Identification and Comparison of microRNAs in the Gonad of the Yellowfin Seabream (Acanthopagrus Latus)
Abstract
:1. Introduction
2. Results
2.1. Overview of the Small-RNA Sequencing Data
2.2. Identification of Conserved and Novel miRNAs in the Gonads of the Yellowfin Seabream
2.3. MiRNA Expression Patterns in Yellowfin Seabream Gonads
2.4. Identification of Sex-Biased miRNAs in the Testis and the Ovary
2.5. Validation of miRNA Expression Using RT-qPCR
2.6. Target Gene Prediction and Functional Analysis
2.7. Integrated Analysis of the DE miRNAs and Corresponding Target Genes
3. Discussion
4. Materials and Methods
4.1. Ethical Procedures
4.2. Sample Collection
4.3. RNA Extraction, Library Construction, and Small RNA Sequencing
4.4. Quality Control and miRNA Identification
4.5. Differential miRNA Expression Analysis
4.6. Real-Time Quantitative PCR Verification (RT-qPCR)
4.7. Prediction of DE miRNA Targets
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
MiRNA Name | Sequence (5′ to 3′) |
---|---|
miR-724 | TTAAAGGGAATTTGCGACTGTT |
miR-7a | CGTGGAAGACTAGTGATTTTGTTGT |
miR-202-3p | AGAGGCATAGGGCATGGGAAAA |
miR-725 | TTCAGTCATTGTTTCTGGTCGT |
miR-200a | CGTAACACTGTCTGGTAACGATGTT |
miR-216b | CTAATCTCTGCAGGCAACTGTGA |
miR-novel-5 | TTTCTGGAGATGGAGGGCAGTCGTC |
miR-novel-35 | TTTCCTCGCGCTTTCTGACTG |
miR-novel-49 | TCTCTGGTCACGTCGCTTCCTCTG |
miR-novel-69 | CTTGGAAAGGCTCGGGGC |
Sample | Raw Reads | Clean Reads (18nt–32nt) | Error Rate (%) | Q20 (%) | Q30 (%) | GC Content (%) |
---|---|---|---|---|---|---|
Testis | 14,286,897 | 12,499,328 | 0.0223 | 99.08 | 97.01 | 50.77 |
Ovary | 10,581,727 | 8,188,452 | 0.0212 | 99.04 | 96.92 | 50.9 |
Types | Testis | Ovary |
---|---|---|
Known miRNA | 512,896 (4.1%) | 942,069 (11.5%) |
rRNA | 412,634 (3.3%) | 510,001 (6.23%) |
tRNA | 988,412 (7.91%) | 462,204 (5.64%) |
snoRNA | 1708 (0.01%) | 5750 (0.07%) |
snRNA | 3138 (0.03%) | 3571 (0.04%) |
Repeats | 158,524 (1.27%) | 141,570 (1.73%) |
Novel miRNA | 30,710 (0.25%) | 20,849 (0.25%) |
Other | 10,391,306 (83.13%) | 6,102,438 (74.52%) |
Total | 12,499,328 | 8,188,452 |
References
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010, 11, 597–610. [Google Scholar] [CrossRef]
- Arner, P.; Kulyte, A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat. Rev. Endocrinol. 2015, 11, 276–288. [Google Scholar] [CrossRef]
- Bizuayehu, T.T.; Babiak, I. MicroRNA in teleost fish. Genome Biol. Evol. 2014, 6, 1911–1937. [Google Scholar] [CrossRef] [Green Version]
- Cutting, A.D.; Bannister, S.C.; Doran, T.J.; Sinclair, A.H.; Tizard, M.V.; Smith, C.A. The potential role of microRNAs in regulating gonadal sex differentiation in the chicken embryo. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 2012, 20, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Wessely, O.; Agrawal, R.; Tran, U. MicroRNAs in kidney development: Lessons from the frog. Rna Biol. 2010, 7, 296–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennecke, J.; Hipfner, D.R.; Stark, A.; Russell, R.B.; Cohen, S.M. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 2003, 113, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Conine, C.C.; Sun, F.; Song, L.; Rivera-Perez, J.A.; Rando, O.J. Small RNAs Gained during Epididymal Transit of Sperm Are Essential for Embryonic Development in Mice. Dev. Cell 2018, 46, 470–480. [Google Scholar] [CrossRef] [Green Version]
- Nixon, B.; Stanger, S.J.; Mihalas, B.P.; Reilly, J.N.; Anderson, A.L.; Tyagi, S.; Holt, J.E.; McLaughlin, E.A. The microRNA signature of mouse spermatozoa is substantially modified during epididymal maturation. Biol. Reprod. 2015, 93, 91. [Google Scholar] [CrossRef]
- Qi, R.; Huang, J.; Wang, Q.; Liu, H.; Wang, R.; Wang, J.; Yang, F. MicroRNA-224-5p regulates adipocyte apoptosis induced by TNFalpha via controlling NF-kappaB activation. J. Cell. Physiol. 2018, 233, 1236–1246. [Google Scholar] [CrossRef]
