Age-Related Memory Impairment Is Associated with Increased zif268 Protein Accumulation and Decreased Rpt6 Phosphorylation
Abstract
:1. Introduction
2. Results
2.1. Middle-Aged (15-Month-Old) and Old (22-Month-Old) Animals Show Behavioral Impairment during Trace Fear Retrieval Relative to Young (3-Month-Old) Animals
2.2. The Amount of zif268 Protein Increases and the Phosphorylation of Rpt6 Decreases as a Function of Age in Brain Regions that Support Trace Fear Learning
2.3. Medial Prefrontal Cortex
2.4. Retrosplenial Cortex
2.5. Dorsal Hippocampus
2.6. Ventral Hippocampus
2.7. Lateral Amygdala
2.8. Ventrolateral Periaqueductal Gray
2.9. Age-Related Changes in zif268 and pRpt6 are Associated with Degree of Behavioral Impairment
2.10. Decreased pRpt6 Corresponds with Increased Levels of zif268 in Several Brain Regions
2.11. Age-Related zif268 and pRpt6 Changes Hold throughout the Trace Fear Circuit
3. Discussion
4. Methods
4.1. Subjects
4.2. Behavioral Procedure
4.3. Immunofluorescence (IF)
4.4. Crude Synaptosomal Membrane Fractionation
4.5. Western Blotting
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anstey, K.J.; Low, L.F. Normal cognitive changes in aging. Aust. Fam. Physician 2004, 33, 783. [Google Scholar] [PubMed]
- Craik, F.I.M.; Grady, C.L. Aging, memory, and frontal lobe functioning. In Principles of Frontal Lobe; Stuss, D.T., Knight, R., Eds.; Oxford University Press: New York, NY, USA, 2002; pp. 528–540. [Google Scholar]
- Zacks, R.T.; Hasher, L.; Li, K.Z. Human memory. In The Handbook of Aging and Cognition; Craik, F.I.M., Salthouse, T., Eds.; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 2000; pp. 293–357. [Google Scholar]
- Frick, K.M.; Baxter, M.G.; Markowska, A.L.; Olton, D.S.; Price, D.L. Age-related spatial reference and working memory deficits assessed in the water maze. Neurobio. Aging 1995, 16, 149–160. [Google Scholar] [CrossRef]
- Gallagher, M.; Burwell, R.; Burchinal, M. Severity of spatial learning impairment in aging: Development of a learning index for performance in the Morris water maze. Behav. Neurosci. 2015, 129, 540–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myrum, C.; Rossi, S.L.; Perez, E.J.; Rapp, P.R. Cortical network dynamics are coupled with cognitive aging in rats. Hippocampus 2019, 29, 1165–1177. [Google Scholar] [CrossRef] [PubMed]
- Shukitt-Hale, B.; Mouzakis, G.; Joseph, J.A. Psychomotor and spatial memory performance in aging male Fischer 344 rats. Exp. Gerontol. 1998, 33, 615–624. [Google Scholar] [CrossRef]
- Barnes, C.A.; Nadel, L.; Honig, W.K. Spatial memory deficit in senescent rats. Can. J. Psychol. 1980, 34, 29. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Ko, I.G.; Kim, B.K.; Shin, M.S.; Cho, S.; Kim, C.J.; Kim, S.H.; Baek, S.S.; Lee, E.K.; Jee, Y.S. Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp. Gerontol. 2001, 45, 357–365. [Google Scholar] [CrossRef]
- McNamara, M.C.; Bepjignus, G.; Benignus, V.A.; Miller, A.T., Jr. Active and passive avoidance in rats as a function of age. Exp. Aging Res. 1977, 3, 3–16. [Google Scholar] [CrossRef]
- Scheuer, K.; Stoll, S.; Paschke, U.; Weigel, R.; Müller, W.E. N-methyl-D-aspartate receptor density and membrane fluidity as possible determinants of the decline of passive avoidance performance in aging. Pharm. Biochem. Behav. 1995, 50, 65–70. [Google Scholar] [CrossRef]
- Scali, C.; Giovannini, M.G.; Prosperi, C.; Bartolini, L.; Pepeu, G. Tacrine administration enhances extracellular acetylcholine in vivo and restores the cognitive impairment in aged rats. Pharm. Res. 1997, 36, 463–469. [Google Scholar] [CrossRef]
- Kwapis, J.L.; Alaghband, Y.; Keiser, A.A.; Dong, T.N.; Michael, C.M.; Rhee, D.; Shu, G.H.; Dang, R.T.; Matheos, D.P.; Wood, M.A. Aging mice show impaired memory updating in the novel OUL updating paradigm. Neuropsychopharmacology 2020, 45, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.W.; Kahn, R.L. Successful aging 2.0: Conceptual expansions for the 21st century. J. Gerontol. B Psychol. Sci. Soc. Sci. 2015, 70, 593–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortman, J.M.; Velkoff, V.A.; Hogan, H. An Aging Nation: The Older Population in the United States; United States. Available online: https://www.census.gov/prod/2014pubs/p25-1140.pdf (accessed on 21 November 2019).
