Erythropoietin Mediated Bone Loss in Mice Is Dose-Dependent and Mostly Irreversible
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
4.1. Experimental Animals
4.2. Microcomputed Tomography (µCT)
4.3. Hemoglobin Levels
4.4. Flow Cytometry
4.5. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jelkmann, W. Regulation of erythropoietin production. J. Physiol. 2011, 589 (Pt 6), 1251–1258. [Google Scholar] [CrossRef]
- Jelkmann, W. Physiology and pharmacology of erythropoietin. Transfus. Med. Hemother. 2013, 40, 302–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panjeta, M.; Tahirovic, I.; Karamehic, J.; Sofic, E.; Ridic, O.; Coric, J. The Relation of Erythropoietin Towards Hemoglobin and Hematocrit in Varying Degrees of Renal Insufficiency. Mater. Sociomed. 2015, 27, 144–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckardt, K.-U.; Koury, S.T.; Tan, C.C.; Schuster, S.J.; Kaissling, B.; Ratcliffe, P.J.; Kurtz, A. Distribution of erythropoietin producing cells in rat kidneys during hypoxic hypoxia. Kidney Int. 1993, 43, 815–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forbes, C.A.; Worthy, G.; Harker, J.; Kleijnen, J.; Kutikova, L.; Zelek, L.; Van Belle, S. Dose efficiency of erythropoiesis-stimulating agents for the treatment of patients with chemotherapy-induced anemia: A systematic review. Clin. Ther. 2014, 36, 594–610. [Google Scholar] [CrossRef] [PubMed]
- Cariou, A.; Deye, N.; Vivien, B.; Richard, O.; Pichon, N.; Bourg, A.; Huet, L.; Buleon, C.; Frey, J.; Asfar, P.; et al. Early High-Dose Erythropoietin Therapy After Out-of-Hospital Cardiac Arrest: A Multicenter, Randomized Controlled Trial. J. Am. Coll. Cardiol 2016, 68, 40–49. [Google Scholar] [CrossRef]
- Chait, Y.; Horowitz, J.; Nichols, B.; Shrestha, R.P.; Hollot, C.V.; Germain, M.J. Control-relevant erythropoiesis modeling in end-stage renal disease. IEEE Trans. Bio-Med Eng. 2014, 61, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Giagounidis, A. Current treatment algorithm for the management of lower-risk MDS. Hematol. Am. So.c Hematol. Educ. Program 2017, 2017, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Hiram-Bab, S.; Liron, T.; Deshet-Unger, N.; Mittelman, M.; Gassmann, M.; Rauner, M.; Franke, K.; Wielockx, B.; Neumann, D.; Gabet, Y. Erythropoietin directly stimulates osteoclast precursors and induces bone loss. FASEB J. 2015, 29, 1890–1900. [Google Scholar] [CrossRef] [Green Version]
- Gassmann, M.; Heinicke, K.; Soliz, J.; Ogunshola, O.O. Non-erythroid functions of erythropoietin. Adv. Exp. Med. Biol. 2003, 543, 323–330. [Google Scholar]
- Boyce, B.F. Advances in the regulation of osteoclasts and osteoclast functions. J. Dent. Res. 2013, 92, 860–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; You, X.; Xing, W.; Zhang, Z.; Zou, W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018, 6, 16. [Google Scholar] [CrossRef]
- Hiram-Bab, S.; Neumann, D.; Gabet, Y. Erythropoietin in bone-Controversies and consensus. Cytokine 2017, 89, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.M.; Maxwell, P.; Graham, A.N.J.; Yakkundi, A.; Dunlop, E.A.; Shi, Z.; Johnston, P.G.; Lappin, T.R.J. Erythropoietin Receptor Expression in Non-Small Cell Lung Carcinoma: A Question of Antibody Specificity. Stem Cells 2007, 25, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Elliott, S.; Busse, L.; Bass, M.B.; Lu, H.; Sarosi, I.; Sinclair, A.M.; Spahr, C.; Um, M.; Van, G.; Begley, C.G. Anti-Epo receptor antibodies do not predict Epo receptor expression. Blood 2006, 107, 1892–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauner, M.; Franke, K.; Murray, M.; Singh, R.P.; Hiram-Bab, S.; Platzbecker, U.; Gassmann, M.; Socolovsky, M.; Neumann, D.; Gabet, Y.; et al. Increased EPO Levels Are Associated With Bone Loss in Mice Lacking PHD2 in EPO-Producing Cells. J. Bone Min. Res. 2016, 31, 1877–1887. [Google Scholar] [CrossRef]
