RNAs in Brain and Heart Diseases †
Abstract
:1. Introduction
2. Physiological Interactions between the Heart and Brain
3. Noncoding RNAs as Potential Long-Distance Signal Mediators and Circulating Biomarkers
4. Perspectives and Outlook
- Perform high-throughput-based identification of the RNAs with potential paracrine roles between the brain and the heart in different disease conditions;
- Demonstrate that candidate RNA biomarkers cross the blood–brain barrier;
- Address the paracrine role of RNAs using in vivo and in vitro approaches;
- Identify and validate in patient cohorts brain- or heart-specific RNA biomarkers associated with clinical outcome.
- Resolving technical challenges inherent to the identification of candidate RNAs and their use as biomarkers and therapeutic targets;
- Designing optimal protocols for biological sample collection, storage, and processing (i.e., RNA measurement);
- Developing unbiased and corrected for multiple testing bioinformatics and biostatistics approaches for RNA biomarker discovery;
- Using existing or de novo multicenter patient cohorts for independent and properly sized validation of RNA candidates identified in discovery phases using next-generation sequencing or other high-throughput techniques;
- Addressing sex differences;
- Joining complementary forces and expertise of clinicians, researchers, information technology, and biostatistics specialists to build collaborative research projects addressing the brain–heart axis in a systems-based manner.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
COST | Cooperation in Science and Technology |
ncRNAs | Noncoding RNAs |
LncRNAs | Long noncoding RNAs |
BACE1 | β-secretase-1 |
AD | Alzheimer’s disease |
PD | Parkinson’s disease |
References
- Natelson, B.H. Neurocardiology: An Interdisciplinary Area for the 80s. JAMA Neurol. 1985, 42, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Dar, T.; Radfar, A.; Abohashem, S.; Pitman, R.K.; Tawakol, A.; Osborne, M.T. Psychosocial Stress and Cardiovascular Disease. Curr. Treat. Opt. Cardiovasc. Med. 2019, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Tawakol, A.; Osborne, M.T.; Wang, Y.; Hammed, B.; Tung, B.; Patrich, T.; Oberfeld, B.; Ishai, A.; Shin, L.M.; Nahrendorf, M.; et al. Stress-Associated Neurobiological Pathway Linking Socioeconomic Disparities to Cardiovascular Disease. J. Am. Coll. Cardiol. 2019, 73, 3243–3255. [Google Scholar] [CrossRef] [PubMed]
- Meli, A.C. The impact of cardiovascular diseases and new gene variants in swaying Alzheimer’s disease. Cardiovasc. Res. 2019, 115, e102–e104. [Google Scholar] [CrossRef]
- Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; van der Lee, S.J.; Amlie-Wolf, A.; et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 2019, 51, 414–430. [Google Scholar] [CrossRef] [Green Version]
- Sanna, G.D.; Nusdeo, G.; Piras, M.R.; Forteleoni, A.; Murru, M.R.; Saba, P.S.; Dore, S.; Sotgiu, G.; Parodi, G.; Ganau, A.; et al. Cardiac Abnormalities in Alzheimer Disease. JACC Heart Fail. 2019, 7, 121. [Google Scholar] [CrossRef]
- Troncone, L.; Luciani, M.; Coggins, M.; Wilker, E.H.; Ho, C.; Codispoti, K.E.; Frosch, M.P.; Kayed, R.; del Monte, F. Aβ Amyloid Pathology Affects the Hearts of Patients With Alzheimer’s Disease: Mind the Heart. J. Am. Coll. Cardiol. 2016, 68, 2395–2407. [Google Scholar] [CrossRef]
- Greco, S.; Zaccagnini, G.; Fuschi, P.; Voellenkle, C.; Carrara, M.; Sadeghi, I.; Bearzi, C.; Maimone, B.; Castelvecchio, S.; Stellos, K.; et al. Increased BACE1-AS long noncoding RNA and β-amyloid levels in heart failure. Cardiovasc. Res. 2017, 113, 453–463. [Google Scholar] [CrossRef]
- Stamatelopoulos, K.; Sibbing, D.; Rallidis, L.S.; Georgiopoulos, G.; Stakos, D.; Braun, S.; Gatsiou, A.; Sopova, K.; Kotakos, C.; Varounis, C.; et al. Amyloid-beta (1-40) and the risk of death from cardiovascular causes in patients with coronary heart disease. J. Am. Coll. Cardiol. 2015, 65, 904–916. [Google Scholar] [CrossRef] [Green Version]
- Scorza, F.A.; Fiorini, A.C.; Scorza, C.A.; Finsterer, J. Cardiac abnormalities in Parkinson’s disease and Parkinsonism. J. Clin. Neurosci. 2018, 53, 1–5. [Google Scholar] [CrossRef]
- Templin, C.; Hanggi, J.; Klein, C.; Topka, M.S.; Hiestand, T.; Levinson, R.A.; Jurisic, S.; Lüscher, T.F.; Ghadri, J.; Jäncke, L. Altered limbic and autonomic processing supports brain-heart axis in Takotsubo syndrome. Eur. Heart J. 2019, 40, 1183–1187. [Google Scholar] [CrossRef] [PubMed]
