Differential Effects of Constant Light and Dim Light at Night on the Circadian Control of Metabolism and Behavior
Abstract
:1. Introduction
2. Circadian Hormonal Outputs
2.1. Melatonin and Corticosterone Levels Under Constant Light
2.2. Melatonin and Corticosterone Levels Under Dim Light at Night
Species | Lighting Conditions | Food Intake | Body Mass | Locomotor Activity | Hormonal Rhythms | Metabolism | Ref. |
---|---|---|---|---|---|---|---|
C57Bl/6J mice M (10 wo) | ≥180 lx (4 weeks) | Chow: No change in total food intake, SD = SN HFD: ↓ Total food intake, SD = SN | ↑ Body mass | Reduced rhythmicity Lengthened period | Chow: CORT ZT1 = ZT11 HFD: ↓ CORT at ZT11 | Endogenous glucose production, glucose infusion rate SD=SN ↑ Total RER, SD = SN ↓ Total energy expenditure, SD = SN | [61] |
C57Bl/6J mice M (9–12 wo) | ~580 lx (5 weeks) | ↓ Total food intake | No change in body mass ↑ Fat mass and adipocyte size | Arrhythmic | N/A | ↓ Glucose and FFA uptake ↑ Plasma FFA ↓ pAMPK, pCREB in brown adipose tissue | [72] |
C57Bl/6J mice M (6 wo) | N/A (3 weeks) | No change in total food intake ↑ Daytime food intake | ↑ Body mass No change in fat mass | N/A | N/A | Arrhythmic hepatic TAG ↑ Plasma TAG at ZT13 and ZT19 Plasma glucose phase-delayed Arrhythmic hepatic metabolic genes | [73] |
C57Bl/6J mice M (10 wo) | N/A (10 weeks) HFD | No change in total food intake ↑ Daytime food intake | ↑ Body mass ↑ Fat mass and adipocyte size | N/A | Melatonin suppressed ↑ Fasting insulin ↑ Insulin at ZT20 ↑ Leptin | Impaired glucose tolerance and insulin sensitivity ↑ Total plasma cholesterol ↑ Hepatic lipid accumulation Altered gene expression of metabolic genes | [74] |
CD-1 mice M (6 wo) | 100 lx (6 weeks) | No change in total food intake | No change in body mass | Reduced strength Lengthened period | Leptin ZT6=ZT18 ↓ TSH Free T3 ZT6=ZT18 ↑ Free T4 | No change in fasting glucose and glucose tolerance | [75] |
Swiss Webster mice M (8 wo) | 150 lx (8 weeks) | No change in total food intake ↑ Daytime food intake | ↑ Body mass ↑ Epididymal adiposity | No change in total activity Arrhythmic | CORT ZT7=ZT15 | Impaired glucose tolerance at ZT11 | [62] |
C3H/HePas mice M (weaned) | N/A (8 weeks) | No change in total food intake ↑ Daytime food intake | ↑ Body mass ↑ Fat mass Adipocyte hypertrophy | No change in total activity ↑ Daytime activity ↓ Night-time activity | ↓ Night-time MT6s Insulin ZT2=ZT14 | Insulin sensitivity and plasma glucose ZT2=ZT14 Hepatic expression of lipogenesis genes ZT2=ZT14 ↑ Plasma TAG at ZT14, hepatic TAG | [51] |
HIP rats M (3 mo) | >100 lx (10 weeks) | N/A | ↑ Body mass (tendency) | N/A | Melatonin suppressed | ↑ Fasting plasma glucose at ZT2 ↓ Insulin secretion stimulated by β-cells at ZT2 ↓ β-cell mass and function | [54] |
Long Evans rats M (5wo) | 450 lx (17 days) | ↓ Total food intake ↓ Total water intake | No change in body mass ↑ Visceral adiposity | Reduced rhythmicity Free running | ↓ Night-time melatonin | N/A | [55] |
Sprague-Dawley rat M (3 mo) | >100 lx (10 weeks) | N/A | No change in body mass | Arrhythmic | Melatonin suppressed | No changes in the glucose metabolism | [54] |
Sprague-Dawley rat M (12 wo) | 300 lx (3 weeks) | N/A | N/A | N/A | MT6s arrhythmic CORT arrhythmic Prolactin reversed rhythm | N/A | [60] |
Sprague-Dawley rat M (5–6 wo) | 200 lx (5 weeks) | N/A | N/A | N/A | ↑ ACTH ↑ Adrenal CORT Plasma CORT ZT4=ZT12 | N/A | [64] |
Sprague-Dawley rat M (35–50 g) | 300 lx (6 weeks) | No change in total food intake No change in total water intake | No change in body mass | N/A | Melatonin suppressed ↑ Total CORT, 2 peaks | Arrhythmic plasma lipids ↑ Glucose at ZT18 | [56] |
Sprague-Dawley rats Wistar rat Per1-LUC M (3 mo) | 100 lx (10 weeks) | No change in total food intake | No change in body mass | Arrhythmic | Chow: Insulin arrhythmic HFD: ↑ Insulin, arrhythmic | Chow: No change in plasma glucose HFD: Hyperglycemia, ↓ amplitude of insulin secretory pulses | [76] |
Wistar rat M (300–350 g) | 150 lx (20 days) | No change in total food intake | No change in body mass | N/A | N/A | N/A | [77] |
Wistar rat M, F (6 wo) | N/A (6 weeks) | N/A | ↑ Body mass ↑ Fat mass | Arrhythmic | Melatonin arrhythmic CORT ZT1=ZT2 ↑ Fasting insulin at ZT0 | ↑ Hepatic and plasma TAG concentration at ZT0 ↑ Fasting glucose at ZT0 ↑ HOMA-IR | [57] |
Wistar rat M, F (9 wo) | 150 lx (4 weeks) | No change in total food intake | No change in body mass | N/A | No change in daytime melatonin ↑ T3/T4 (M) at ZT4-8 ↑ Insulin (F) at ZT4-8 | No change in glucose ↓ Hepatic glycogen and glycogen phosphorylase at ZT4-8 ↑ Hepatic diacylglycerols and cholesteryl esters at ZT4-8 | [58] |
