New Biomarkers in Acute Tubulointerstitial Nephritis: A Novel Approach to a Classic Condition
Abstract
:1. Introduction
2. ATIN Classical Biomarkers
3. Novel Biomarkers
4. Serum and Urine Cytokines and Chemokines
5. Cellular Biomarkers
6. Genetic Biomarkers
7. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tanaka, T.; Nangaku, M. Pathogenesis of tubular interstitial nephritis. Contrib. Nephrol. 2011, 169, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Cruz, D.N.; Perazella, M.A. Drug-induced acute tubulointerstitial nephritis: The clinical spectrum. Hosp. Pract. 1998, 33, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, R.; Eknoyan, G. Acute interstitial nephritis-a reappraisal and update. Clin. Nephrol. 2014, 82, 149–162. [Google Scholar] [CrossRef]
- Raghavan, R.; Shawar, S. Mechanisms of Drug-Induced Interstitial Nephritis. Adv. Chronic Kidney Dis. 2017, 24, 64–71. [Google Scholar] [CrossRef]
- Waeckerle-Men, Y.; Starke, A.; Wahl, P.R.; Wüthrich, R.P. Limited costimulatory molecule expression on renal tubular epithelial cells impairs T cell activation. Kidney Blood Press. Res. 2007, 30, 421–429. [Google Scholar] [CrossRef]
- Eddy, A.A. Drug-induced tubulointerstitial nephritis: Hypersensitivity and necroinflammatory pathways. Pediatr. Nephrol. 2020, 35, 547–554. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, H.; Shao, J.; Wu, J.; Zhou, L.; Zhang, Z.; Wang, Y.; Huang, Z.; Ren, J.; Liu, S.; et al. A role for tubular necroptosis in cisplatin-induced AKI. J. Am. Soc. Nephrol. 2015, 26, 2647–2658. [Google Scholar] [CrossRef] [Green Version]
- Cavanaugh, C.; Perazella, M.A. Urine Sediment Examination in the Diagnosis and Management of Kidney Disease: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 73, 258–272. [Google Scholar] [CrossRef]
- Muriithi, A.K.; Leung, N.; Valeri, A.M.; Cornell, L.D.; Sethi, S.; Fidler, M.E.; Nasr, S.H. Biopsy-Proven Acute Interstitial Nephritis, 1993–2011: A Case Series. Am. J. Kidney Dis. 2014, 64, 558–566. [Google Scholar] [CrossRef]
- Wilson, G.J.; Kark, A.L.; Francis, L.P.; Hoy, W.; Healy, H.G.; Mallett, A.J. The increasing rates of acute interstitial nephritis in Australia: A single centre case series. BMC Nephrol. 2017, 18, 329. [Google Scholar] [CrossRef] [Green Version]
- Perazella, M.A. Clinical Approach to Diagnosing Acute and Chronic Tubulointerstitial Disease. Adv. Chronic Kidney Dis. 2017, 24, 57–63. [Google Scholar] [CrossRef]
- Nolan, C.R.; Anger, M.S.; Kelleher, S.P. Eosinophiluria—A New Method of Detection and Definition of the Clinical Spectrum. N. Engl. J. Med. 1986, 315, 1516–1519. [Google Scholar] [CrossRef]
- Muriithi, A.K.; Nasr, S.H.; Leung, N. Utility of urine eosinophils in the diagnosis of acute interstitial nephritis. Clin. J. Am. Soc. Nephrol. 2013, 8, 1857–1862. [Google Scholar] [CrossRef] [Green Version]
- Lusica, M.; Rondon-Berrios, H.; Feldman, L. Urine eosinophils for acute interstitial nephritis. J. Hosp. Med. 2017, 12, 343–345. [Google Scholar] [CrossRef] [Green Version]
- Nussbaum, E.Z.; Perazella, M.A. Diagnosing acute interstitial nephritis: Considerations for clinicians. Clin. Kidney J. 2019, 12, 808–813. [Google Scholar] [CrossRef]
- Fogazzi, G.B.; Ferrari, B.; Garigali, G.; Simonini, P.; Consonni, D. Urinary sediment findings in acute interstitial nephritis. Am. J. Kidney Dis. 2012, 60, 330–332. [Google Scholar] [CrossRef]