- Dulka, B.N.; Pullins, S.E.; Cullen, P.K.; Moyer, J.R., Jr.; Helmstetter, F.J. Age-related memory deficits are associated with changes in protein degradation in brain regions critical for trace fear conditioning. Neurobiol. Aging 2020, 91, 160–166. [Google Scholar] [CrossRef] [PubMed]
- McEchron, M.D.; Cheng, A.Y.; Gilmartin, M.R. Trace fear conditioning is reduced in the aging rat. Neurobiol. Learn. Mem. 2004, 82, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Villarreal, J.S.; Dykes, J.R.; Barea-Rodriguez, E.J. Fischer 344 rats display age-related memory deficits in trace fear conditioning. Behav. Neurosci. 2004, 118, 1166. [Google Scholar] [CrossRef]
- Moyer, J.R., Jr.; Brown, T.H. Impaired trace and contextual fear conditioning in aged rats. Behav. Neurosci. 2006, 120, 612. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, N.; Quinn, J.J.; Fanselow, M.S. Dorsal hippocampus involvement in trace fear conditioning with long, but not short, trace intervals in mice. Behav. Neurosci. 2005, 119, 1396. [Google Scholar] [CrossRef]
- Quinn, J.J.; Oommen, S.S.; Morrison, G.E.; Fanselow, M.S. Post-training excitotoxic lesions of the dorsal hippocampus attenuate forward trace, backward trace, and delay fear conditioning in a temporally specific manner. Hippocampus 2005, 12, 495–504. [Google Scholar] [CrossRef]
- Wiltgen, B.J.; Wilmot, J.; Puhger, K. Acute disruption of the dorsal hippocampus impairs the encoding and retrieval of trace fear memories. Front. Behav. Neurosci. 2019, 13, 116. [Google Scholar]
- Yoon, T.; Otto, T. Differential contributions of dorsal vs. ventral hippocampus to auditory trace fear conditioning. Neurobiol. Learn. Mem. 2007, 87, 464–475. [Google Scholar] [CrossRef]
- Kwapis, J.L.; Jarome, T.J.; Lee, J.L.; Helmstetter, F.J. The retrosplenial cortex is involved in the formation of memory for context and trace fear conditioning. Neurobiol. Learn. Mem. 2015, 123, 110–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwapis, J.L.; Jarome, T.J.; Ferrara, N.C.; Helmstetter, F.J. Updating procedures can reorganize the neural circuit supporting a fear memory. Neuropsychopharmacology 2017, 42, 1688. [Google Scholar] [CrossRef] [PubMed]
- Todd, T.P.; Mehlman, M.L.; Keene, C.S.; DeAngeli, N.E.; Bucci, D.J. Retrosplenial cortex is required for the retrieval of remote memory for auditory cues. Learn. Mem. 2016, 23, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Gilmartin, M.R.; Helmstetter, F.J. Trace and contextual fear conditioning require neural activity and NMDA receptor-dependent transmission in the medial prefrontal cortex. Learn. Mem. 2010, 17, 289–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilmartin, M.R.; Miyawaki, H.; Helmstetter, F.J.; Diba, K. Prefrontal activity links nonoverlapping events in memory. J. Neurosci. 2013, 33, 10910–10914. [Google Scholar] [CrossRef] [Green Version]
- Gilmartin, M.R.; Kwapis, J.L.; Helmstetter, F.J. Trace and contextual fear conditioning are impaired following unilateral microinjection of muscimol in the ventral hippocampus or amygdala, but not the medial prefrontal cortex. Neurobiol. Learn. Mem. 2012, 97, 452–464. [Google Scholar] [CrossRef] [Green Version]
