabtree, G. Controlling signal transduction with synthetic ligands. Science 1993, 262, 1019–1024. [Google Scholar] [CrossRef]
- Tischer, D.K.; Weiner, O.D. Light-based tuning of ligand half-life supports kinetic proofreading model of T cell signaling. eLife 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, O.S.; Günther, M.; Hörner, M.; Chalupsky, J.; Wess, M.; Brandl, S.M.; Smith, R.W.; Fleck, C.; Kunkel, T.; Zurbriggen, M.D.; et al. Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor. eLife 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Bugaj, L.J.; Choksi, A.T.; Mesuda, C.K.; Kane, R.S.; Schaffer, D.V. Optogenetic protein clustering and signaling activation in mammalian cells. Nat. Methods 2013, 10, 249–252. [Google Scholar] [CrossRef]
- Zlatkine, P.; Mehul, B.; I Magee, A. Retargeting of cytosolic proteins to the plasma membrane by the Lck protein tyrosine kinase dual acylation motif. J. Cell Sci. 1997, 110, 673–679. [Google Scholar] [PubMed]
- Douglass, A.D.; Vale, R.D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 2005, 121, 937–950. [Google Scholar] [CrossRef] [Green Version]
- Triffo, S.B.; Huang, H.H.; Smith, A.W.; Chou, E.T.; Groves, J.T. Monitoring Lipid Anchor Organization in Cell Membranes by PIE-FCCS. J. Am. Chem. Soc. 2012, 134, 10833–10842. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Hope, J.; Ong, Q.; Lou, H.-Y.; Kim, N.; McCarthy, C.; Acero, V.; Lin, M.Z.; Cui, B. Understanding CRY2 interactions for optical control of intracellular signaling. Nat. Commun. 2017, 8, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heemskerk, M.H.M.; Hoogeboom, M.; De Paus, R.A.; Kester, M.G.D.; Van Der Hoorn, M.A.W.G.; Goulmy, E.; Willemze, R.; Falkenburg, J.H.F. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood 2003, 102, 3530–3540. [Google Scholar] [CrossRef] [PubMed]
- Knies, D.; Klobuch, S.; Xue, S.-A.; Birtel, M.; Echchannaoui, H.; Yildiz, O.; Omokoko, T.; Guillaume, P.; Romero, P.; Stauss, H.; et al. An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells. Oncotarget 2016, 7, 21199–21221. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Araki, S.; Wu, J.; Teramoto, T.; Chang, Y.-F.; Nakano, M.; Abdelfattah, A.S.; Fujiwara, M.; Ishihara, T.; Nagai, T.; et al. An Expanded Palette of Genetically Encoded Ca2+ Indicators. Science 2011, 333, 1888–1891. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.; Dalton, M.; Johnson, R.; Kong, G.; Wang, T.; Thoma, R.; Kurosaki, T. Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J. 1995, 14, 2499–2508. [Google Scholar] [CrossRef]
- Lewis, R.S. Calcium signaling mechanisms in T lymphocytes. Ann. Rev. Immunol. 2001, 19, 497–521. [Google Scholar] [CrossRef]
- Whitehurst, C.E.; Geppert, T.D. MEK1 and the extracellular signal-regulated kinases are required for the stimulation of IL-2 gene transcription in T cells. J. Immunol. 1996, 156, 1020–1029. [Google Scholar]
- Iwashima, M.; Irving, B.; Van Oers, N.S.C.; Chan, A.; Weiss, A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 1994, 263, 1136–1139. [Google Scholar] [CrossRef]
- James, J.R.; Vale, R.D. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 2012, 487, 64–69. [Google Scholar] [CrossRef]
- Ottinger, E.A.; Botfield, M.C.; E Shoelson, S. Tandem SH2 Domains Confer High Specificity in Tyrosine Kinase Signaling. J. Boil. Chem. 1998, 273, 729–735. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, H.; Cordoba, S.-P.; Maini, P.K.; Van Der Merwe, P.A.; Dushek, O. Systems Model of T Cell Receptor Proximal Signaling Reveals Emergent Ultrasensitivity. PLoS Comput. Boil. 2013, 9, e1003004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellicena, P.; Stowell, K.R.; Miller, W.T. Enhanced Phosphorylation of Src Family Kinase Substrates Containing SH2 Domain Binding Sites. J. Boil. Chem. 1998, 273, 15325–15328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, L.A.; Chung, C.D.; Chen, J.; Parnes, J.R.; Moran, M.; Patel, V.P.; Miceli, M.C. The Lck SH2 phosphotyrosine binding site is critical for efficient TCR-induced processive tyrosine phosphorylation of the zeta-chain and IL-2 production. J. Immunol. 1997, 159, 2292–2300. [Google Scholar] [PubMed]