- Singbrant, S.; Russell, M.R.; Jovic, T.; Liddicoat, B.; Izon, D.J.; Purton, L.E.; Sims, N.A.; Martin, T.J.; Sankaran, V.G.; Walkley, C.R. Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment. Blood 2011, 117, 5631–5642. [Google Scholar] [CrossRef]
- Kristjansdottir, H.L.; Lewerin, C.; Lerner, U.H.; Herlitz, H.; Johansson, P.; Johansson, H.; Karlsson, M.; Lorentzon, M.; Ohlsson, C.; Ljunggren, O.; et al. High Plasma Erythropoietin Predicts Incident Fractures in Elderly Men with Normal Renal Function: The MrOS Sweden Cohort. J. Bone Miner. Res. 2020, 35, 298–305. [Google Scholar] [CrossRef]
- Santos, B.C.; Jorge, S.E.; de Albuquerque, D.M.; Gilli, S.C.O.; Sonati, M.F.; Fertrin, K.Y.; Costa, F.F. High erythropoietin may be associated with vascular complications in patients with secondary erythrocytosis caused by high oxygen affinity variant hemoglobin Coimbra. Blood Cells Mol. Dis. 2019, 79, 102353. [Google Scholar] [CrossRef]
- Richmond, T.D.; Chohan, M.; Barber, D.L. Turning cells red: Signal transduction mediated by erythropoietin. Trends Cell Biol. 2005, 15, 146–155. [Google Scholar] [CrossRef]
- Rhodes, M.M.; Kopsombut, P.; Bondurant, M.C.; Price, J.O.; Koury, M.J. Adherence to macrophages in erythroblastic islands enhances erythroblast proliferation and increases erythrocyte production by a different mechanism than erythropoietin. Blood 2008, 111, 1700–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klingmuller, U.; Lorenz, U.; Cantley, L.C.; Neel, B.G.; Lodish, H.F. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 1995, 80, 729–738. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, A.; Yasukawa, H.; Shouda, T.; Kitamura, T.; Dikic, I.; Yoshimura, A. CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J. Biol. Chem. 2000, 275, 29338–29347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodges, V.M.; Rainey, S.; Lappin, T.R.; Maxwell, A.P. Pathophysiology of anemia and erythrocytosis. Crit. Rev. Oncol. Hematol. 2007, 64, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Lifshitz, L.; Tabak, G.; Gassmann, M.; Mittelman, M.; Neumann, D. Macrophages as novel target cells for erythropoietin. Haematologica 2010, 95, 1823–1831. [Google Scholar] [CrossRef] [Green Version]
- Sanchis-Gomar, F.; Perez-Quilis, C.; Lippi, G. Erythropoietin receptor (EpoR) agonism is used to treat a wide range of disease. Mol. Med. 2013, 19, 62–64. [Google Scholar] [CrossRef]
- Suresh, S.; de Castro, L.F.; Dey, S.; Robey, P.G.; Noguchi, C.T. Erythropoietin modulates bone marrow stromal cell differentiation. Bone Res. 2019, 7, 21. [Google Scholar] [CrossRef]
- Lespessailles, E.; Cortet, B.; Legrand, E.; Guggenbuhl, P.; Roux, C. Low-trauma fractures without osteoporosis. Osteoporos. Int. 2017, 28, 1771–1778. [Google Scholar] [CrossRef]
- Fields, A.J.; Lee, G.L.; Liu, X.S.; Jekir, M.G.; Guo, X.E.; Keaveny, T.M. Influence of vertical trabeculae on the compressive strength of the human vertebra. J. Bone Miner. Res. 2011, 26, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.S.; Sajda, P.; Saha, P.K.; Wehrli, F.W.; Guo, X.E. Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone. J. Bone Miner. Res. 2006, 21, 1608–1617. [Google Scholar] [CrossRef]
- Bab, I.; Müller, R.; Hajbi-Yonissi, C.; Gabet, Y. Micro-Tomographic Atlas of the Mouse Skeleton, 1st ed.; Springer: New York, NY, USA, 2007. [Google Scholar]
