In Vitro Cell Sensitivity to Palytoxin Correlates with High Gene Expression of the Na+/K+-ATPase β2 Subunit Isoform
Abstract
:1. Introduction
2. Results
2.1. Healthy Volunteers
2.2. PLTX In Vitro Sensitivity
2.3. Genetic Analysis: Expression of the Na+/K+-ATPaseαand β Subunits Isoforms
2.4. Correlation between In Vitro Cells Sensitivity to PLTX and Demographic Variables
2.5. Correlation between In Vitro Cells Sensitivity to PLTX and Gene Expression of Na+/K+-ATPase Subunits Isoforms
3. Discussion
4. Materials and Methods
4.1. Chemical
4.2. Study Design
4.3. PBMCs Extraction
4.4. Cytotoxicity Analysis
4.5. Real Time PCR
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Moore, R.E.; Scheuer, P.J. Palytoxin: A new marine toxin from a coelenterate. Science 1971, 172, 495–498. [Google Scholar] [CrossRef]
- Ukena, T.; Satake, M.; Usami, M.; Oshima, Y.; Naoki, H.; Fujita, T.; Kan, Y.; Yasumoto, T. Structure elucidation of ostreocin D, a palytoxin analog isolated from the dinoflagellate ostreopsis siamensis. Biosci. Biotechnol. Biochem. 2001, 65, 2585–2588. [Google Scholar] [CrossRef] [Green Version]
- Lenoir, S.; Ten-Hage, L.; Turquet, J.; Quod, J.P.; Bernard, C.; Hennion, M.C. First evidence of palytoxin analogues from an Ostreopsis mascarenensis (Dinophyceae) bentic bloom in Southwestern Indian Ocean. J. Phycol. 2004, 40, 1042–1051. [Google Scholar] [CrossRef]
- Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Forino, M.; Tartaglione, L.; Grillo, C.; Melchiorre, N.; Aversano, C.D. Putative palytoxin and its new analogue, ovatoxin-a, in Ostreopsis ovata collected along the ligurian coasts during the 2006 toxic outbreak. J. Am. Soc. Mass Spectrom. 2008, 19, 111–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, R.; Castellano, V.; Scalco, E.; Serpe, L.; Zingone, A.; Soprano, V. New palytoxin-like molecules in Mediterranean Ostreopsis cf. ovata (dinoflagellates) and in Palythoa tuberculosa detected by liquid chromatography-electrospray ionization time-of-flight mass spectrometry. Toxicon 2010, 56, 1381–1387. [Google Scholar] [CrossRef]
- Amzil, Z.; Sibat, M.; Chomérat, N.; Grossel, H.; Marco-Miralles, F.; Lemée, R.; Nézan, E.; Sechet, V. Ovatoxin-a and palytoxin accumulation in seafood in relation to Ostreopsis cf. ovata blooms on the French Mediterranean coast. Mar. Drugs 2012, 10, 477–496. [Google Scholar] [CrossRef] [PubMed]
- Brissard, C.; Herrenknecht, C.; Sechet, V.; Hervé, F.; Pisapia, F.; Harcouet, J.; Lemée, R.; Chomérat, N.; Hess, P.; Amzil, Z. Complex toxin profile of French Mediterranean Ostreopsis cf. ovata strains, seafood accumulation and ovatoxins prepurification. Mar. Drugs 2014, 12, 2851–2876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Altares, M.; Tartaglione, L.; Carnicer, O.; De La Iglesia, P.; Forino, M.; Diogène, J.; Ciminiello, P.; Dell’Aversano, C. The novel ovatoxin-g and isobaric palytoxin (so far referred to as putative palytoxin) from Ostreopsis cf. ovata (NW Mediterranean Sea): Structural insights by LC-high resolution MSn. Anal. Bioanal. Chem. 2014, 407, 1191–1204. [Google Scholar] [CrossRef]