- Pike, J.A.; Styles, I.B.; Rappoport, J.Z.; Heath, J. Quantifying receptor trafficking and colocalization with confocal microscopy. Methods 2017, 115, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Benda, A.; Kapusta, P.; Hof, M.; Gaus, K. Fluorescence spectral correlation spectroscopy (FSCS) for probes with highly overlapping emission spectra. Opt. Express 2014, 22, 2973–2988. [Google Scholar] [CrossRef]
- Benda, A.; Ma, Y.; Gaus, K. Self-Calibrated Line-Scan STED-FCS to Quantify Lipid Dynamics in Model and Cell Membranes. Biophys. J. 2015, 108, 596–609. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Benda, A.; Nicovich, P.R.; Gaus, K. Measuring membrane association and protein diffusion within membranes with supercritical angle fluorescence microscopy. Biomed. Opt. Express 2016, 7, 1561–1576. [Google Scholar] [CrossRef] [Green Version]
- Call, M.E.; Pyrdol, J.; Wiedmann, M.; Wucherpfennig, K.W. The Organizing Principle in the Formation of the T Cell Receptor-CD3 Complex. Cell 2002, 111, 967–979. [Google Scholar] [CrossRef] [Green Version]
- Call, M.E.; Schnell, J.R.; Xu, C.; Lutz, R.A.; Chou, J.J.; Wucherpfennig, K.W. The Structure of the ζζ Transmembrane Dimer Reveals Features Essential for Its Assembly with the T Cell Receptor. Cell 2006, 127, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Lommerse, P.H.M.; Vastenhoud, K.; Pirinen, N.J.; Magee, A.I.; Spaink, H.P.; Schmidt, T. Single-Molecule Diffusion Reveals Similar Mobility for the Lck, H-Ras, and K-Ras Membrane Anchors. Biophys. J. 2006, 91, 1090–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; Finkel, T.H. T cell receptor triggering by force. Trends Immunol. 2010, 31, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minguet, S.; Swamy, M.; Alarcon, B.; Luescher, I.F.; Schamel, W.W.A. Full Activation of the T Cell Receptor Requires Both Clustering and Conformational Changes at CD3. Immunity 2007, 26, 43–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Gagnon, E.; Call, M.E.; Schnell, J.R.; Schwieters, C.D.; Carman, C.V.; Chou, J.J.; Wucherpfennig, K.W. Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 2008, 135, 702–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.T.; Shin, Y.; Brazin, K.; Mallis, R.J.; Sun, Z.-Y.J.; Wagner, G.; Lang, M.J.; Reinherz, E.L. TCR Mechanobiology: Torques and Tunable Structures Linked to Early T Cell Signaling. Front. Immunol. 2012, 3, 76. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Bi, Y.; Yang, W.; Guo, X.; Jiang, Y.; Wan, C.; Li, L.; Bai, Y.; Guo, J.; Wang, Y.; et al. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 2012, 493, 111–115. [Google Scholar] [CrossRef]
- Ma, Y.; Yamamoto, Y.; Nicovich, P.R.; Goyette, J.; Rossy, J.; Gooding, J.J.; Gaus, K. A FRET sensor enables quantitative measurements of membrane charges in live cells. Nat. Biotechnol. 2017, 35, 363–370. [Google Scholar] [CrossRef]
- Zimmermann, K.; Eells, R.; Heinrich, F.; Rintoul, S.; Josey, B.; Shekhar, P.; Loesche, M.; Stern, L.J. The cytosolic domain of T-cell receptor ζ associates with membranes in a dynamic equilibrium and deeply penetrates the bilayer. J. Boil. Chem. 2017, 292, 17746–17759. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Cordoba, S.P.; Dushek, O.; van der Merwe, P.A. Basic residues in the T-cell receptor zeta cytoplasmic domain mediate membrane association and modulate signaling. Proc. Natl. Acad. Sci. USA 2011, 108, 19323–19328. [Google Scholar] [CrossRef] [Green Version]
- Sigalov, A.B.; Aivazian, D.A.; Uversky, V.N.; Stern, L.J. Lipid-Binding Activity of Intrinsically Unstructured Cytoplasmic Domains of Multichain Immune Recognition Receptor Signaling Subunits. Biochemistry 2006, 45, 15731–15739. [Google Scholar] [CrossRef] [Green Version]
- Reich, Z.; Boniface, J.J.; Lyons, D.S.; Borochov, N.; Wachtel, E.J.; Davis, M.M. Ligand-specific oligomerization of T-cell receptor molecules. Nature 1997, 387, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Romeo, C.; Seed, B. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 1991, 64, 1037–1046. [Google Scholar] [CrossRef]