- Rossert, J. Drug-induced acute interstitial nephritis. In Kidney International; Blackwell Publishing Inc.: Paris, France, 2001; Volume 60, pp. 804–817. [Google Scholar] [CrossRef] [Green Version]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interf. Cytokine Res. 2009, 29, 313–325. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, L.; Su, T.; Wang, C.; Liu, G.; Li, X.M. Pathological significance of a panel of urinary biomarkers in patients with drug-induced tubulointerstitial nephritis. Clin. J. Am. Soc. Nephrol. 2010, 5, 1954–1959. [Google Scholar] [CrossRef] [Green Version]
- Yun, D.; Jang, M.J.; An, J.N.; Lee, J.P.; Kim, D.K.; Chin, H.J.; Kim, Y.S.; Lee, D.S.; Han, S.S. Effect of steroids and relevant cytokine analysis in acute tubulointerstitial nephritis. BMC Nephrol. 2019, 20, 1–10. [Google Scholar] [CrossRef]
- Dantas, M.; Almeida Romão, E.; Silva Costa, R. Urinary excretion of monocyte chemoattractant protein-1: A biomarker of active tubulointerstitial damage in patients with glomerulopathies. Kidney Blood Press. Res. 2007, 30, 306–313. [Google Scholar] [CrossRef]
- Ding, Y.; Nie, L.M.; Pang, Y.; Wu, W.J.; Tan, Y.; Yu, F.; Zhao, M.H. Composite urinary biomarkers to predict pathological tubulointerstitial lesions in lupus nephritis. Lupus 2018, 27, 1778–1789. [Google Scholar] [CrossRef]
- Moledina, D.G.; Parikh, C.R. Differentiating Acute Interstitial Nephritis from Acute Tubular Injury: A Challenge for Clinicians. Nephron 2019, 143, 211–216. [Google Scholar] [CrossRef]
- Moledina, D.G.; Wilson, F.P.; Pober, J.S.; Perazella, M.A.; Singh, N.; Luciano, R.L.; Obeid, W.; Lin, H.; Kuperman, M.; Moeckel, G.W.; et al. Urine TNF-α and IL-9 for clinical diagnosis of acute interstitial nephritis. JCI Insight 2019, 4, e127456. [Google Scholar] [CrossRef] [Green Version]
- Aoyagi, J.; Kanai, T.; Ito, T.; Odaka, J.; Saito, T.; Momoi, M.Y. Cytokine dynamics in a 14-year-old girl with tubulointerstitial nephritis and uveitis syndrome. CEN Case Rep. 2014, 3, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. Il-6 in inflammation, Immunity, And disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, Y.; Zhou, Z.; Wang, J. Baicalein alleviates tubular-interstitial nephritis in vivo and in vitro by down-regulating NF-κB and MAPK pathways. Braz. J. Med. Biol. Res. 2018, 51, e7476. [Google Scholar] [CrossRef]
- Correlation between Urinary Biomarkers and Pathological Lesions in Drug-Induced Tubulointerstitial Nephritis. Available online: https://www.ncbi.nlm.nih.gov/pubmed/20979765 (accessed on 12 May 2020).
- Mohkam, M.; Ghafari, A. The Role of Urinary N-acetyl-beta-glucosaminidase in Diagnosis of Kidney Diseases. J. Pediatr. Nephrol. 2015, 3, 84–91. [Google Scholar] [CrossRef]
- Shang, W.; Wang, Z. The Update of NGAL in Acute Kidney Injury. Curr. Protein Pept. Sci. 2017, 18, 1211–1217. [Google Scholar] [CrossRef]
- Stefanović, V.; Djukanović, L.; Cukuranović, R.; Bukvić, D.; Ležaić, V.; Marić, I.; Ogrizovic, S.S.; Jovanović, I.; Vlahovic, P.; Pešić, I.; et al. Beta2-Microglobulin and Alpha1-Microglobulin as Markers of Balkan Endemic Nephropathy, a Worldwide Disease. Ren Fail 2011, 33, 176–183. [Google Scholar] [CrossRef]
- [Significance of Urinary Biomarkers in Differential Diagnosis of Acute Tubulointerstitial Nephritis]-PubMed -NCBI. Available online: https://www.ncbi.nlm.nih.gov/pubmed/20396357 (accessed on 19 May 2020).