Wistar rat M (2 and 20 mo) | 50–300 lx (30 days) | Arrhythmic (20 mo) | N/A | Arrhythmic | N/A | N/A | [78,79] |
Species | Light Regimen | Food Intake | Body Mass | Locomotor Activity | Hormonal Rhythms | Metabolism | Ref. |
---|---|---|---|---|---|---|---|
C57Bl/6 mice PER2:luc M,F (10–12 wo) | 12L:12DL (3 weeks) L: 150 lx DL: 5 lx | N/A | No change in body mass | WR activity: No change in total activity (after 3 weeks) | N/A | N/A | [80] |
Swiss Webster mice F (8 wo) | 16L:8DL (6 weeks) L: 150 lx DL: 5 lx | ↑ Total food intake | ↑ Body mass | No change in total locomotor activity | N/A | N/A | [81] |
Swiss Webster mice M (>9 wo) | 14L:10DL (2 weeks) L: 150 lx DL: 5 lx | No change in total food intake | ↑ Body mass | No change in total locomotor activity | N/A | ↑ RER ↓ Energy expenditure at ZT12–ZT16 | [82] |
Swiss Webster mice M,F (3 or 5 wo) | 14L:10DL (6 weeks) L: ~130 lx DL: 5 lx | 3 wo: ↑ Daytime food intake 5 wo: ↑ Daytime food intake (M) | 3 wo: No change in body mass 5 wo: ↑ Body mass (M) ↑ gonadal fat | No change in total locomotor activity | N/A | 3 wo: ↓ Fasted glucose (M), no change in glucose tolerance at ZT5 5 wo: No change in fasted glucose or tolerance at ZT5 | [83] |
Swiss Webster mice M (8 wo) | 16L:8DL (8 weeks) L: 150 lx DL: 5 lx | No change in total food intake ↑ Daytime food intake | ↑ Body mass ↑ Epidydimal fat | No change in total locomotor activity | No change in CORT | Impaired glucose tolerance at ZT11 | [62] |
Swiss Webster mice M (8 wo) | 14L:10DL (5 days, 4 and 8 weeks) L: 150 lx DL: 5 lx | No change in total food intake ↑ Daytime food intake | ↑ Body mass ↑ Epididymal fat | No change in total WR activity Disrupted WR rhythm in several animals (4 weeks) | Insulin ZT8=ZT14 (4 weeks) | No change in plasma glucose (4 weeks) Impaired glucose tolerance at ZT8 (4 and 8 weeks) | [84,85,86,87] |
TALLYHO/ JngJ mice M (6 wo) | 14L:10DL (4 and 8 weeks) L: 150 lx DL: 5 lx | N/A | ↑ Body mass (not whole experiment) | N/A | N/A | ↑ Daytime fasting glucose Impaired glucose tolerance Impaired insulin tolerance ↓ Survival of mice ↑ Number of mice with developed T2DM | [88] |
Grass rats M (10 wo) | 14L:10DL (3 weeks) L: 150 lx DL: 5 lx | N/A | No change in body mass No change in reproductive tissue mass | No change in total locomotor activity No change in rhythmicity | ↑ CORT at ZT6 | N/A | [71] |
Sprague-Dawley rats M (35–50 g) | 12L:12DL (6 weeks) L: 300 lx DL: 0.2 lx | No change in total food intake No change in total water intake | No change in body mass | N/A | Melatonin suppressed CORT phase advanced | No change in plasma lipids Normoglycemia | [56] |
Sprague-Dawley rats M (3–4 wo) | 12L:12DL (5 weeks) L: 300 lx DL: <10 lx (red light) | No change in total food intake No change in total water intake | No change in body mass | N/A | Melatonin suppressed ↓ CORT, phase advance ↓ Insulin, phase advance ↑ Leptin, 2 peaks | Total fatty acids suppressed ↑ Glucose, arterial pO2 and pCO2 | [68] |
Wistar rats M (~200–320 g) | 12L:12DL (11 weeks) L: 150–200 lx DL: 5 lx | No change in total food intake ↓ Night-time food intake | No change in body mass No change in white adipose tissue | Dual rhythmicity | N/A | No change in glucose tolerance at ZT6 No change in total energy expenditure ↓ Night-time energy expenditure | [89] |
Wistar rats M (18 wo) | 12L:12DL (2 or 5 weeks) L: 150 lx DL: ~2 lx | N/A | N/A | N/A | Melatonin suppressed | N/A | [69] |
SHR M (18 wo) | 12L:12DL (2 or 5 weeks) L: 150 lx DL: ~2 lx | No change in total food intake | No change in body mass | N/A | ↑ Daytime insulin No change in daytime leptin | No change in plasma metabolites ↑ Hepatic TAG (2 weeks) ↑ Hepatic pparγ (5 weeks) and expression of lipogenesis genes ↑ Adipose pparα, pparγ ↓ Cardiac glut4 | [90] |
3. Locomotor Activity, Food Intake and Body Mass
3.1. Locomotor Activity Under Constant Light
3.2. Locomotor Activity Under Dim Light at Night
3.3. Food Intake and Body Mass under Constant Light
3.4. Food Intake and Body Mass Under Dim Light at Night
4. Metabolic Effects
4.1. Glucose and Lipid Metabolism Under Constant Light
4.2. Glucose and Lipid Metabolism Under Dim Light at Night
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AMPK | AMP-activated protein kinase |
ATP | Adenosine triphosphate |
BMAL1 | Brain and muscle ARNT-like 1 |
CLOCK | Circadian locomotor output cycles kaput |
CORT | Corticosterone |
CREB | cAMP response element-binding protein |
CRY | Cryptochrome |
dLAN | Dim light at night |
HOMA-IR | Homeostatic model assessment of insulin resistance |
LD | Light:Dark |