- Robach, P.; Fulla, Y.; Westerterp, K.R.; Richalet, J.P. Comparative response of EPO and soluble transferrin receptor at high altitude. Med. Sci. Sports Exerc. 2004, 36, discussion 1492, 1493–1498. [Google Scholar] [CrossRef] [PubMed]
- Hiroyuki, T.; Keiji, M.; Tetsuya, S.; Tatsuya, K. Bone atrophy at high altitude. J. Bone Miner. Metab. 1992, 10, 31–36. [Google Scholar]
- Basu, M.; Malhotra, A.S.; Pal, K.; Chatterjee, T.; Ghosh, D.; Haldar, K.; Verma, S.K.; Kumar, S.; Sharma, Y.K.; Sawhney, R.C. Determination of bone mass using multisite quantitative ultrasound and biochemical markers of bone turnover during residency at extreme altitude: A longitudinal study. High Alt. Med. Biol. 2013, 14, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, R.; Bhaduri, S.; Singh, A.K.; Group, P.S. Extended epoetin alfa dosing as maintenance treatment for the anemia of chronic kidney disease: The PROMPT study. Clin. Nephrol. 2005, 64, 113–123. [Google Scholar] [CrossRef]
- Wakhloo, D.; Scharkowski, F.; Curto, Y.; Javed Butt, U.; Bansal, V.; Steixner-Kumar, A.A.; Wustefeld, L.; Rajput, A.; Arinrad, S.; Zillmann, M.R.; et al. Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin. Nat. Commun. 2020, 11, 1313. [Google Scholar] [CrossRef] [Green Version]
- Randolph, J.F.; Stokol, T.; Scarlett, J.M.; MacLeod, J.N. Comparison of biological activity and safety of recombinant canine erythropoietin with that of recombinant human erythropoietin in clinically normal dogs. Am. J. Vet. Res. 1999, 60, 636–642. [Google Scholar]
- Ungureanu, D.; Saharinen, P.; Junttila, I.; Hilton, D.J.; Silvennoinen, O. Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol. Cell. Biol. 2002, 22, 3316–3326. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Kaneda, T.; Toyama, Y.; Kumegawa, M.; Hakeda, Y. Regulation of receptor activator of NF-kappa B ligand-induced osteoclastogenesis by endogenous interferon-beta (INF-beta ) and suppressors of cytokine signaling (SOCS). The possible counteracting role of SOCSs- in IFN-beta-inhibited osteoclast formation. J. Biol. Chem. 2002, 227, 27880–27886. [Google Scholar] [CrossRef] [Green Version]
- Bouxsein, M.L.; Boyd, S.K.; Christiansen, B.A.; Guldberg, R.E.; Jepsen, K.J.; Muller, R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 2010, 25, 1468–1486. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolomansky, A.; Hiram-Bab, S.; Ben-Califa, N.; Liron, T.; Deshet-Unger, N.; Mittelman, M.; Oster, H.S.; Rauner, M.; Wielockx, B.; Neumann, D.; et al. Erythropoietin Mediated Bone Loss in Mice Is Dose-Dependent and Mostly Irreversible. Int. J. Mol. Sci. 2020, 21, 3817. https://doi.org/10.3390/ijms21113817
Kolomansky A, Hiram-Bab S, Ben-Califa N, Liron T, Deshet-Unger N, Mittelman M, Oster HS, Rauner M, Wielockx B, Neumann D, et al. Erythropoietin Mediated Bone Loss in Mice Is Dose-Dependent and Mostly Irreversible. International Journal of Molecular Sciences. 2020; 21(11):3817. https://doi.org/10.3390/ijms21113817
Chicago/Turabian StyleKolomansky, Albert, Sahar Hiram-Bab, Nathalie Ben-Califa, Tamar Liron, Naamit Deshet-Unger, Moshe Mittelman, Howard S. Oster, Martina Rauner, Ben Wielockx, Drorit Neumann, and et al. 2020. "Erythropoietin Mediated Bone Loss in Mice Is Dose-Dependent and Mostly Irreversible" International Journal of Molecular Sciences 21, no. 11: 3817. https://doi.org/10.3390/ijms21113817
APA StyleKolomansky, A., Hiram-Bab, S., Ben-Califa, N., Liron, T., Deshet-Unger, N., Mittelman, M., Oster, H. S., Rauner, M., Wielockx, B., Neumann, D., & Gabet, Y. (2020). Erythropoietin Mediated Bone Loss in Mice Is Dose-Dependent and Mostly Irreversible. International Journal of Molecular Sciences, 21(11), 3817. https://doi.org/10.3390/ijms21113817