- Shi, Y.; Su, T.; Qu, L.; Wang, C.; Li, X.; Yang, L. Evaluation of urinary biomarkers for the prognosis of drug-associated chronic tubulointerstitial nephritis. Am. J. Med. Sci. 2013, 346, 283–288. [Google Scholar] [CrossRef]
- Wu, Y.; Su, T.; Yang, L.; Wang, C.; Liu, G.; Li, X. Correlation between urinary biomarkers and pathological lesions in drug-induced tubulointerstitial nephritis. Zhonghua nei ke za zhi 2010, 49, 568–571. [Google Scholar] [PubMed]
- Zhao, W.T.; Huang, J.W.; Sun, P.P.; Su, T.; Tang, J.W.; Wang, S.X.; Liu, G.; Yang, L. Diagnostic roles of urinary kidney injury molecule 1 and soluble C5b-9 in acute tubulointerstitial nephritis. Am. J. Physiol. Renal. Physiol. 2019, 317, F584–F592. [Google Scholar] [CrossRef] [PubMed]
- Koponen, M.; Pichler, W.J.; de Weck, A.L. T cell reactivity to penicillin: Phenotypic analysis of in vitro activated cell subsets. J. Allergy Clin. Immunol. 1986, 78Pt 1, 645–652. [Google Scholar] [CrossRef]
- Wu, Y.; Farrell, J.; Pirmohamed, M.; Park, B.K.; Naisbitt, D.J. Generation and characterization of antigen-specific CD4+, CD8+, and CD4+CD8+ T-cell clones from patients with carbamazepine hypersensitivity. J. Allergy Clin. Immunol. 2007, 119, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Zanni, M.P.; Mauri-Hellweg, D.; Brander, C.; Wendland, T.; Schnyder, B.; Frei, E.; von Greyerz, S.; Bircher, A.; Pichler, W.J. Characterization of lidocaine-specific T cells. J. Immunol. 1997, 158, 1139–1148. [Google Scholar] [PubMed]
- Sachs, B.; Erdmann, S.; Baron, J.M.; Neis, M.; Al Masaoudi, T.; Merk, H.F. Determination of interleukin-5 secretion from drug-specific activated ex vivo peripheral blood mononuclear cells as a test system for the in vitro detection of drug sensitization. Clin. Exp. Allergy 2002, 32, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Tanvarasethee, B.; Buranapraditkun, S.; Klaewsongkram, J. The potential of using enzyme-linked immunospot to diagnose cephalosporin-induced maculopapular exanthems. Acta. Derm. Venereol. 2013, 93, 66–69. [Google Scholar] [CrossRef] [Green Version]
- A Rozieres, A Hennino, K Rodet, M-C Gutowski, N Gunera-Saad, F Berard, G Cozon, J Bienvenu, J-F Nicolas Detection and quantification of drug-specific T cells in penicillin allergy. Allergy Eur. J. Allergy Clin. Immunol. 2009, 64, 534–542. [CrossRef]
- Punrin, S.; Thantiworasit, P.; Mongkolpathumrat, P.; Klaewsongkram, J. Evaluated the Diagnostic Utility of Interferon-Gamma Enzyme-Linked Immunospot (ELISPOT) Assays in 117 Patients with Non-Immediate Drug Hypersensitivity Reactions. J. Allergy Clin. Immunol. 2016, 137, AB36. [Google Scholar] [CrossRef] [Green Version]
- Pichler, W.J.; Tilch, J. Review article The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy 2004, 59, 809–820. [Google Scholar] [CrossRef]
- Koda, R.; Watanabe, H.; Tsuchida, M.; Iino, N.; Suzuki, K.; Hasegawa, G.; Imai, N.; Narita, I. Immune checkpoint inhibitor (nivolumab)-associated kidney injury and the importance of recognizing concomitant medications known to cause acute tubulointerstitial nephritis: A case report. BMC Nephrol. 2018, 19, 48. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Horinouchi, T.; Hitomi, Y.; Shono, A.; Khor, S.S.; Omae, Y.; Kojima, K.; Kawai, Y.; Nagasaki, M.; Kaku, Y.; et al. Strong associations between specific HLA-DQ and HLA-DR alleles and the tubulointerstitial nephritis and uveitis syndrome. Investig. Ophthalmol. Vis. Sci. 2003, 44, 653–657. [Google Scholar] [CrossRef] [Green Version]
- Rytkönen, S.; Ritari, J.; Peräsaari, J.; Saarela, V.; Nuutinen, M.; Jahnukainen, T. IL-10 polymorphisms +434T/C, +504G/T, and -2849C/T may predispose to tubulointersititial nephritis and uveitis in pediatric population. PLoS ONE 2019, 14, 0211915. [Google Scholar] [CrossRef]
- Javor, J.; Králinský, K.; Sádová, E.; Červeňová, O.; Bucová, M.; Olejárová, M.; Buc, M.; Liptáková, A. Association of interleukin-10 gene promoter polymorphisms with susceptibility to acute pyelonephritis in children. Folia Microbiol. (Praha) 2014, 59, 307–313. [Google Scholar] [CrossRef] [PubMed]