LL | Constant light |
PER | Period |
PPAR | Peroxisome proliferator-activated receptor |
RER | Respiratory exchange ratio |
ROR | Retinoic acid-related orphan receptors |
SCN | Suprachiasmatic nuclei |
SHR | Spontaneously hypertensive rats |
References
- Cox, K.H.; Takahashi, J.S. Circadian clock genes and the transcriptional architecture of the clock mechanism. J. Mol. Endocrinol. 2019, 63, R93–R102. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, J.S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 2017, 18, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narasimamurthy, R.; Hunt, S.R.; Lu, Y.; Fustin, J.-M.; Okamura, H.; Partch, C.L.; Forger, D.B.; Kim, J.K.; Virshup, D.M. CK1δ/ε protein kinase primes the PER2 circadian phosphoswitch. Proc. Natl. Acad. Sci. USA 2018, 115, 5986–5991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamia, K.A.; Sachdeva, U.M.; DiTacchio, L.; Williams, E.C.; Alvarez, J.G.; Egan, D.F.; Vasquez, D.S.; Juguilon, H.; Panda, S.; Shaw, R.J. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009, 326, 437–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Etchegaray, J.-P.; Cagampang, F.R.; Loudon, A.S.; Reppert, S.M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 2001, 107, 855–867. [Google Scholar] [CrossRef]
- Preitner, N.; Damiola, F.; Zakany, J.; Duboule, D.; Albrecht, U.; Schibler, U. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002, 110, 251–260. [Google Scholar] [CrossRef]
- Sato, T.K.; Panda, S.; Miraglia, L.J.; Reyes, T.M.; Rudic, R.D.; McNamara, P.; Naik, K.A.; FitzGerald, G.A.; Kay, S.A.; Hogenesch, J.B. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 2004, 43, 527–537. [Google Scholar] [CrossRef] [Green Version]
- Provencio, I.; Rodriguez, I.R.; Jiang, G.; Hayes, W.P.; Moreira, E.F.; Rollag, M.D. A novel human opsin in the inner retina. J. Neurosci. 2000, 20, 600–605. [Google Scholar] [CrossRef] [Green Version]
- Hattar, S.; Liao, H.-W.; Takao, M.; Berson, D.M.; Yau, K.-W. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 2002, 295, 1065–1070. [Google Scholar] [CrossRef] [Green Version]
- Canteras, N.S.; Ribeiro-Barbosa, É.R.; Goto, M.; Cipolla-Neto, J.; Swanson, L.W. The retinohypothalamic tract: Comparison of axonal projection patterns from four major targets. Brain Res. Rev. 2011, 65, 150–183. [Google Scholar] [CrossRef]
- Damiola, F.; Le Minh, N.; Preitner, N.; Kornmann, B.; Fleury-Olela, F.; Schibler, U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000, 14, 2950–2961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stokkan, K.-A.; Yamazaki, S.; Tei, H.; Sakaki, Y.; Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science 2001, 291, 490–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oosterman, J.E.; Koekkoek, L.L.; Foppen, E.; Unmehopa, U.A.; Eggels, L.; Verheij, J.; Fliers, E.; la Fleur, S.E.; Kalsbeek, A. Synergistic effect of feeding time and diet on hepatic steatosis and gene expression in male Wistar rats. Obesity 2020. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, D.C.; Chang, Y.-T.; Hattar, S.; Chen, S.-K. Architecture of retinal projections to the central circadian pacemaker. Proc. Natl. Acad. Sci. USA 2016, 113, 6047–6052. [Google Scholar] [CrossRef] [Green Version]
- Hattar, S.; Kumar, M.; Park, A.; Tong, P.; Tung, J.; Yau, K.W.; Berson, D.M. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J. Comp. Neurol. 2006, 497, 326–349. [Google Scholar] [CrossRef] [Green Version]
- An, K.; Zhao, H.; Miao, Y.; Xu, Q.; Li, Y.-F.; Ma, Y.-Q.; Shi, Y.-M.; Shen, J.-W.; Meng, J.-J.; Yao, Y.-G. A circadian rhythm-gated subcortical pathway for nighttime-light-induced depressive-like behaviors in mice. Nat. Neurosci. 2020, 1–12. [Google Scholar] [CrossRef]
- Gonzalez, M. Dim light at night and constant darkness: Two frequently used lighting conditions that jeopardize the health and well-being of laboratory rodents. Front. Neurol. 2018, 9, 609. [Google Scholar] [CrossRef] [Green Version]
- Cinzano, P.; Falchi, F.; Elvidge, C.D. The first world atlas of the artificial night sky brightness. Mon. Not. R. Astron. Soc. 2001, 328, 689–707. [Google Scholar] [CrossRef] [Green Version]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The new world atlas of artificial night sky brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef] [Green Version]
- Grubisic, M.; Haim, A.; Bhusal, P.; Dominoni, D.M.; Gabriel, K.; Jechow, A.; Kupprat, F.; Lerner, A.; Marchant, P.; Riley, W. Light pollution, circadian photoreception, and melatonin in vertebrates. Sustainability 2019, 11, 6400. [Google Scholar] [CrossRef] [Green Version]
