Localization of the Elastic Proteins in the Flight Muscle of Manduca sexta
Abstract
:1. Introduction
2. Results
2.1. Filament Lengths
2.2. Filament Integrity upon Sarcomere Extension
2.3. Force-Length Curve for M. Sexta Ventral Flight Muscle
2.4. Location of Projectin in the Sarcomere
2.5. Location of Sallimus (Sls) in the Sarcomere
3. Discussion
3.1. Z-band Width in the DLM1
3.2. Breakage of Thin Filaments with Stretch under Relaxing Conditions
3.3. Force-Length Curves
3.4. Thick and Thin Filament Lengths
3.5. Immuno-Localization of Projectin
3.6. Immuno-Localization of Sls Proteins
4. Materials and Methods
4.1. Muscle Dissection for Immuno-Localization Experiments
4.2. Fiber Preparation for Immuno-Localization
4.3. Myofibril Preparation for Immuno-Localization
4.4. Antibody Labeling of Myofibrils
4.5. Force Measurement and Data Recording for Passive Stretch Experiments
4.6. Muscle Preparation for Force-Length Curves
4.7. Force Measurement and Data Recording for Force-Length Curves
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ATP | Adenosine triphosphate |
BDM | 2,3-Butanedione monoxime |
BSA | Bovine serum albumin |
CaCl2 | Calcium chloride |
CPK | Creatine phosphate kinase |
DLM1 | Mesothoracic dorsolongitudinal muscle |
DTT | Dithiothreitol |
EGTA | Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid |
HCl | Hydrochloric acid |
IFM | Insect flight muscle |
K-Pro | Potasium propionate |
MgCl2 | Magnesium chloride |
MOPS | 3- (N-morpholino)propanesulfonic acid |
Na2ATP | Adenosin 5′-triphosphate disodium |
Na2CP | Creatine phosphate disodium |
NaOH | Sodium hydroxide |
PBS | Phosphate-buffered saline |
PFM | Paraformaldehyde |
PIC | Protease inhibitor cocktail |
Sls | Sallimus protein |
References
- Boettiger, E.G. The machinery of insect flight. In Recent Adv. Invertebr. Physiol; Scheer, B.T., Ed.; Univ. of Oregon Publication: Eugene, OR, USA, 1957; pp. 117–142. [Google Scholar]
- Boettiger, E.G. Insect flight muscles and their basic physiology. Ann. Rev. Entomol. 1960, 5, 1–16. [Google Scholar] [CrossRef]
- Pringle, J.W.S. The excitation and contraction of the flight muscles of insects. J. Physiol. 1949, 108, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Roeder, K.D. Movements of the thorax and potential changes in the thoracic muscles of insects during flight. Biol. Bull. 1951, 100, 95–106. [Google Scholar] [CrossRef]
- Josephson, R.K.; Malamud, J.G.; Stokes, D.R. Asynchronous muscle. J. Exp. Biol. 2000, 203, 2713–2722. [Google Scholar] [PubMed]
- Chan, W.P.; Dickinson, M.H. In vivo length oscillations of indirect flight muscles in the fruit fly Drosophila virilis. J. Exp. Biol. 1996, 199, 2767–2774. [Google Scholar]
- Dudley, R. Comparative biomechanics and the evolutionary diversification of flying insect morphology. In The Unity of Evolutionary Biology; Dudley, E.C., Ed.; Dioscorides Press: Portland, OR, USA, 1991; pp. 503–514. [Google Scholar]
- Gilmour, K.M.; Ellington, C.P. In vivo muscle length changes in bumblebees and the in vitro effects on work and power. J. Exp. Biol. 1993, 183, 101–113. [Google Scholar]
- Josephson, R.K.; Ellington, C. Power output from a flight muscle of the bumblebee Bombus terrestris. I. Some features of the dorso-ventral flight muscle. J. Exp. Biol. 1997, 200, 1215–1226. [Google Scholar]
- Eaton, J.L. Lepidopteran Anatomy; Wiley Interscience: New York, NY, USA, 1988. [Google Scholar]
- Nüesch, H. The morphology of the thorax of Telea polyphemus (Lepidoptera). I. Skeleton and muscles. J. Morphol. 1953, 93, 589–609. [Google Scholar] [CrossRef]
- Kammer, A.E. Comprehensive Insect Physiology. Biochemistry and Pharmacology: Nervous System: Structure and Motor Function; Pergamon Press: Oxford, UK, 1985; Volume 5, pp. 491–552. [Google Scholar]
- Tu, M.S.; Daniels, T.L. Cardiac-like behavior of an insect flight muscle. J. Exp. Biol. 2004, 207, 2455–2464. [Google Scholar] [CrossRef] [Green Version]
- George, N.T.; Daniel, T.L. Temperature gradients in the flight muscles of Manduca sexta imply a spatial gradient in muscle force and energy output. J. Exp. Biol. 2011, 214, 894–900. [Google Scholar] [CrossRef] [Green Version]