- Vienberg, S.; Geiger, J.; Madsen, S.; Dalgaard, L.T. MicroRNAs in metabolism. Acta Physiol. 2017, 219, 346–361. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, F. MicroRNA-100 is involved in shrimp immune response to white spot syndrome virus (WSSV) and Vibrio alginolyticus infection. Sci. Rep. 2017, 7, 42334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, S.D.; von Grotthuss, M.; Gandasetiawan, K.A.; Jayasekera, S.; Xia, X.Q.; Chan, C.; Jayaswal, V.; Ranz, J.M. Functional divergence of the miRNA transcriptome at the onset of Drosophila metamorphosis. Mol. Biol. Evol. 2014, 31, 2557–2572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggers, S.; Ohnesorg, T.; Sinclair, A. Genetic regulation of mammalian gonad development. Nat. Rev. Endocrinol. 2014, 10, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Perez, D.; Brieno-Enriquez, M.A. MicroRNA dynamics at the onset of primordial germ and somatic cell sex differentiation during mouse embryonic gonad development. RNA 2018, 24, 287–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, L.; Cui, X.; Zhang, Y.; Yang, C.; Jiang, Y. Identification of miRNAs associated with sexual maturity in chicken ovary by Illumina small RNA deep sequencing. Bmc Genom. 2013, 14, 352. [Google Scholar] [CrossRef] [Green Version]
- Presslauer, C.; Tilahun Bizuayehu, T.; Kopp, M.; Fernandes, J.M.; Babiak, I. Dynamics of miRNA transcriptome during gonadal development of zebrafish. Sci. Rep. 2017, 7, 43850. [Google Scholar] [CrossRef]
- Jing, J.; Wu, J.; Liu, W.; Xiong, S.; Ma, W.; Zhang, J.; Wang, W.; Gui, J.F.; Mei, J. Sex-biased miRNAs in gonad and their potential roles for testis development in yellow catfish. PLoS ONE 2014, 9, e107946. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Yang, J.; Luan, P.; Zhang, X.; Kuang, Y.; Sun, X. Sex-biased miRNAs of yellow catfish (Pelteobagrus fulvidraco) and their potential role in reproductive development. Aquaculture 2018, 485, 73–80. [Google Scholar] [CrossRef]
- Tao, W.; Sun, L.; Shi, H.; Cheng, Y.; Jiang, D.; Fu, B.; Conte, M.A.; Gammerdinger, W.J.; Kocher, T.D.; Wang, D. Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation. Bmc Genom. 2016, 17, 328. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Zhong, H.; Zhou, Y.; Yu, F.; Gao, Y.; Luo, Y.J.; Tang, Z.Y.; Guo, Z.B.; Guo, E.Y.; Gan, X.; et al. Identification and characterization of microRNAs in ovary and testis of Nile tilapia (Oreochromis niloticus) by using solexa sequencing technology. PLoS ONE 2014, 9, e86821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.; Liu, X.; Zhang, K.; Liu, Y.; Cheng, J.; Zhang, Q. Discovery and functional characterization of microRNAs and their potential roles for gonadal development in spotted knifejaw, Oplegnathus punctatus. Comp. Biochem. Physiol. Part D Genom. Proteom. 2018, 28, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Zhou, M.; Zou, Z.; Lin, P.; Wang, Y. Identification and comparative analysis of the ovary and testis microRNAome of mud crab Scylla paramamosain. Mol. Reprod. Dev. 2018, 85, 519–531. [Google Scholar] [PubMed]
- Waiho, K.; Fazhan, H.; Zhang, Y.; Zhang, Y.; Li, S.; Zheng, H.; Liu, W.; Ikhwanuddin, M.; Ma, H. Gonadal microRNA Expression Profiles and Their Potential Role in Sex Differentiation and Gonadal Maturation of Mud Crab Scylla paramamosain. Mar. Biotechnol. 2019, 21, 320–334. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Jiang, H.; Ma, J.E.; Li, J.; Chen, J. Identification and differential expression of microRNAs in testis and ovary of Amur sturgeon (Acipenser schrenckii). Gene 2018, 658, 36–46. [Google Scholar] [CrossRef]