- Gladan, Z.N.; Arapov, J.; Casabianca, S.; Penna, A.; Honsell, G.; Brovedani, V.; Pelin, M.; Tartaglione, L.; Sosa, S.; Dell’Aversano, C.; et al. Massive occurrence of the harmful benthic dinoflagellate Ostreopsis cf. ovata in the Eastern Adriatic Sea. Toxins 2019, 11, 300. [Google Scholar] [CrossRef] [Green Version]
- Soliño, L.; García-Altares, M.; Godinho, L.; Costa, P.R. Toxin profile of Ostreopsis cf. ovata from Portuguese continental coast and Selvagens Islands (Madeira, Portugal). Toxicon 2020, 181, 91–101. [Google Scholar] [CrossRef]
- Kerbrat, A.S.; Amzil, Z.; Pawlowiez, R.; Golubic, S.; Sibat, M.; Darius, H.T.; Chinain, M.; Laurent, D. First evidence of palytoxin and 42-hydroxy-palytoxin in the marine cyanobacterium trichodesmium. Mar. Drugs 2011, 9, 543–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durando, P.; Ansaldi, F.; Oreste, P.; Moscatelli, P.; Marensi, L.; Grillo, C.; Gasparini, R.; Icardi, G.; Collaborative Group for the Ligurian Syndromic Algal Surveillance. Ostreopsis ovate and human health: Epidemiological and clinical features of respiratory syndrome outbreaks from a two-year syndromic surveillance, 2005-06, in north-west Italy. Euro Surveill. 2007, 12, E070607.1. [Google Scholar] [PubMed]
- Tichadou, L.; Glaizal, M.; Armengaud, A.; Grossel, H.; Lemée, R.; Kantin, R.; Lasalle, J.L.; Drouet, G.; Rambaud, L.; Malfait, P.; et al. Health impact of unicellular algae of the Ostreopsis genus blooms in the Mediterranean Sea: Experience of the French Mediterranean coast surveillance network from 2006 to 2009. Clin. Toxicol. 2010, 48, 839–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tubaro, A.; Durando, P.; Del Favero, G.; Ansaldi, F.; Icardi, G.; Deeds, J.; Sosa, S. Case definitions for human poisonings postulated to palytoxins exposure. Toxicon 2011, 57, 478–495. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, L.L. World-wide occurrence of the toxic dinoflagellate genus Ostreopsis Schmidt. Toxicon 2011, 57, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Del Favero, G.; Sosa, S.; Pelin, M.; D’Orlando, E.; Florio, C.; Lorenzon, P.; Poli, M.; Tubaro, A. Sanitary problems related to the presence of Ostreopsis spp. in the Mediterranean Sea: A multidisciplinary scientific approach. Annali dell’Istituto Superiore di Sanità 2012, 48, 407–414. [Google Scholar] [CrossRef]
- Deeds, J.R.; Handy, S.M.; White, K.D.; Reimer, J.D. Palytoxin found in Palythoa sp. zoanthids (Anthozoa, Hexacorallia) sold in the home aquarium trade. PLoS ONE 2011, 6, e18235. [Google Scholar] [CrossRef]
- Pelin, M.; Brovedani, V.; Sosa, S.; Tubaro, A. Palytoxin-containing aquarium soft corals as an emerging sanitary problem. Mar. Drugs 2016, 14, 33. [Google Scholar] [CrossRef] [Green Version]
- Deeds, J.R.; Schwartz, M.D. Human risk associated with palytoxin exposure. Toxicon 2010, 56, 150–162. [Google Scholar] [CrossRef] [Green Version]
- Patocka, J.; Nepovimova, E.; Wu, Q.; Kuca, K. Palytoxin congeners. Arch. Toxicol. 2017, 92, 143–156. [Google Scholar] [CrossRef]