- George, N.T.; Sponberg, S.; Daniel, T.L. Temperature gradients drive mechanical energy gradients in the flight muscle of Manduca sexta. J. Exp. Biol. 2012, 215, 471–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, N.T.; Irving, T.C.; Williams, C.D.; Daniel, T.L. The cross-bridge spring: Can cool muscles store elastic energy? Science 2013, 340, 1217–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, M. Insect flight. Curr. Biol. 2006, 16, R309–R314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granzier, H.L.; Irving, T.C. Passive tension in cardiac muscle: Contribution of collagen, titin, microtubules, and intermediate filaments. Biophys. J. 1995, 68, 1027–1044. [Google Scholar] [CrossRef]
- Horowits, R. Passive force generation and titin isoforms in mammalian skeletal muscle. Biophys. J. 1992, 61, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Bullard, B.; Garcia, T.; Benes, V.; Leake, M.C.; Linke, W.A.; Oberhauser, A.F. The molecular elasticity of the insect flight muscle proteins projectin and kettin. Proc. Natl. Acad. Sci. USA 2006, 103, 4451–4456. [Google Scholar] [CrossRef] [Green Version]
- Trombitás, K. Connecting filaments: A historical prospective. Adv. Exp. Med. Biol. 2000, 481, 1–23. [Google Scholar] [CrossRef]
- Gautel, M.; Goulding, D. A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett. 1996, 385, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Linke, W.A.; Ivemeyer, M.; Olivieri, N.; Kolmerer, B.; Rüegg, J.C.; Labeit, S. Towards a molecular understanding of the elasticity of titin. J. Mol. Biol. 1996, 261, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Burkart, C.; Qiu, F.; Brendel, S.; Benes, V.; Hååg, P.; Labeit, S.; Leonard, K.; Bullard, B. Modular proteins from the Drosophila sallimus (sls) gene and their expression in muscles with different extensibility. J. Mol. Biol. 2007, 367, 953–969. [Google Scholar] [CrossRef] [Green Version]
- Kulke, M.; Neagoe, C.; Kolmerer, B.; Minajeva, A.; Hinssen, H.; Bullard, B.; Linke, W.A. Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle. J. Cell Biol. 2001, 154, 1045–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, C.-C.; Ma, W.; Schemmel, P.; Cheng, Y.-S.; Liu, J.; Tsaprailis, G.; Feldman, S.; Ayme Southgate, A.; Irving, T.C. Elastic proteins in the flight muscle of Manduca sexta. Arch. Biochem. Biophys. 2015, 568, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Ayme-Southgate, A.; Crowe, M.; Southgate, R. The NH2-terminal Ig Domains of Insect Projectin Could Serve As Elastic Elements. J. Proteom. Genom. Res. 2012, 1, 21–33. [Google Scholar] [CrossRef]
- Bullard, B.; Linke, W.A.; Leonard, K. Varieties of elastic protein in invertebrate muscles. J. Muscle Res. Cell. Motil. 2002, 23, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Linke, W.A.; Ivemeyer, M.; Labeit, S.; Hinssen, H.; Rüegg, J.C.; Gautel, M. Actin-titin interaction in cardiac myofibrils: Probing a physiological role. Biophys. J. 1997, 73, 905–919. [Google Scholar] [CrossRef] [Green Version]
- Trombitas, K.; Granzier, H. Actin removal from cardiac myocytes shows that near Z line titin attaches to actin while under tension. Am. J. Physiol. Cell Physiol. 1997, 273, C662–C670. [Google Scholar] [CrossRef]
- Lakey, A.; Ferguson, C.; Labeit, S.; Reedy, M.; Larkins, A.; Butcher, G.; Leonard, K.; Bullard, B. Identification and localization of high molecular weight proteins in insect flight and leg muscle. EMBO J. 1990, 9, 3459–3467. [Google Scholar] [CrossRef]
- Fyrberg, C.C.; Labeit, S.; Bullard, B.; Leonard, K.; Fyrberg, E. Drosophila projectin: Relatedness to titin and twitchin and correlation with letahl(4)102 Cda and bent-dominant mutants. Proc. Biol. Sci. 1992, 249, 33–40. [Google Scholar]
- Luther, P.K.; Padrón, R.; Ritter, S.; Craig, R.; Squire, J.M. Heterogeneity of Z-band structure within a single muscle sarcomere: Implications for sarcomere assembly. J. Mol. Biol. 2003, 332, 161–169. [Google Scholar] [CrossRef]
- Deatherage, J.F.; Cheng, N.Q.; Bullard, B. Arrangement of filaments and cross-links in the bee flight muscle Z disk by image analysis of oblique sections. J. Cell Biol. 1989, 108, 1775–1782. [Google Scholar] [CrossRef]