- He, P.; Wei, P.; Chen, X.; Lin, Y.; Peng, J. Identification and characterization of microRNAs in the gonad of Trachinotus ovatus using Solexa sequencing. Comp. Biochem. Physiol. Part D Genom. Proteom. 2019, 30, 312–320. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, G.; Yin, S.; Li, Z.; Wang, Q.; Chen, S.; Zhou, G. Integrated analysis of mRNA-seq and miRNA-seq reveals the potential roles of sex-biased miRNA-mRNA pairs in gonad tissue of dark sleeper (Odontobutis potamophila). Bmc Genom. 2017, 18, 613. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.H.; Huang, J.H.; Gong, J.B.; Jiang, S.G. Significant population genetic structure of yellowfin seabream Acanthopagrus latus in China. J. Fish Biol. 2008, 73, 1979–1992. [Google Scholar] [CrossRef]
- Abou-Seedo, F.S.; Dadzie, S.; Al-Kanaan, K.A. Sexuality, sex change and maturation patterns in the yellowfin seabream, Acanthopagrus latus (Teleostei: Sparidae) (Houttuyn, 1782). J. Appl. Ichthyol. 2003, 19, 65–73. [Google Scholar] [CrossRef]
- Hernandez-Silva, G.; Fabian Lopez-Araiza, J.E.; Lopez-Torres, A.S.; Larrea, F.; Torres-Flores, V.; Chirinos, M. Proteomic characterization of human sperm plasma membrane-associated proteins and their role in capacitation. Andrology 2020, 8, 171–180. [Google Scholar] [CrossRef]
- Sheikh, M.H.; Solito, E. Annexin A1: Uncovering the Many Talents of an Old Protein. Int. J. Mol. Sci. 2018, 19, 1045. [Google Scholar]
- Stevenson, J.; Luu, W.; Kristiana, I.; Brown, A.J. Squalene mono-oxygenase, a key enzyme in cholesterol synthesis, is stabilized by unsaturated fatty acids. Biochem. J. 2014, 461, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.X.; Li, J.; Cheng, J.M.; Hu, B.; Sun, T.C.; Li, X.Y.; Batool, A.; Wang, Z.P.; Wang, X.X.; Deng, S.L.; et al. Requirement for CCNB1 in mouse spermatogenesis. Cell Death Dis. 2017, 8, e3142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Cochran, D.A.; Gargano, M.D.; King, I.; Samhat, N.K.; Burger, B.P.; Sabourin, K.R.; Hou, Y.Q.; Awata, J.; Parry, D.A.D.; et al. Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50. Mol. Biol. Cell 2011, 22, 976–987. [Google Scholar] [CrossRef]
- Angelopoulos, N.; Goula, A.; Tolis, G. The role of luteinizing hormone activity in controlled ovarian stimulation. J. Endocrinol. Investig. 2005, 28, 79–88. [Google Scholar] [CrossRef]
- Schiffer, L.; Anderko, S.; Hannemann, F.; Eiden-Plach, A.; Bernhardt, R. The CYP11B subfamily. J. Steroid Biochem. Mol. Biol. 2015, 151, 38–51. [Google Scholar] [CrossRef]
- Chen, J.; Cui, X.; Jia, S.; Luo, D.; Cao, M.; Zhang, Y.; Hu, H.; Huang, K.; Zhu, Z.; Hu, W. Disruption of dmc1 Produces Abnormal Sperm in Medaka (Oryzias latipes). Sci. Rep. 2016, 6, 30912. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Lin, G.; Fang, W.; Huang, P.; Gao, D.; Huang, J.; Xie, J.; Lu, J. Gonadal transcriptome analysis of sex-related genes in the protandrous yellowfin seabream (Acanthopagrus latus). Front. Genet. 2020, 11, 709. [Google Scholar] [CrossRef]
- Michlewski, G.; Cáceres, J.F. Post-transcriptional control of miRNA biogenesis. Rna 2019, 25, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Pu, M.; Chen, J.; Tao, Z.; Miao, L.; Qi, X.; Wang, Y.; Ren, J. Regulatory network of miRNA on its target: Coordination between transcriptional and post-transcriptional regulation of gene expression. Cell. Mol. Life Sci. Cmls 2019, 76, 441–451. [Google Scholar] [CrossRef]