- Noguchi, T.; Hwang, D.F.; Arakawa, O.; Daigo, K.; Sato, S.; Ozaki, H.; Kawai, N.; Ito, M.; Hashimoto, K. Palytoxin as a causative agent in the parrotfish poisoning. In Progress in Venom and Toxin Research: Proceedings of the First Asia-Pacific Congress on Animal, Plant and Microbial Toxins; Gopalakrishnakone, P., Tam, C.K., Eds.; Faculty of Medicine, National University of Singapore: Singapore, 1987; pp. 325–335. [Google Scholar]
- Onuma, Y.; Satake, M.; Ukena, T.; Roux, J.; Chanteau, S.; Rasolofonirina, N.; Ratsimaloto, M.; Naoki, H.; Yasumoto, T. Identification of putative palytoxin as the cause of clupeotoxism. Toxicon 1999, 37, 55–65. [Google Scholar] [CrossRef]
- Taniyama, S.; Mahmud, Y.; Terada, M.; Takatani, T.; Arakawa, O.; Noguchi, T. Occurrence of a food poisoning incident by palytoxin from a serranid Epinephelus sp. in Japan. J. Nat. Toxins 2002, 11, 277–282. [Google Scholar] [PubMed]
- Wieringa, A.; Bertholee, D.; Ter Horst, P.; Brand, I.V.D.; Haringman, J.; Ciminiello, P. Respiratory impairment in four patients associated with exposure to palytoxin containing coral. Clin. Toxicol. 2014, 52, 150–151. [Google Scholar] [CrossRef] [PubMed]
- Hilgemann, D.W. From a pump to a pore: How palytoxin opens the gates. Proc. Natl. Acad. Sci. USA 2003, 100, 386–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artigas, P.; Gadsby, D.C. Large diameter of palytoxin-induced Na/K pump channels and modulation of palytoxin interaction by Na/K pump ligands. J. Gen. Physiol. 2004, 123, 357–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higdon, R.; Stewart, E.; Stanberry, L.; Haynes, W.; Choiniere, J.; Montague, E.; Anderson, N.; Yandl, G.; Janko, I.; Broomall, W.; et al. MOPED enables discoveries through consistently processed proteomics data. J. Proteome Res. 2013, 13, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Glorioso, N.; Herrera, V.L.; Bagamasbad, P.; Filigheddu, F.; Troffa, C.; Argiolas, G.; Bulla, E.; Decano, J.L.; Ruiz-Opazo, N. Association of ATP1A1 and dear single-nucleotide polymorphism haplotypes with essential hypertension: Sex-specific and haplotype-specific effects. Circ. Res. 2007, 100, 1522–1529. [Google Scholar] [CrossRef] [Green Version]
- Scarrone, S.; Balestrino, M.; Frassoni, F.; Pozzi, S.; Gandolfo, C.; Podestà, M.; Cupello, A. Sex differences in human lymphocyte Na,K-ATPase as studied by labeled ouabain binding. Int. J. Neurosci. 2007, 117, 275–285. [Google Scholar] [CrossRef]
- Gaborit, N.; Varró, A.; Le Bouter, S.; Szüts, V.; Escande, D.; Nattel, S.; Demolombe, S. Gender-related differences in ion-channel and transporter subunit expression in non-diseased human hearts. J. Mol. Cell. Cardiol. 2010, 49, 639–646. [Google Scholar] [CrossRef]
- Hauck, C.; Potter, T.; Bartz, M.; Wittwer, T.; Wahlers, T.; Mehlhorn, U.; Scheiner-Bobis, G.; McDonough, A.A.; Bloch, W.; Schwinger, R.H.; et al. Isoform specificity of cardiac glycosides binding to human Na+,K+-ATPase alpha1beta1, alpha2beta1 and alpha3beta1. Eur. J. Pharmacol. 