- Kyba, C.C.M.; Mohar, A.; Posch, T. How bright is moonlight? Astron. Geophys. 2017, 58, 31–32. [Google Scholar] [CrossRef]
- Rich, C.; Longcore, T. Ecological Consequences of Artificial Night Lighting; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Chinoy, E.D.; Duffy, J.F.; Czeisler, C.A. Unrestricted evening use of light-emitting tablet computers delays self-selected bedtime and disrupts circadian timing and alertness. Physiol. Rep. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Vetter, C.; Dashti, H.S.; Lane, J.M.; Anderson, S.G.; Schernhammer, E.S.; Rutter, M.K.; Saxena, R.; Scheer, F.A. Night shift work, genetic risk, and type 2 diabetes in the UK biobank. Diabetes Care 2018, 41, 762–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Zhang, L.; Zhang, Y.; Zhang, B.; He, Y.; Xie, S.; Li, M.; Miao, X.; Chan, E.; Tang, J. Meta-analysis on night shift work and risk of metabolic syndrome. Obes. Rev. 2014, 15, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.L.; Feskanich, D.; Sánchez, B.N.; Rexrode, K.M.; Schernhammer, E.S.; Lisabeth, L.D. Rotating night shift work and the risk of ischemic stroke. Am. J. Epidemiol. 2009, 169, 1370–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetter, C.; Devore, E.E.; Wegrzyn, L.R.; Massa, J.; Speizer, F.E.; Kawachi, I.; Rosner, B.; Stampfer, M.J.; Schernhammer, E.S. Association between rotating night shift work and risk of coronary heart disease among women. JAMA 2016, 315, 1726–1734. [Google Scholar] [CrossRef]
- Lin, X.; Chen, W.; Wei, F.; Ying, M.; Wei, W.; Xie, X. Night-shift work increases morbidity of breast cancer and all-cause mortality: A meta-analysis of 16 prospective cohort studies. Sleep Med. 2015, 16, 1381–1387. [Google Scholar] [CrossRef]
- Wegrzyn, L.R.; Tamimi, R.M.; Rosner, B.A.; Brown, S.B.; Stevens, R.G.; Eliassen, A.H.; Laden, F.; Willett, W.C.; Hankinson, S.E.; Schernhammer, E.S. Rotating night-shift work and the risk of breast cancer in the nurses’ health studies. Am. J. Epidemiol. 2017, 186, 532–540. [Google Scholar] [CrossRef] [Green Version]
- Pu, G.; Zeng, D.; Mo, L.; Liao, J.; Chen, X. Artificial light at night alleviates the negative effect of Pb on freshwater ecosystems. Int. J. Mol. Sci. 2019, 20, 1343. [Google Scholar] [CrossRef] [Green Version]
- Dominoni, D.M.; Goymann, W.; Helm, B.; Partecke, J. Urban-like night illumination reduces melatonin release in European blackbirds (Turdus merula): Implications of city life for biological time-keeping of songbirds. Front. Zool. 2013, 10, 60. [Google Scholar] [CrossRef] [Green Version]
- Gastón, M.S.; Pereyra, L.C.; Vaira, M. Artificial light at night and captivity induces differential effects on leukocyte profile, body condition, and erythrocyte size of a diurnal toad. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2019, 331, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J.; Bennie, J.; Davies, T.W.; Hopkins, J. The ecological impacts of nighttime light pollution: A mechanistic appraisal. Biol. Rev. 2013, 88, 912–927. [Google Scholar] [CrossRef] [PubMed]
- Kyba, C.C.; Hänel, A.; Hölker, F. Redefining efficiency for outdoor lighting. Energy Environ. Sci. 2014, 7, 1806–1809. [Google Scholar] [CrossRef]
- Vetter, C. Circadian disruption: What do we actually mean? Eur. J. Neurosci. 2020, 51, 531–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Challet, E. Keeping circadian time with hormones. Diabetes Obes. Metab. 2015, 17, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Claustrat, B.; Leston, J. Melatonin: Physiological effects in humans. Neurochirurgie 2015, 61, 77–84. [Google Scholar] [CrossRef]
- Slominski, R.M.; Reiter, R.J.; Schlabritz-Loutsevitch, N.; Ostrom, R.S.; Slominski, A.T. Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol. Cell. Endocrinol. 2012, 351, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Nagorny, C.L.; Sathanoori, R.; Voss, U.; Mulder, H.; Wierup, N. Distribution of melatonin receptors in murine pancreatic islets. J. Pineal Res. 2011, 50, 412–417. [Google Scholar] [CrossRef]
- Karamitri, A.; Jockers, R. Melatonin in type 2 diabetes mellitus and obesity. Nat. Rev. Endocrinol. 2019, 15, 105–125. [Google Scholar] [CrossRef]
- Garaulet, M.; Qian, J.; Florez, J.C.; Arendt, J.; Saxena, R.; Scheer, F.A. Melatonin effects on glucose metabolism: Time to unlock the controversy. Trends Endocrinol. Metab. 2020, 31, 192–204. [Google Scholar] [CrossRef]