- McNally, G.P.; Johansen, J.P.; Blair, H.T. Placing prediction into the fear circuit. Trends Neurosci. 2011, 34, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.Q.; Mundy, W.R.; Thai, L.; Hudson, P.M.; Gallagher, M.; Tilson, H.A.; Hong, J.S. Decreased glutamate release correlates with elevated dynorphin content in the hippocampus of aged rats with spatial learning deficits. Hippocampus 1991, 1, 391–397. [Google Scholar] [CrossRef]
- Hernandez, A.R.; Reasor, J.E.; Truckenbrod, L.M.; Campos, K.T.; Federico, Q.P.; Fertal, K.E.; Burke, S.N. Dissociable effects of advanced age on prefrontal cortical and medial temporal lobe ensemble activity. Neurobiol. Aging 2018, 70, 217–232. [Google Scholar] [CrossRef]
- Ash, J.A.; Lu, H.; Taxier, L.R.; Long, J.M.; Yang, Y.; Stein, E.A.; Rapp, P.R. Functional connectivity with the retrosplenial cortex predicts cognitive aging in rats. Proc. Natl. Acad. Sci. USA 2016, 113, 12286–12291. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Vicente, M.; Sovak, G.; Cuervo, A.M. Protein degradation and aging. Exp. Gerontol. 2005, 40, 622–633. [Google Scholar] [CrossRef] [PubMed]
- Gavilán, M.P.; Castaño, A.; Torres, M.; Portavella, M.; Caballero, C.; Jiménez, S.; Ruano, D. Age-related increase in the immunoproteasome content in rat hippocampus: Molecular and functional aspects. J. Neurochem. 2009, 108, 260–272. [Google Scholar] [CrossRef]
- Ward, W.F. Protein degradation in the aging organism. In Protein Degradation in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2002; pp. 35–42. [Google Scholar]
- Artinian, J.; McGauran, A.M.T.; De Jaeger, X.; Mouledous, L.; Frances, B.; Roullet, P. Protein degradation, as with protein synthesis, is required during not only long-term spatial memory consolidation but also reconsolidation. Eur. J. Neurosci. 2008, 27, 3009–3019. [Google Scholar] [CrossRef] [PubMed]
- Jarome, T.J.; Werner, C.T.; Kwapis, J.L.; Helmstetter, F.J. Activity dependent protein degradation is critical for the formation and stability of fear memory in the amygdala. PLoS ONE 2011, 6, 24349. [Google Scholar] [CrossRef] [PubMed]
- Rapp, P.R.; Gallagher, M. Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc. Natl. Acad. Sci. USA 1996, 93, 9926–9930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozon, B.; Kelly, A.; Josselyn, S.A.; Silva, A.J.; Davis, S.; Laroche, S. MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 805–814. [Google Scholar] [CrossRef] [Green Version]
- Couto-Pereira, N.D.S.; Lampert, C.; Vieira, A.D.S.; Lazzaretti, C.; Kincheski, G.C.; Espejo, P.J.; Dalmaz, C. Resilience and vulnerability to trauma: Early life interventions modulate aversive memory reconsolidation in the dorsal hippocampus. Front. Mol. Neurosci. 2019, 12, 134. [Google Scholar] [CrossRef]
- James, A.B.; Conway, A.M.; Morris, B.J. Regulation of the neuronal proteasome by Zif268 (Egr1). J. Neurosci. 2006, 26, 1624–1634. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.L. Memory reconsolidation mediates the updating of hippocampal memory content. Front. Behav. Neurosci. 2010, 4, 168. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.L.; Everitt, B.J.; Thomas, K. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 2004, 304, 839–843. [Google Scholar] [CrossRef]
- Tronson, N.C.; Taylor, J.R. Molecular mechanisms of memory reconsolidation. Nat. Rev. Neurosci. 2007, 8, 262–275. [Google Scholar] [CrossRef]