Reference | Population Samples | RelevantFindings |
---|---|---|
Dantas et al., Kidney Blood Press Res, 2007 | Glomerulopathy n=37 | Urinary MCP-1 correlated with the extent of tubulointerstitial infiltrate by macrophages but not with the degree of glomerular infiltrate. |
Yu et al., Journal of Peking University, 2010 | Acute drug-induced TIN n= 28 Chronic drug-induced TIN n=12 | The combination of urinary NAG and α1-MG increased sensitivity and specificity for the detection of acute drug-induced tubulointerstitial nephritis (TIN). |
Wu et al., Clin J Am SocNephrol, 2010 | Drug-induced ATIN n=40 Healthy controls n=20 | MCP-1, α1-MG, NGAL, and NAG urinary levels were higher in ATIN patients compared to controls. MCP-1 urinary levels correlated with the extent and severity of the acute lesions. |
Nakashima et al., ClinNephrol, 2010 | IgG 4 disease-related ATIN n=4 Other cause ATIN n=16 | IL-4, IL-10, and TGFβ RNA expression in kidney tissue was higher in IgG4 disease related ATIN compared to the rest of ATIN causes. |
Shi et al., Am J Med Sci, 2013 | Drug-induced ATIN n=51 | Patients with higher urinary levelsof NAG, metalloproteinase 2(MMP2) and MMP9 presented faster GFR decline during follow-up |
Wu et al., Am J Med Sci, 2013 | ATIN n=40 Healthy controls n=20 | Urinary α1-MG correlated with the degree of interstitial edema and inflammatory infiltrate in kidney biopsy. Urinary NAG correlated with the degree of inflammatory infiltrate. Urinary TGFβ correlated with the presence of fibrosis. |
Aoyagi et al., CEN Case Rep, 2014 | One case of TINU | Serum TNFα, IL-8 and IFNγ levels decreased during follow up of an episode of TINU. |
Chen et al. Braz J Med Biol Res, 2018 | ATIN n=30 Healthy controls n=15 | Serum IL-6, IL-10, and TNFαwere significantly higher in ATIN patients compared to controls. |
Zhao et al., Am J Physiol Renal Physiol, 2019 | ATIN n=44 Healthy controls n=24 | Urinary levels of KIM-1 and C5b9 were higher in ATIN patients compared to healthy controls. Urinary C5b9 correlated with the extent of tubulointerstitial infiltrates in kidney biopsy in ATIN patients. |
Yun et al., BMC nephrology, 2019 | ATIN n=113 Healthy controls n=40 | Serum IL-1β, IFNα2, TNFα, MCP-1, IL-8, IL-17A, IL-18, and IL-23 were higher in ATIN patients compared to healthy controls. Urinary IFNα2, MCP-1, IL-6, IL-8, IL-12p70, and IL-17A were higher in ATIN patients compared to healthy controls |
Moledina et al., JCI Insight, 2019 | ATIN n=32 Other kidney diseases n=186 | Urinary TNFα and IL-9 were higher in ATIN patients compared to other kidney diseases. Urinary IL-5 was higher among those ATIN patients with prominent eosinophil infiltrates. |
Moledina et al., Nephron, 2019 | ATIN n=32 ATN n= 41 | Urinary TNFα and IL-9 were higher in ATIN patients. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez Valenzuela, L.; Draibe, J.; Fulladosa, X.; Torras, J. New Biomarkers in Acute Tubulointerstitial Nephritis: A Novel Approach to a Classic Condition. Int. J. Mol. Sci. 2020, 21, 4690. https://doi.org/10.3390/ijms21134690
Martinez Valenzuela L, Draibe J, Fulladosa X, Torras J. New Biomarkers in Acute Tubulointerstitial Nephritis: A Novel Approach to a Classic Condition. International Journal of Molecular Sciences. 2020; 21(13):4690. https://doi.org/10.3390/ijms21134690
Chicago/Turabian StyleMartinez Valenzuela, Laura, Juliana Draibe, Xavier Fulladosa, and Juan Torras. 2020. "New Biomarkers in Acute Tubulointerstitial Nephritis: A Novel Approach to a Classic Condition" International Journal of Molecular Sciences 21, no. 13: 4690. https://doi.org/10.3390/ijms21134690
APA StyleMartinez Valenzuela, L., Draibe, J., Fulladosa, X., & Torras, J. (2020). New Biomarkers in Acute Tubulointerstitial Nephritis: A Novel Approach to a Classic Condition. International Journal of Molecular Sciences, 21(13), 4690. https://doi.org/10.3390/ijms21134690