- Dubocovich, M.L. Melatonin receptors: Role on sleep and circadian rhythm regulation. Sleep Med. 2007, 8, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Agez, L.; Laurent, V.; Pevet, P.; Masson-Pévet, M.; Gauer, F. Melatonin affects nuclear orphan receptors mRNA in the rat suprachiasmatic nuclei. Neuroscience 2007, 144, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Lewy, A.J.; Ahmed, S.; Jackson, J.M.L.; Sack, R.L. Melatonin shifts human orcadian rhythms according to a phase-response curve. Chronobiol. Int. 1992, 9, 380–392. [Google Scholar] [CrossRef] [PubMed]
- McArthur, A.J.; Gillette, M.U.; Prosser, R.A. Melatonin directly resets the rat suprachiasmatic circadian clock in vitro. Brain Res. 1991, 565, 158–161. [Google Scholar] [CrossRef]
- Son, G.H.; Cha, H.K.; Chung, S.; Kim, K. Multimodal regulation of circadian glucocorticoid rhythm by central and adrenal clocks. J. Endocr. Soc. 2018, 2, 444–459. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre, A.; Brown, S.A.; Marcacci, L.; Tronche, F.; Kellendonk, C.; Reichardt, H.M.; Schütz, G.; Schibler, U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 2000, 289, 2344–2347. [Google Scholar] [CrossRef] [Green Version]
- Pezük, P.; Mohawk, J.A.; Wang, L.A.; Menaker, M. Glucocorticoids as entraining signals for peripheral circadian oscillators. Endocrinology 2012, 153, 4775–4783. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, P.; Van Eekelen, J.; Levine, S.; De Kloet, E. Ontogeny of the type 2 glucocorticoid receptor in discrete rat brain regions: An immunocytochemical study. Brain Res. 1988, 42, 119–127. [Google Scholar] [CrossRef]
- Goto, M.; Oshima, I.; Tomita, T.; Ebihara, S. Melatonin content of the pineal gland in different mouse strains. J. Pineal Res. 1989, 7, 195–204. [Google Scholar] [CrossRef]
- Borck, P.C.; Batista, T.M.; Vettorazzi, J.F.; Soares, G.M.; Lubaczeuski, C.; Guan, D.; Boschero, A.C.; Vieira, E.; Lazar, M.A.; Carneiro, E.M. Nighttime light exposure enhances Rev-erbα-targeting microRNAs and contributes to hepatic steatosis. Metabolism 2018, 85, 250–258. [Google Scholar] [CrossRef]
- Brainard, G.C.; Richardson, B.A.; King, T.S.; Matthews, S.A.; Reiter, R.J. The suppression of pineal melatonin content and N-acetyItransferase activity by different light irradiances in the Syrian hamster: A dose-response relationship. Endocrinology 1983, 113, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.C.; Weller, J.L. Rapid light-induced decrease in pineal serotonin N-acetyltransferase activity. Science 1972, 177, 532–533. [Google Scholar] [CrossRef] [PubMed]
- Gale, J.E.; Cox, H.I.; Qian, J.; Block, G.D.; Colwell, C.S.; Matveyenko, A.V. Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. J. Biol. Rhythm. 2011, 26, 423–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wideman, C.H.; Murphy, H.M. Constant light induces alterations in melatonin levels, food intake, feed efficiency, visceral adiposity, and circadian rhythms in rats. Nutr. Neurosci. 2009, 12, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Dauchy, R.T.; Dauchy, E.M.; Tirrell, R.P.; Hill, C.R.; Davidson, L.K.; Greene, M.W.; Tirrell, P.C.; Wu, J.; Sauer, L.A.; Blask, D.E. Dark-phase light contamination disrupts circadian rhythms in plasma measures of endocrine physiology and metabolism in rats. Comp. Med. 2010, 60, 348–356. [Google Scholar] [PubMed]
- Báez-Ruiz, A.; Guerrero-Vargas, N.N.; Cázarez-Márquez, F.; Sabath, E.; del Carmen Basualdo, M.; Salgado-Delgado, R.; Escobar, C.; Buijs, R.M. Food in synchrony with melatonin and corticosterone relieves constant light disturbed metabolism. J. Endocrinol. 2017, 235, 167–178. [Google Scholar] [CrossRef]
- Mustonen, A.-M.; Nieminen, P.; Hyvärinen, H. Effects of continuous light and melatonin treatment on energy metabolism of the rat. J. Endocrinol. Investig. 2002, 25, 716–723. [Google Scholar] [CrossRef]
- Tchekalarova, J.; Stoynova, T.; Ilieva, K.; Mitreva, R.; Atanasova, M. Agomelatine treatment corrects symptoms of depression and anxiety by restoring the disrupted melatonin circadian rhythms of rats exposed to chronic constant light. Pharmacol. Biochem. Behav. 2018, 171, 1–9. [Google Scholar] [CrossRef]
- Claustrat, B.; Valatx, J.-L.; Harthe, C.; Brun, J. Effect of constant light on prolactin and corticosterone rhythms evaluated using a noninvasive urine sampling protocol in the rat. Horm. Metab. Res. 2008, 40, 398–403. [Google Scholar] [CrossRef]
- Coomans, C.P.; van den Berg, S.A.; Houben, T.; van Klinken, J.-B.; van den Berg, R.; Pronk, A.C.; Havekes, L.M.; Romijn, J.A.; van Dijk, K.W.; Biermasz, N.R. Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity. FASEB J. 2013, 27, 1721–1732. [Google Scholar] [CrossRef] [Green Version]