- Xiong, S.; Ma, W.; Jing, J.; Zhang, J.; Dan, C.; Gui, J.F.; Mei, J. An miR-200 Cluster on Chromosome 23 Regulates Sperm Motility in Zebrafish. Endocrinology 2018, 159, 1982–1991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, Q.W.; Sun, M.A.; Lau, S.W.; Parsania, C.; Zhou, S.; Zhong, S.; Ge, W. Identification and characterization of a specific 13-miRNA expression signature during follicle activation in the zebrafish ovary. Biol. Reprod. 2018, 98, 42–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.J.; Moon, M.J.; Lee, H.Y.; Han, S.W. Testosterone alters testis function through regulation of piRNA expression in rats. Mol. Biol. Rep. 2014, 41, 6729–6735. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Z.; Roy, C.K.; Dong, X.; Bolcun-Filas, E.; Wang, J.; Han, B.W.; Xu, J.; Moore, M.J.; Schimenti, J.C.; Weng, Z.; et al. An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol. Cell 2013, 50, 67–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Chen, C.Z.; Xu, M.Q.; Zhang, L.Q.; Liu, J.B.; Gao, Y.; Jiang, H.; Yuan, B.; Zhang, J.B. MiR-31 and miR-143 affect steroid hormone synthesis and inhibit cell apoptosis in bovine granulosa cells through FSHR. Theriogenology 2019, 123, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, X.; Zhang, X.; Lu, Y.; Li, L.; Cui, S. MiRNA-143 mediates the proliferative signaling pathway of FSH and regulates estradiol production. J. Endocrinol. 2017, 234, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sirotkin, A.V.; Ovcharenko, D.; Grossmann, R.; Laukova, M.; Mlyncek, M. Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J. Cell. Physiol. 2009, 219, 415–420. [Google Scholar] [CrossRef]
- Saunders, L.R.; Sharma, A.D.; Tawney, J.; Nakagawa, M.; Okita, K.; Yamanaka, S.; Willenbring, H.; Verdin, E. miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging 2010, 2, 415–431. [Google Scholar] [CrossRef] [Green Version]
- Tong, M.H.; Mitchell, D.; Evanoff, R.; Griswold, M.D. Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biol. Reprod. 2011, 85, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Bizuayehu, T.T.; Babiak, J.; Norberg, B.; Fernandes, J.M.; Johansen, S.D.; Babiak, I. Sex-biased miRNA expression in Atlantic halibut (Hippoglossus hippoglossus) brain and gonads. Sex. Dev. Genet. Mol. Biol. Evol. Endocrinol. Embryol. Pathol. Sex Determ. Differ. 2012, 6, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.; LaPierre, M.P.; Gasser, E.; Denzler, R.; Yang, Y.; Rulicke, T.; Kero, J.; Latreille, M.; Stoffel, M. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. J. Clin. Investig. 2017, 127, 1061–1074. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Jia, D.; Hu, Q.; Li, D.P. Foxl3, a Target of miR-9, Stimulates Spermatogenesis in Spermatogonia During Natural Sex Change in Monopterus albus. Endocrinology 2016, 157, 4388–4399. [Google Scholar] [CrossRef] [Green Version]
- Hasuwa, H.; Ueda, J.; Ikawa, M.; Okabe, M. miR-200b and miR-429 function in mouse ovulation and are essential for female fertility. Science 2013, 341, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Hilz, S.; Fogarty, E.A.; Modzelewski, A.J.; Cohen, P.E.; Grimson, A. Transcriptome profiling of the developing male germ line identifies the miR-29 family as a global regulator during meiosis. Rna Biol. 2017, 14, 219–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Xiao, J.; Fan, Y.; Yang, K.; Li, K.; Wang, X.; Lu, Y.; Zhou, Y. miR-29 family regulates the puberty onset mediated by a novel Gnrh1 transcription factor TBX21. J. Endocrinol. 2019, 242, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Carletti, M.Z.; Fiedler, S.D.; Christenson, L.K. MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biol. Reprod. 2010, 83, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Hostuttler, M.; Wei, H.; Rexroad, C.E., 3rd; Yao, J. Characterization of the rainbow trout egg microRNA transcriptome. PLoS ONE 2012, 7, e39649. [Google Scholar] [CrossRef]
- Gennotte, V.; Akonkwa, B.; Melard, C.; Denoel, M.; Cornil, C.A.; Rougeot, C. Do sex reversal procedures differentially affect agonistic behaviors and sex steroid levels depending on the sexual genotype in Nile tilapia? J. Exp. Zool. Part. AEcol. Integr. Physiol. 2017, 327, 153–162. [Google Scholar] [CrossRef]