2009, 622, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Katz, A.; Lifshitz, Y.; Bab-Dinitz, E.; Kapri-Pardes, E.; Goldshleger, R.; Tal, D.M.; Karlish, S.J.D. Selectivity of digitalis glycosides for isoforms of human Na,K-ATPase. J. Boil. Chem. 2010, 285, 19582–19592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibuya, K.; Fukuoka, J.; Fujii, T.; Shimoda, E.; Shimizu, T.; Sakai, H.; Tsukada, K. Increase in ouabain-sensitive K+-ATPase activity in hepatocellular carcinoma by overexpression of Na+,K+-ATPase α3-isoform. Eur. J. Pharmacol. 2010, 638, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Weigand, K.M.; Laursen, M.; Swarts, H.G.P.; Engwerda, A.H.J.; Prüfert, C.; Sandrock, J.; Nissen, P.; Fedosova, N.U.; Russel, F.G.M.; Koenderink, J.B. Na+,K+-ATPase isoform selectivity for digitalis-like compounds is determined by two amino acids in the first extracellular loop. Chem. Res. Toxicol. 2014, 27, 2082–2092. [Google Scholar] [CrossRef] [PubMed]
- Lev, M.C.; Karlish, S.J.D.; Garty, H. Cardiac glycosides induced toxicity in human cells expressing α1, α2, or α3-isoforms of Na-K-ATPase. Am. J. Physiol. Physiol. 2015, 309, C126–C135. [Google Scholar] [CrossRef] [Green Version]
- Habermann, E.; Chhatwal, G.S. Ouabain inhibits the increase due to palytoxin of cation permeability of erythrocytes. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1982, 319, 101–107. [Google Scholar] [CrossRef]
- Schilling, W.P.; Snyder, D.; Sinkins, W.G.; Estacion, M. Palytoxin-induced cell death cascade in bovine aortic endothelial cells. Am. J. Physiol. Physiol. 2006, 291, C657–C667. [Google Scholar] [CrossRef]
- Vale-Gonzalez, C.; Pazos, M.; Alfonso, A.; Vieytes, M.; Botana, L. Study of the neuronal effects of ouabain and palytoxin and their binding to Na,K-ATPases using an optical biosensor. Toxicon 2007, 50, 541–552. [Google Scholar] [CrossRef]
- Pelin, M.; Zanette, C.; De Bortoli, M.; Sosa, S.; Della Loggia, R.; Tubaro, A.; Florio, C. Effects of the marine toxin palytoxin on human skin keratinocytes: Role of ionic imbalance. Toxicology 2011, 282, 30–38. [Google Scholar] [CrossRef]
- Pelin, M.; Sosa, S.; Della Loggia, R.; Poli, M.; Tubaro, A.; Decorti, G.; Florio, C. The cytotoxic effect of palytoxin on Caco-2 cells hinders their use for in vitro absorption studies. Food Chem. Toxicol. 2012, 50, 206–211. [Google Scholar] [CrossRef]
- Pelin, M.; Boscolo, S.; Poli, M.; Sosa, S.; Tubaro, A.; Florio, C. Characterization of palytoxin binding to HaCaT cells using a monoclonal anti-palytoxin antibody. Mar. Drugs 2013, 11, 584–598. [Google Scholar] [CrossRef] [Green Version]
- Gomase, V.S.; Tagore, S. Toxicogenomics. Curr. Drug. Metab. 2008, 9, 250–254. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, R.; Roberts, R.; Wu, L. Toxicogenomics: A 2020 Vision. Trends Pharmacol. Sci. 2019, 40, 92–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelin, M.; Sosa, S.; Brovedani, V.; Fusco, L.; Poli, M.; Tubaro, A. A novel sensitive cell-based immunoenzymatic assay for palytoxin quantitation in mussels. Toxins 2018, 10, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, J.F.; Wickrema, A.; Potapova, O.; Milanick, M.; Yingst, D.R. Na pump isoforms in human erythroid progenitor cells and mature erythrocytes. Proc. Natl. Acad. Sci. USA 2002, 99, 14572–14577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyckelsma, V.L.; McKenna, M.J. Effects of age on Na+,K+-ATPase expression in human and rodent skeletal muscle. Front. Physiol. 2016, 7, 316. [Google Scholar] [CrossRef] [Green Version]