- Fonken, L.K.; Workman, J.L.; Walton, J.C.; Weil, Z.M.; Morris, J.S.; Haim, A.; Nelson, R.J. Light at night increases body mass by shifting the time of food intake. Proc. Natl. Acad. Sci. USA 2010, 107, 18664–18669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonken, L.K.; Finy, M.S.; Walton, J.C.; Weil, Z.M.; Workman, J.L.; Ross, J.; Nelson, R.J. Influence of light at night on murine anxiety-and depressive-like responses. Behav. Brain Res. 2009, 205, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Walker, J.J.; Johnson, N.W.; Zhao, Z.; Lightman, S.L.; Spiga, F. Constant light disrupts the circadian rhythm of steroidogenic proteins in the rat adrenal gland. Mol. Cell. Endocrinol. 2013, 371, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Waite, E.J.; McKenna, M.; Kershaw, Y.; Walker, J.J.; Cho, K.; Piggins, H.D.; Lightman, S.L. Ultradian corticosterone secretion is maintained in the absence of circadian cues. Eur. J. Neurosci. 2012, 36, 3142–3150. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Osorio, A.; Salgado-Delgado, R.; Angeles-Castellanos, M.; Escobar, C. Disruption of circadian rhythms due to chronic constant light leads to depressive and anxiety-like behaviors in the rat. Behav. Brain Res. 2013, 252, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Son, G.H.; Chung, S.; Choe, H.K.; Kim, H.-D.; Baik, S.-M.; Lee, H.; Lee, H.-W.; Choi, S.; Sun, W.; Kim, H. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc. Natl. Acad. Sci. USA 2008, 105, 20970–20975. [Google Scholar] [CrossRef] [Green Version]
- Dauchy, R.T.; Wren, M.A.; Dauchy, E.M.; Hoffman, A.E.; Hanifin, J.P.; Warfield, B.; Jablonski, M.R.; Brainard, G.C.; Hill, S.M.; Mao, L. The influence of red light exposure at night on circadian metabolism and physiology in Sprague–Dawley rats. J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 40–50. [Google Scholar]
- Molcan, L.; Sutovska, H.; Okuliarova, M.; Senko, T.; Krskova, L.; Zeman, M. Dim light at night attenuates circadian rhythms in the cardiovascular system and suppresses melatonin in rats. Life Sci. 2019, 231, 116568. [Google Scholar] [CrossRef]
- Bedrosian, T.; Galan, A.; Vaughn, C.; Weil, Z.M.; Nelson, R.J. Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters. J. Neuroendocrinol. 2013, 25, 590–596. [Google Scholar] [CrossRef]
- Fonken, L.K.; Kitsmiller, E.; Smale, L.; Nelson, R.J. Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent. J. Biol. Rhythm. 2012, 27, 319–327. [Google Scholar] [CrossRef]
- Kooijman, S.; van den Berg, R.; Ramkisoensing, A.; Boon, M.R.; Kuipers, E.N.; Loef, M.; Zonneveld, T.C.; Lucassen, E.A.; Sips, H.C.; Chatzispyrou, I.A. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity. Proc. Natl. Acad. Sci. USA 2015, 112, 6748–6753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamuro, D.; Takahashi, M.; Nagashima, S.; Wakabayashi, T.; Yamazaki, H.; Takei, A.; Takei, S.; Sakai, K.; Ebihara, K.; Iwasaki, Y. Peripheral circadian rhythms in the liver and white adipose tissue of mice are attenuated by constant light and restored by time-restricted feeding. PLoS ONE 2020, 15, e0234439. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Pan, S.; Xu, P.; Xue, T.; Wang, J.; Guo, Y.; Jia, L.; Qiao, X.; Li, L.; Zhai, Y. Melatonin orchestrates lipid homeostasis through the hepatointestinal circadian clock and microbiota during constant light exposure. Cells 2020, 9, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroni, M.J.; Capri, K.M.; Cushman, A.V.; Monteiro De Pina, I.K.; Chasse, M.H.; Seggio, J.A. Constant light alters serum hormone levels related to thyroid function in male CD-1 mice. Chronobiol. Int. 2018, 35, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Yeh, B.; Rakshit, K.; Colwell, C.S.; Matveyenko, A.V. Circadian disruption and diet-induced obesity synergize to promote development of β-cell failure and diabetes in male rats. Endocrinology 2015, 156, 4426–4436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alterman, A.; Mathison, R.; Coronel, C.; Stroppa, M.; Finkelberg, A.; Gallará, R. Functional and proteomic analysis of submandibular saliva in rats exposed to chronic stress by immobilization or constant light. Arch. Oral Biol. 2012, 57, 663–669. [Google Scholar] [CrossRef]
- Polidarová, L.; Sládek, M.; Soták, M.; Pácha, J.; Sumová, A. Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding. Chronobiol. Int. 2011, 28, 204–215. [Google Scholar] [CrossRef]
- Nováková, M.; Polidarová, L.; Sládek, M.; Sumová, A. Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light. Neuroscience 2011, 197, 65–71. [Google Scholar] [CrossRef]