- Ferrara, N.C.; Jarome, T.J.; Cullen, P.K.; Orsi, S.A.; Kwapis, J.L.; Trask, S.; Pullins, S.E.; Helmstetter, F.J. GluR2 endocytosis-dependent protein degradation in the amygdala mediates memory updating. Sci. Rep. 2019, 9, 5180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, N.C.; Trask, S.; Pullins, S.E.; Helmstetter, F.J. The dorsal hippocampus mediates synaptic destabilization and memory lability in the amygdala in the absence of contextual novelty. Neurobiol. Learn. Mem. 2019, 166, 107089. [Google Scholar] [CrossRef] [PubMed]
- Veyrac, A.; Besnard, A.; Caboche, J.; Davis, S.; Laroche, S. The transcription factor Zif268/Egr1, brain plasticity, and memory. Prog. Mol. Biol. Transl. Sci. 2014, 122, 89–129. [Google Scholar]
- Morse, S.; Butler, A.; Davis, R.; Soller, I.; Lubin, F. Environmental enrichment reverses histone methylation changes in the aged hippocampus and restores age-related memory deficits. Biology 2015, 4, 298–313. [Google Scholar] [CrossRef] [PubMed]
- Jarome, T.J.; Helmstetter, F.J. The ubiquitin–proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiol. Learn. Mem. 2013, 105, 107–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, D.S.; Jarome, T.J.; Helmstetter, F.J. Memory formation for trace fear conditioning requires ubiquitin-proteasome mediated protein degradation in the prefrontal cortex. Front. Behav. Neurosci. 2013, 7, 150. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.L. Memory reconsolidation mediates the strengthening of memories by additional learning. Nat. Neurosci. 2008, 11, 1264. [Google Scholar] [CrossRef]
- Fletcher, B.R.; Hill, G.S.; Long, J.M.; Gallagher, M.; Shapiro, M.L.; Rapp, P.R. A fine balance: Regulation of hippocampal Arc/Arg3. 1 transcription, translation and degradation in a rat model of normal cognitive aging. Neurobiol. Learn. Mem. 2014, 115, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Cullen, P.K.; Ferrara, N.C.; Pullins, S.E.; Helmstetter, F.J. Context memory formation requires activity-dependent protein degradation in the hippocampus. Learn. Mem. 2017, 24, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Izumi, H.; Kawahata, I.; Shinoda, Y.; Helmstetter, F.J.; Fukunaga, K. SAK3 administration improves spine abnormalities and cognitive deficits in appNL-G-F/NL-G-F knock-in mice by increasing proteasome activity through CaMKII/Rpt6 signaling. Int. J. Mol. Sci. 2020, 21, 3833. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.; Okada, J.; Jung, M.W.; Kim, J.J. Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learn. Mem. 2008, 15, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vann, S.D.; Aggleton, J.P.; Maguire, E.A. What does the retrosplenial cortex do? Nat. Rev. Neurosci. 2009, 10, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Moser, E.; Moser, M.B.; Andersen, P. Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J. Neurosci. 1993, 13, 3916–3925. [Google Scholar] [CrossRef] [Green Version]
- Kochli, D.E.; Thompson, E.C.; Fricke, E.A.; Postle, A.F.; Quinn, J.J. The amygdala is critical for trace, delay, and contextual fear conditioning. Learn. Mem. 2015, 22, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Kwapis, J.L.; Jarome, T.J.; Schiff, J.C.; Helmstetter, F.J. Memory consolidation in both trace and delay fear conditioning is disrupted by intra-amygdala infusion of the protein synthesis inhibitor anisomycin. Learn. Mem. 2011, 18, 728–732. [Google Scholar] [CrossRef] [Green Version]
- Assareh, N.; Bagley, E.E.; Carrive, P.; McNally, G.P. Brief optogenetic inhibition of rat lateral or ventrolateral periaqueductal gray augments the acquisition of Pavlovian fear conditioning. Behav. Neurosci. 2017, 31, 454. [Google Scholar] [CrossRef]