- Keenan, S.M.; Delisle, R.K.; Welsh, W.J.; Paula, S.; Ball, W.J. Elucidation of the Na+, K+-ATPase digitalis binding site. J. Mol. Graph. Model. 2005, 23, 465–475. [Google Scholar] [CrossRef]
- Wang, J.; Schwinger, R.H.; Frank, K.; Muller-Ehmsen, J.; Martín-Vasallo, P.; Pressley, T.A.; Xiang, A.; Erdmann, E.; McDonough, A.A. Regional expression of sodium pump subunits isoforms and Na+-Ca+ exchanger in the human heart. J. Clin. Investig. 1996, 98, 1650–1658. [Google Scholar] [CrossRef] [Green Version]
- Clausen, M.V.; Hilbers, F.; Poulsen, H. The structure and function of the Na,K-ATPase isoforms in Health and disease. Front. Physiol. 2017, 8, 371. [Google Scholar] [CrossRef]
- Vasarhelyi, B.; Vér, A.; Nobilis, A.; Szabo, T.; Tulassay, T. Functional and structural properties of Na+/K+-ATPase enzyme in neonatal erythocytes. Eur. J. Clin. Investig. 1998, 28, 543–545. [Google Scholar] [CrossRef]
- Scheiner-Bobis, G.; Schneider, H. Palytoxin-induced channel formation within the Na+/K+-ATPase does not require a catalytically active enzyme. Eur. J. Biochem. 1997, 248, 717–723. [Google Scholar] [CrossRef]
- Diederich, M.; Muller, F.; Cerella, C. Cardiac glycosides: From molecular targets to immunogenic cell death. Biochem. Pharmacol. 2017, 125, 1–11. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer (5′→3′) | Reverse Primer (5′→3′) |
---|---|---|
ACTB | 5′-GACGACATGGAGAAAATCTG | 5′-ATGATCTGGGTCATCTTCTC |
ATP1A1 | 5′-GTGTCTTTCTTCATCCTTTCTC | 5′-CCACAGCTTCTAAGTTCTTC |
ATP1A3 | 5′-ATCTGCTCAGATAAGACAGG | 5′-AACTCTTGTCAAATGAGGTC |
ATP1B1 | 5′-AAAGTACAAAGATTCAGCCC | 5′-CATGATTAAAGTCTCCTCGTTC |
ATP1B2 | 5′-CTCATGTACTTCCCCTACTATG | 5′-ATGCGACATTCTACATTCAC |
ATP1B3 | 5′-GCCAAGGATAGATTGTGTTTC | 5′-CTGTTACTTCTTTCCCAGTG |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelin, M.; Stocco, G.; Florio, C.; Sosa, S.; Tubaro, A. In Vitro Cell Sensitivity to Palytoxin Correlates with High Gene Expression of the Na+/K+-ATPase β2 Subunit Isoform. Int. J. Mol. Sci. 2020, 21, 5833. https://doi.org/10.3390/ijms21165833
Pelin M, Stocco G, Florio C, Sosa S, Tubaro A. In Vitro Cell Sensitivity to Palytoxin Correlates with High Gene Expression of the Na+/K+-ATPase β2 Subunit Isoform. International Journal of Molecular Sciences. 2020; 21(16):5833. https://doi.org/10.3390/ijms21165833
Chicago/Turabian StylePelin, Marco, Gabriele Stocco, Chiara Florio, Silvio Sosa, and Aurelia Tubaro. 2020. "In Vitro Cell Sensitivity to Palytoxin Correlates with High Gene Expression of the Na+/K+-ATPase β2 Subunit Isoform" International Journal of Molecular Sciences 21, no. 16: 5833. https://doi.org/10.3390/ijms21165833
APA StylePelin, M., Stocco, G., Florio, C., Sosa, S., & Tubaro, A. (2020). In Vitro Cell Sensitivity to Palytoxin Correlates with High Gene Expression of the Na+/K+-ATPase β2 Subunit Isoform. International Journal of Molecular Sciences, 21(16), 5833. https://doi.org/10.3390/ijms21165833