- Cleary-Gaffney, M.; Coogan, A.N. Limited evidence for affective and diurnal rhythm responses to dim light-at-night in male and female C57Bl/6 mice. Physiol. Behav. 2018, 189, 78–85. [Google Scholar] [CrossRef]
- Aubrecht, T.G.; Jenkins, R.; Nelson, R.J. Dim light at night increases body mass of female mice. Chronobiol. Int. 2015, 32, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Borniger, J.C.; Maurya, S.K.; Periasamy, M.; Nelson, R.J. Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms. Chronobiol. Int. 2014, 31, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Cissé, Y.M.; Peng, J.; Nelson, R.J. Effects of dim light at night on food intake and body mass in developing mice. Front. Neurosci. 2017, 11, 294. [Google Scholar] [CrossRef] [PubMed]
- Fonken, L.K.; Weil, Z.M.; Nelson, R.J. Dark nights reverse metabolic disruption caused by dim light at night. Obesity 2013, 21, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Fonken, L.K.; Aubrecht, T.G.; Meléndez-Fernández, O.H.; Weil, Z.M.; Nelson, R.J. Dim light at night disrupts molecular circadian rhythms and affects metabolism. J. Biol. Rhythm. 2013, 28, 262. [Google Scholar] [CrossRef] [PubMed]
- Fonken, L.K.; Lieberman, R.A.; Weil, Z.M.; Nelson, R.J. Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice. Endocrinology 2013, 154, 3817–3825. [Google Scholar] [CrossRef] [Green Version]
- Fonken, L.K.; Meléndez-Fernández, O.H.; Weil, Z.M.; Nelson, R.J. Exercise attenuates the metabolic effects of dim light at night. Physiol. Behav. 2014, 124, 33–36. [Google Scholar] [CrossRef]
- Russart, K.L.; Chbeir, S.A.; Nelson, R.J.; Magalang, U.J. Light at night exacerbates metabolic dysfunction in a polygenic mouse model of type 2 diabetes mellitus. Life Sci. 2019, 231, 116574. [Google Scholar] [CrossRef]
- Stenvers, D.J.; Van Dorp, R.; Foppen, E.; Mendoza, J.; Opperhuizen, A.-L.; Fliers, E.; Bisschop, P.H.; Meijer, J.H.; Kalsbeek, A.; Deboer, T. Dim light at night disturbs the daily sleep-wake cycle in the rat. Sci. Rep. 2016, 6, 35662. [Google Scholar] [CrossRef] [Green Version]
- Rumanova, V.S.; Okuliarova, M.; Molcan, L.; Sutovska, H.; Zeman, M. Consequences of low-intensity light at night on cardiovascular and metabolic parameters in spontaneously hypertensive rats. Can. J. Physiol. Pharmacol. 2019, 97, 863–871. [Google Scholar] [CrossRef]
- Sudo, M.; Sasahara, K.; Moriya, T.; Akiyama, M.; Hamada, T.; Shibata, S. Constant light housing attenuates circadian rhythms of mPer2 mRNA and mPER2 protein expression in the suprachiasmatic nucleus of mice. Neuroscience 2003, 121, 493–499. [Google Scholar] [CrossRef]
- Steinlechner, S.; Jacobmeier, B.; Scherbarth, F.; Dernbach, H.; Kruse, F.; Albrecht, U. Robust circadian rhythmicity of Per1 and Per2 mutant mice in constant light, and dynamics of Per1 and Per2 gene expression under long and short photoperiods. J. Biol. Rhythm. 2002, 17, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Ohta, H.; Yamazaki, S.; McMahon, D.G. Constant light desynchronizes mammalian clock neurons. Nat. Neurosci. 2005, 8, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Cambras, T.; Castejón, L.; Díez-Noguera, A. Social interaction and sex differences influence rat temperature circadian rhythm under LD cycles and constant light. Physiol. Behav. 2011, 103, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Paredes, D.; Rada, P.; Bonilla, E.; Gonzalez, L.E.; Parada, M.; Hernandez, L. Melatonin acts on the nucleus accumbens to increase acetylcholine release and modify the motor activity pattern of rats. Brain Res. 1999, 850, 14–20. [Google Scholar] [CrossRef]
- Muñoz, M.; Peirson, S.N.; Hankins, M.W.; Foster, R.G. Long-term constant light induces constitutive elevated expression of mPER2 protein in the murine SCN: A molecular basis for Aschoff’s rule? J. Biol. Rhythm. 2005, 20, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Panagiotou, M.; Deboer, T. Effects of chronic dim-light-at-night exposure on sleep in young and aged mice. Neuroscience 2020, 426, 154–167. [Google Scholar] [CrossRef]
- Shuboni, D.; Yan, L. Nighttime dim light exposure alters the responses of the circadian system. Neuroscience 2010, 170, 1172–1178. [Google Scholar] [CrossRef]
- Bumgarner, J.R.; Walker II, W.H.; Liu, J.A.; Walton, J.C.; Nelson, R.J. Dim light at night exposure induces cold hyperalgesia and mechanical allodynia in male mice. Neuroscience 2020. [Google Scholar] [CrossRef]
- Bray, M.S.; Ratcliffe, W.F.; Grenett, M.H.; Brewer, R.A.; Gamble, K.L.; Young, M.E. Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice. Int. J. Obes. 2013, 37, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Jeukendrup, A.; Wallis, G. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int. J. Sports Med. 2005, 26, S28–S37. [Google Scholar] [CrossRef]