- Letourneur, F.; Klausner, R.D. Activation of T cells by a tyrosine kinase activation domain in the cytoplasmic tail of CD3 epsilon. Science 1992, 255, 79–82. [Google Scholar] [CrossRef]
- Furlan, G.; Minowa, T.; Hanagata, N.; Kataoka-Hamai, C.; Kaizuka, Y. Phosphatase CD45 Both Positively and Negatively Regulates T Cell Receptor Phosphorylation in Reconstituted Membrane Protein Clusters. J. Boil. Chem. 2014, 289, 28514–28525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, E.; Vale, R.D. In vitro membrane reconstitution of the T-cell receptor proximal signaling network. Nat. Struct. Mol. Boil. 2014, 21, 133–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, S.J.; Van Der Merwe, P.A. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 2006, 7, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.; Fournel, M.; Davidson, D.; Veillette, A. Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk. Nature 1993, 365, 156–160. [Google Scholar] [CrossRef]
- O’Donoghue, G.P.; Pielak, R.M.; A Smoligovets, A.; Lin, J.J.; Groves, J.T. Direct single molecule measurement of TCR triggering by agonist pMHC in living primary T cells. eLife 2013, 2. [Google Scholar] [CrossRef]
- Huang, J.; Brameshuber, M.; Zeng, X.; Xie, J.; Li, Q.-J.; Chien, Y.-H.; Valitutti, S.; Davis, M.M. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4(+) T cells. Immunity 2013, 39, 846–857. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.J.; O’Donoghue, G.P.; Wilhelm, K.B.; Coyle, M.P.; Low-Nam, S.T.; Fay, N.C.; Alfieri, K.N.; Groves, J.T. Membrane association transforms an inert anti-TCRβ Fab’ ligand into a potent T cell receptor agonist. Biophys. J. 2020. [Google Scholar] [CrossRef]
- Brameshuber, M.; Kellner, F.; Rossboth, B.K.; Ta, H.; Alge, K.; Sevcsik, E.; Göhring, J.; Axmann, M.; Baumgart, F.; Gascoigne, N.R.J.; et al. Monomeric TCRs drive T cell antigen recognition. Nat. Immunol. 2018, 19, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.L.; Lorenzini, M.H.; Chen, X.; Tran, U.; Bangayan, N.J.; Chen, Y.Y. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat. Methods 2018, 14, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Guo, X.; Shi, X.; Li, C.; Wu, W.; Yan, C.; Wang, H.; Li, H.; Xu, C. Ionic CD3−Lck interaction regulates the initiation of T-cell receptor signaling. Proc. Natl. Acad. Sci. USA 2017, 114, E5891–E5899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, B.L.; Schreiber, K.L.; Zhang, W.; Wange, R.L.; Samelson, L.E.; Leibson, P.J.; Abraham, R.T. Genetic Evidence for Differential Coupling of Syk Family Kinases to the T-Cell Receptor: Reconstitution Studies in a ZAP-70-Deficient Jurkat T-Cell Line. Mol. Cell. Boil. 1998, 18, 1388–1399. [Google Scholar] [CrossRef] [Green Version]
- Costes, S.V.; Daelemans, D.; Cho, E.; Dobbin, Z.; Pavlakis, G.; Lockett, S. Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells. Biophys. J. 2004, 86, 3993–4003. [Google Scholar] [CrossRef] [Green Version]
- Levitus, M. Handbook of Fluorescence Spectroscopy and Imaging. From Ensemble to Single Molecules. Edited by Markus Sauer, Johan Hofkens and Jörg Enderlein. Angew. Chem. Int. Ed. 2011, 50, 9017–9018. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Lim, Y.J.; Benda, A.; Lou, J.; Goyette, J.; Gaus, K. Clustering of the ζ-Chain Can Initiate T Cell Receptor Signaling. Int. J. Mol. Sci. 2020, 21, 3498. https://doi.org/10.3390/ijms21103498
Ma Y, Lim YJ, Benda A, Lou J, Goyette J, Gaus K. Clustering of the ζ-Chain Can Initiate T Cell Receptor Signaling. International Journal of Molecular Sciences. 2020; 21(10):3498. https://doi.org/10.3390/ijms21103498
Chicago/Turabian StyleMa, Yuanqing, Yean J. Lim, Aleš Benda, Jieqiong Lou, Jesse Goyette, and Katharina Gaus. 2020. "Clustering of the ζ-Chain Can Initiate T Cell Receptor Signaling" International Journal of Molecular Sciences 21, no. 10: 3498. https://doi.org/10.3390/ijms21103498
APA StyleMa, Y., Lim, Y. J., Benda, A., Lou, J., Goyette, J., & Gaus, K. (2020). Clustering of the ζ-Chain Can Initiate T Cell Receptor Signaling. International Journal of Molecular Sciences, 21(10), 3498. https://doi.org/10.3390/ijms21103498