- Saide, J.D.; Chin-Bow, S.; Hogan-Sheldon, J.; Busquets-Turner, L.; Vigoreaux, J.O.; Valgeirsdottir, K.; Pardue, M.L. Characterization of components of Z-bands in the fibrillar flight muscle of Drosophila melanogaster. J. Cell Biol. 1989, 109, 2157–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altshuler, D.L.; Dickson, W.B.; Vance, J.T.; Roberts, S.P.; Dickinson, M.H. Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight. Proc. Natl. Acad. Sci. USA 2005, 102, 18213–18218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perz-Edwards, R.J.; Irving, T.C.; Baumann, B.A.J.; Gore, D.; Hutchinson, D.C.; Kržič, U.; Porter, R.L.; Ward, A.B.; Reedy, M.K. X-ray diffraction evidence for myosin-troponin connections and tropomyosin movement during stretch activation of insect flight muscle. Proc. Natl. Acad. Sci. USA 2011, 108, 120–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, J.; Huxley, H.E. Structural Basis of the Cross-Striations in Muscle. Nature 1953, 172, 530–532. [Google Scholar] [CrossRef] [PubMed]
- Huxley, A.F.; Niedergerke, R. Structural Changes in Muscle During Contraction: Interference Microscopy of Living Muscle Fibres. Nature 1954, 173, 971–973. [Google Scholar] [CrossRef]
- Gordon, A.M.; Huxley, A.F.; Julian, F.J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 1966, 184, 170–192. [Google Scholar] [CrossRef]
- Saide, J.D. Identification of a connecting filament protein in insect fibrillar flight muscle. J. Mol. Biol. 1981, 153, 661–679. [Google Scholar] [CrossRef]
- Ohtani, Y.; Maki, S.; Kimura, S.; Maruyama, K. Localization of connectin-like proteins in leg and flight muscles of insects. Tissue Cell 1996, 28, 1–8. [Google Scholar] [CrossRef]
- Hu, D.H.; Matsuno, A.; Terakado, K.; Matsuura, T.; Kimura, S.; Maruyama, K. Projectin is an invertebrate connectin (titin): Isolation from crayfish claw muscle and localization in crayfish claw muscle and insect flight muscle. J. Muscle Res. Cell. Motil. 1990, 11, 497–511. [Google Scholar] [CrossRef]
- Nave, R.; Fürst, D.O.; Weber, K. Interaction of alpha-actinin and nebulin in vitro: Support for the existence of a fourth filament system in skeletal muscle. FEBS Lett. 1990, 269, 163–166. [Google Scholar] [CrossRef] [Green Version]
- Crossley, A.C. the morphology and development of the Drosophila muscular system. In the Genetics and Biology of Drosophila; Ashbuner, M., Wright, T.R.F., Eds.; Academic Press: London, UK, 1978; Volume 2B, pp. 499–559. [Google Scholar]
- Shimamura, J.; Maruyama, K.; Kimura, S. Localization of projectin in locust flight muscle. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2003, 136, 419–423. [Google Scholar] [CrossRef]
- Whiting, A.; Wardale, J.; Trinick, J. Does titin regulate the length of muscle thick filaments? J. Mol. Biol. 1989, 205, 263–268. [Google Scholar] [CrossRef]
Clone | Protein | Host | Dilution | Antibody | Source |
---|---|---|---|---|---|
MAC150 | Projectin | Rat | 1:1000 | Monoclonal IgG | B |
MAC276 | α-Actinin | Mouse | 1:300 | Hybridoma IgM | B |
NT2 | Projectin | Rabbit | 1:200 | Polyclonal | A |
3B11 | Projectin | Mouse | 1:200 | Monoclonal | A |
N-Sls | Sallimus | Mouse | 1:100 | Monoclonal | C |
M-Sls | Sallimus | Mouse | 1:100 | Monoclonal | C |
Name | Fluor | Host | Dilution | Antibody | Source |
---|---|---|---|---|---|
Anti-Rat | Cy3 | Goat | 1:1000 | Polyclonal | ThermoFisher |
Anti-Mouse | Cy5 | Goat | 1:1000 | Polyclonal | ThermoFisher |
Anti-Rabbit | A488 | Goat | 1:1000 | Polyclonal | Abcam |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, H.; Ma, W.; Chen, S.; Wang, G.; Khairallah, R.; Irving, T. Localization of the Elastic Proteins in the Flight Muscle of Manduca sexta. Int. J. Mol. Sci. 2020, 21, 5504. https://doi.org/10.3390/ijms21155504
Gong H, Ma W, Chen S, Wang G, Khairallah R, Irving T. Localization of the Elastic Proteins in the Flight Muscle of Manduca sexta. International Journal of Molecular Sciences. 2020; 21(15):5504. https://doi.org/10.3390/ijms21155504
Chicago/Turabian StyleGong, Henry, Weikang Ma, Shaoshuai Chen, Geng Wang, Ramzi Khairallah, and Thomas Irving. 2020. "Localization of the Elastic Proteins in the Flight Muscle of Manduca sexta" International Journal of Molecular Sciences 21, no. 15: 5504. https://doi.org/10.3390/ijms21155504
APA StyleGong, H., Ma, W., Chen, S., Wang, G., Khairallah, R., & Irving, T. (2020). Localization of the Elastic Proteins in the Flight Muscle of Manduca sexta. International Journal of Molecular Sciences, 21(15), 5504. https://doi.org/10.3390/ijms21155504