- Pendergast, D.R.; Leddy, J.J.; Venkatraman, J.T. A perspective on fat intake in athletes. J. Am. Coll. Nutr. 2000, 19, 345–350. [Google Scholar] [CrossRef] [PubMed]
- McClave, S.A.; Lowen, C.C.; Kleber, M.J.; McConnell, J.W.; Jung, L.Y.; Goldsmith, L.J. Clinical use of the respiratory quotient obtained from indirect calorimetry. J. Parenter. Enter. Nutr. 2003, 27, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.L.; Alquier, T.; Asakura, K.; Furukawa, N.; Preitner, F.; Kahn, B.B. Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. J. Biol. Chem. 2006, 281, 18933–18941. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Yanase, T.; Nomura, M.; Okabe, T.; Goto, K.; Sato, T.; Kawano, H.; Kato, S.; Nawata, H. Androgen receptor null male mice develop late-onset obesity caused by decreased energy expenditure and lipolytic activity but show normal insulin sensitivity with high adiponectin secretion. Diabetes 2005, 54, 1000–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nestoridi, E.; Kvas, S.; Kucharczyk, J.; Stylopoulos, N. Resting energy expenditure and energetic cost of feeding are augmented after Roux-en-Y gastric bypass in obese mice. Endocrinology 2012, 153, 2234–2244. [Google Scholar] [CrossRef] [Green Version]
- Angin, Y.; Beauloye, C.; Horman, S.; Bertrand, L. Regulation of carbohydrate metabolism, lipid metabolism, and protein metabolism by AMPK. In AMP-Activated Protein Kinase; Springer: Berlin/Heidelberg, Germany, 2016; pp. 23–43. [Google Scholar] [CrossRef]
- Panda, S. Circadian physiology of metabolism. Science 2016, 354, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Linden, A.G.; Li, S.; Choi, H.Y.; Fang, F.; Fukasawa, M.; Uyeda, K.; Hammer, R.E.; Horton, J.D.; Engelking, L.J.; Liang, G. Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J. Lipid Res. 2018, 59, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Softic, S.; Cohen, D.E.; Kahn, C.R. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig. Dis. Sci. 2016, 61, 1282–1293. [Google Scholar] [CrossRef] [Green Version]
- Bugge, A.; Feng, D.; Everett, L.J.; Briggs, E.R.; Mullican, S.E.; Wang, F.; Jager, J.; Lazar, M.A. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 2012, 26, 657–667. [Google Scholar] [CrossRef] [Green Version]
- Jacobi, D.; Cho, H.J.; Alexander, R.K.; Lee, C.-H. Metabolic rhythm of hepatic lipogenesis: Regulation and roles in metabolism. In Hepatic De Novo Lipogenesis and Regulation of Metabolism; Springer: Berlin/Heidelberg, Germany, 2016; pp. 235–253. [Google Scholar]
- Matthews, D.; Hosker, J.; Rudenski, A.; Naylor, B.; Treacher, D.; Turner, R. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Pettinelli, P.; Videla, L.A. Up-regulation of PPAR-γ mRNA expression in the liver of obese patients: An additional reinforcing lipogenic mechanism to SREBP-1c induction. J. Clin. Endocrinol. Metab. 2011, 96, 1424–1430. [Google Scholar] [CrossRef] [PubMed]
- Chechi, K.; Yasui, N.; Ikeda, K.; Yamori, Y.; Cheema, S.K. Flax oil-mediated activation of PPAR-γ correlates with reduction of hepatic lipid accumulation in obese spontaneously hypertensive/NDmcr-cp rats, a model of the metabolic syndrome. Br. J. Nutr. 2010, 104, 1313–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara, R.; Wan, K.; Wakamatsu, H.; Aida, R.; Moriya, T.; Akiyama, M.; Shibata, S. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 2001, 6, 269–278. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumanova, V.S.; Okuliarova, M.; Zeman, M. Differential Effects of Constant Light and Dim Light at Night on the Circadian Control of Metabolism and Behavior. Int. J. Mol. Sci. 2020, 21, 5478. https://doi.org/10.3390/ijms21155478
Rumanova VS, Okuliarova M, Zeman M. Differential Effects of Constant Light and Dim Light at Night on the Circadian Control of Metabolism and Behavior. International Journal of Molecular Sciences. 2020; 21(15):5478. https://doi.org/10.3390/ijms21155478
Chicago/Turabian StyleRumanova, Valentina S., Monika Okuliarova, and Michal Zeman. 2020. "Differential Effects of Constant Light and Dim Light at Night on the Circadian Control of Metabolism and Behavior" International Journal of Molecular Sciences 21, no. 15: 5478. https://doi.org/10.3390/ijms21155478
APA StyleRumanova, V. S., Okuliarova, M., & Zeman, M. (2020). Differential Effects of Constant Light and Dim Light at Night on the Circadian Control of Metabolism and Behavior. International Journal of Molecular Sciences, 21(15), 5478. https://doi.org/10.3390/ijms21155478