- Finch, C.E.; Morgan, D.G. RNA and protein metabolism in the aging brain. Ann. Rev. Neurosci. 1990, 13, 75–88. [Google Scholar] [CrossRef]
- Colon-Perez, L.M.; Turner, S.M.; Lubke, K.N.; Pompilus, M.; Febo, M.; Burke, S.N. Multi-scale imaging reveals aberrant functional connectome organization and elevated dorsal striatal Arc expression in advanced age. Eneuro 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, M.; Nicolle, M.M. Animal models of normal aging: Relationship between cognitive decline and markers in hippocampal circuitry. Behav. Brain Res. 1993, 57, 155–162. [Google Scholar] [CrossRef]
- Lanahan, A.; Lyford, G.; Stevenson, G.S.; Worley, P.F.; Barnes, C.A. Selective alteration of long-term potentiation-induced transcriptional response in hippocampus of aged, memory-impaired rats. J. Neurosci. 1997, 17, 2876–2885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, M.; Bletsch, M.; Stanley, J.; Wheeler, D.; Scott, R.; Tully, T. The PDE4 inhibitor HT-0712 improves hippocampus-dependent memory in aged mice. Neuropsychopharmacology 2014, 39, 2938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trask, S.; Pullins, S.E.; Ferrara, N.C.; Helmstetter, F.J. The anterior retrosplenial cortex encodes event-related information and the posterior retrosplenial cortex encodes context-related information during memory formation. Submitted.
- Rogers, J.L.; Hunsaker, M.R.; Kesner, R.P. Effects of ventral and dorsal CA1 subregional lesions on trace fear conditioning. Neurobiol. Learn. Mem. 2006, 86, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, N.S.; Cushman, J.D.; Fanselow, M.S. The accurate measurement of fear memory in Pavlovian conditioning: Resolving the baseline issue. J. Neurosci. Meth. 2010, 190, 235–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogan, M.T.; Stäubli, U.V.; LeDoux, J.E. Fear conditioning induces associative long–term potentiation in the amygdala. Nature 1997, 390, 604–607. [Google Scholar] [CrossRef]
- Lonergan, M.E.; Gafford, G.M.; Jarome, T.J.; Helmstetter, F.J. Time-dependent expression of Arc and zif268 after acquisition of fear conditioning. Neural Plast. 2010, 2010, 139891. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trask, S.; Dulka, B.N.; Helmstetter, F.J. Age-Related Memory Impairment Is Associated with Increased zif268 Protein Accumulation and Decreased Rpt6 Phosphorylation. Int. J. Mol. Sci. 2020, 21, 5352. https://doi.org/10.3390/ijms21155352
Trask S, Dulka BN, Helmstetter FJ. Age-Related Memory Impairment Is Associated with Increased zif268 Protein Accumulation and Decreased Rpt6 Phosphorylation. International Journal of Molecular Sciences. 2020; 21(15):5352. https://doi.org/10.3390/ijms21155352
Chicago/Turabian StyleTrask, Sydney, Brooke N. Dulka, and Fred J. Helmstetter. 2020. "Age-Related Memory Impairment Is Associated with Increased zif268 Protein Accumulation and Decreased Rpt6 Phosphorylation" International Journal of Molecular Sciences 21, no. 15: 5352. https://doi.org/10.3390/ijms21155352
APA StyleTrask, S., Dulka, B. N., & Helmstetter, F. J. (2020). Age-Related Memory Impairment Is Associated with Increased zif268 Protein Accumulation and Decreased Rpt6 Phosphorylation. International Journal of Molecular Sciences, 21(15), 5352. https://doi.org/10.3390/ijms21155352