- Otani, A.; Nakajima, T.; Okumura, T.; Fujii, S.; Tomooka, Y. Sex Reversal and Analyses of Possible Involvement of Sex Steroids in Scallop Gonadal Development in Newly Established Organ-Culture Systems. Zool. Sci. 2017, 34, 86–92. [Google Scholar] [CrossRef]
- Senthilkumaran, B. Pesticide- and sex steroid analogue-induced endocrine disruption differentially targets hypothalamo-hypophyseal-gonadal system during gametogenesis in teleosts-A review. Gen. Comp. Endocrinol. 2015, 219, 136–142. [Google Scholar] [CrossRef]
- Grant, B.; Hirsh, D. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol. Biol. Cell 1999, 10, 4311–4326. [Google Scholar] [CrossRef] [Green Version]
- Hammes, A.; Andreassen, T.K.; Spoelgen, R.; Raila, J.; Hübner, N.; Schulz, H.; Metzger, J.; Schweigert, F.; Luppa, P.B.; Nykjaer, A.; et al. Role of endocytosis in cellular uptake of sex steroids. Cell 2005, 122, 751–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; He, H.; Zhang, Y.L.; Li, X.M.; Guo, X.; Huo, R.; Bi, Y.; Li, J.; Fan, H.Y.; Sha, J. Phosphoinositide 3-kinase p110delta mediates estrogen- and FSH-stimulated ovarian follicle growth. Mol. Endocrinol. (Baltim. Md.) 2013, 27, 1468–1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Real, F.M.; Sekido, R.; Lupianez, D.G.; Lovell-Badge, R.; Jimenez, R.; Burgos, M. A microRNA (mmu-miR-124) prevents Sox9 expression in developing mouse ovarian cells. Biol. Reprod. 2013, 89, 78. [Google Scholar] [CrossRef] [PubMed]
miRNA Name | Testis (TPM) | miRNA Name | Ovary (TPM) |
---|---|---|---|
miR-novel-67 | 165,540.54 | miR-novel-70 | 251,216.62 |
miR-novel-70 | 143,232.52 | miR-novel-47 | 186,528.19 |
miR-novel-34 | 126,233.38 | miR-novel-4 | 113,768.55 |
miR-novel-5 | 100,975.98 | miR-novel-69 | 72,700.3 |
miR-30d | 88,730.46 | miR-143 | 68,346.75 |
miR-novel-29 | 66,495.07 | miR-novel-44 | 48,189.91 |
miR-novel-47 | 60,810.81 | miR-30d | 39,119.79 |
miR-143 | 46,522.26 | miR-181c | 30,041.2 |
miR-novel-46 | 31,960.53 | miR-novel-75 | 29,495.55 |
miR-15b | 25,366.58 | miR-novel-46 | 24,154.3 |
Species Name | let-7 | miR-10 | miR-7 | miR-9 | miR-202 | miR-200 | miR-29 | miR-21 | miR-725 |
---|---|---|---|---|---|---|---|---|---|
Acanthopagrus latus | T | T | T | T | T | O | O | O | O |
Pelteobagrus fulvidraco | T | - | T | T | O | T | T | O | - |
Oreochromis niloticus | - | T | T | O | O | T | O | O | O |
Oplegnathus punctatus | O | T | - | - | T | O | - | T | - |
Acipenser schrenckii | T | T | - | T | - | T | O | T | T |
Trachinotus ovatus | - | O | T | T | T | - | T | - | - |
Odontobutis potamophila | T | - | - | - | T | - | T | O | T |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Lin, G.; Fang, W.; Gao, D.; Huang, J.; Xie, J.; Lu, J. Identification and Comparison of microRNAs in the Gonad of the Yellowfin Seabream (Acanthopagrus Latus). Int. J. Mol. Sci. 2020, 21, 5690. https://doi.org/10.3390/ijms21165690
Li S, Lin G, Fang W, Gao D, Huang J, Xie J, Lu J. Identification and Comparison of microRNAs in the Gonad of the Yellowfin Seabream (Acanthopagrus Latus). International Journal of Molecular Sciences. 2020; 21(16):5690. https://doi.org/10.3390/ijms21165690
Chicago/Turabian StyleLi, Shizhu, Genmei Lin, Wenyu Fang, Dong Gao, Jing Huang, Jingui Xie, and Jianguo Lu. 2020. "Identification and Comparison of microRNAs in the Gonad of the Yellowfin Seabream (Acanthopagrus Latus)" International Journal of Molecular Sciences 21, no. 16: 5690. https://doi.org/10.3390/ijms21165690
APA StyleLi, S., Lin, G., Fang, W., Gao, D., Huang, J., Xie, J., & Lu, J. (2020). Identification and Comparison of microRNAs in the Gonad of the Yellowfin Seabream (Acanthopagrus Latus). International Journal of Molecular Sciences, 21(16), 5690. https://doi.org/10.3390/ijms21165690