- Katsouda, A.; Bibli, S.-I.; Pyriochou, A.; Szabo, C.; Papapetropoulos, A. Regulation and role of endogenously produced hydrogen sulfide in angiogenesis. Pharmacol. Res. 2016, 113, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Pongratz, G.; Zietz, B.; Gluck, T.; Scholmerich, J.; Straub, R.H. Corticotropin-releasing factor modulates cardiovascular and pupillary autonomic reflexes in man: Is there a link to inflammation-induced autonomic nervous hyperreflexia? Ann. N. Y. Acad. Sci. 2002, 966, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Moss, R.L.; Fitzsimons, D.P.; Ralphe, J.C. Cardiac MyBP-C regulates the rate and force of contraction in mammalian myocardium. Circ. Res. 2015, 116, 183–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Venkat, P.; Seyfried, D.; Chopp, M.; Yan, T.; Chen, J. Brain-Heart Interaction: Cardiac Complications after Stroke. Circ. Res. 2017, 121, 451–468. [Google Scholar] [CrossRef]
- Bucolo, C.; Leggio, G.M.; Drago, F.; Salomone, S. Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas. Pharmacol. Ther. 2019, 203, 107392. [Google Scholar] [CrossRef]
- Schulz, A.; Stammet, P.; Dierolf, A.M.; Vogele, C.; Beyenburg, S.; Werer, C.; Devaux, Y. Late heartbeat-evoked potentials are associated with survival after cardiac arrest. Resuscitation 2018, 126, 7–13. [Google Scholar] [CrossRef]
- Cook, R.; Davidson, P.; Martin, R.; on behalf of NIHR Dissemination Centre. Adrenaline can restart the heart, but is no good for the brain. BMJ 2019, 364, k4259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Cao, J.; Liu, L.; Du, Q.; Li, Z.; Zou, D.; Bajic, V.B.; Zhang, Z. LncBook: A curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res. 2019, 47, D128–D134. [Google Scholar] [CrossRef] [Green Version]
- Shanmuganathan, M.; Vughs, J.; Noseda, M.; Emanueli, C. Exosomes: Basic Biology and Technological Advancements Suggesting Their Potential as Ischemic Heart Disease Therapeutics. Front. Physiol. 2018, 9, 1159. [Google Scholar] [CrossRef]
- Stammet, P.; Collignon, O.; Hassager, C.; Wise, M.P.; Hovdenes, J.; Åneman, A.; Horn, J.; Devaux, Y.; Erlinge, D.; Kjaergaard, J.; et al. Neuron-Specific Enolase as a Predictor of Death or Poor Neurological Outcome After Out-of-Hospital Cardiac Arrest and Targeted Temperature Management at 33 °C and 36 °C. J. Am. Coll. Cardiol. 2015, 65, 2104–2114. [Google Scholar] [CrossRef] [PubMed]
- Devaux, Y.; Dankiewicz, J.; Salgado-Somoza, A.; Stammet, P.; Collignon, O.; Gilje, P.; Gidlöf, O.; Zhang, L.; Vausort, M.; Hassager, C.; et al. Association of Circulating MicroRNA-124-3p Levels with Outcomes after out-of-Hospital Cardiac Arrest: A Substudy of a Randomized Clinical Trial. JAMA Cardiol. 2016, 1, 305–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgado-Somoza, A.; Stefanizzi, F.M.; Stammet, P.; Erlinge, D.; Friberg, H.; Nielsen, N.; Devaux, Y. Non-Coding RNAs to Aid in Neurological Prognosis after Cardiac Arrest. Noncoding RNA 2018, 4, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Liao, X.; Li, X.; Wei, H.; Liang, Q.; Zhang, Z.; Yin, M.; Zeng, X.; Liang, Z.; Hu, C. Expression profiles of long noncoding RNAs and mRNAs in post-cardiac arrest rat brains. Mol. Med. Rep. 2018, 17, 6413–6424. [Google Scholar] [CrossRef] [Green Version]
- Devaux, Y.; Creemers, E.E.; Boon, R.A.; Werfel, S.; Thum, T.; Engelhardt, S.; Dimmeler, S.; Squire, I.; on behalf of the Cardiolinc network. Circular RNAs in heart failure. Eur. J. Heart Fail. 2017, 19, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Gomes, C.P.C.; Schroen, B.; Kuster, G.M.; Robinson, E.L.; Ford, K.; Squire, I.B.; Heymans, S.; Martelli, F.; Emanueli, C.; Devaux, Y. Regulatory RNAs in Heart Failure. Circulation 2020, 141, 313–328. [Google Scholar] [CrossRef]
- Greco, S.; Salgado Somoza, A.; Devaux, Y.; Martelli, F. Long Noncoding RNAs and Cardiac Disease. Antioxid. Redox Signal. 2018, 29, 880–901. [Google Scholar] [CrossRef]
- da Costa Gomes, C.P.; Ágg, B.; Andova, A.; Arslan, S.; Baker, A.; Barteková, M.; Beis, D.; Betsou, F.; Wettinger, S.B.; Bugarski, B.; et al. Catalyzing Transcriptomics Research in Cardiovascular Disease: The CardioRNA COST Action CA17129. Noncoding RNA 2019, 5, 31. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beis, D.; Zerr, I.; Martelli, F.; Doehner, W.; Devaux, Y. RNAs in Brain and Heart Diseases. Int. J. Mol. Sci. 2020, 21, 3717. https://doi.org/10.3390/ijms21103717
Beis D, Zerr I, Martelli F, Doehner W, Devaux Y. RNAs in Brain and Heart Diseases. International Journal of Molecular Sciences. 2020; 21(10):3717. https://doi.org/10.3390/ijms21103717
Chicago/Turabian StyleBeis, Dimitris, Inga Zerr, Fabio Martelli, Wolfram Doehner, and Yvan Devaux. 2020. "RNAs in Brain and Heart Diseases" International Journal of Molecular Sciences 21, no. 10: 3717. https://doi.org/10.3390/ijms21103717
APA StyleBeis, D., Zerr, I., Martelli, F., Doehner, W., & Devaux, Y. (2020). RNAs in Brain and Heart Diseases. International Journal of Molecular Sciences, 21(10), 3717. https://doi.org/10.3390/ijms21103717