Propofol Affects Cortico-Hippocampal Interactions via β3 Subunit-Containing GABAA Receptors
Abstract
:1. Introduction
2. Results
2.1. Effects of Propofol on the Power Spectrum of Cortical and Hippocampal Oscillations in Wild-Type and β3(N265M) Knock-in Mice
2.2. Actions of Propofol on Interactions between Cortex and Hippocampus in Wild-Type and β3(N265M) Knock-in Mice
2.3. Effects of Propofol on Shared Information Content between Cortex and Hippocampus in Wild-Type and β3(N265M) Knock-in Mice
3. Discussion
Limitations
4. Materials and Methods
4.1. Surgical Procedures
4.2. Electrophysiology
4.3. Recording and Pre-Processing of Local Field Potentials
4.4. Spectral Power
4.5. Phase Locking
4.6. Description of Hilbert Transform and PLV
4.7. Mutual Information
4.8. Statistics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GABA | Gamma-aminobutyric acid |
LFP | Local field potential |
MI | Mutual information |
PLV | Phase locking value |
PSD | Power spectral density |
Appendix A
References
- Imas, O.A.; Ropella, K.M.; Ward, B.D.; Wood, J.D.; Hudetz, A.G. Volatile anesthetics disrupt frontal-posterior recurrent information transfer at gamma frequencies in rat. Neurosci. Lett. 2005, 387, 145–150. [Google Scholar] [CrossRef]
- Jordan, D.; Ilg, R.; Riedl, V.; Schorer, A.; Grimberg, S.; Neufang, S.; Omerovic, A.; Berger, S.; Untergehrer, G.; Preibisch, C.; et al. Simultaneous Electroencephalographic and Functional Magnetic Resonance Imaging Indicate Impaired Cortical Top–Down Processing in Association with Anesthetic-induced Unconsciousness. Anesthesiology 2013, 119, 1031–1042. [Google Scholar] [CrossRef] [Green Version]
- Ku, S.-W.; Lee, U.; Noh, G.-J.; Jun, I.-G.; Mashour, G.A. Preferential Inhibition of Frontal-to-Parietal Feedback Connectivity Is a Neurophysiologic Correlate of General Anesthesia in Surgical Patients. PLoS ONE 2011, 6, e25155. [Google Scholar] [CrossRef] [PubMed]
- Kratzer, S.; Kreuzer, M.; Mattusch, C.; Kochs, E.F.; Rammes, G. Propofol Modulates Spatial Cortical Signal Propagation in Acute Thalamocortical Brain Slices. In Proceedings of the American Society of Anesthesiology annual meeting (ASA 2014), New Orleans, LA, USA, 11–15 October 2014. [Google Scholar]
- Hentschke, H.; Raz, A.; Krause, B.M.; Murphy, C.A.; Banks, M.I. Disruption of cortical network activity by the general anaesthetic isoflurane. Br. J. Anaesth. 2017, 119, 685–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichenbaum, H. A cortical—hippocampal system for declarative memory. Nat. Rev. Neurosci. 2000, 1, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Benchenane, K.; Tiesinga, P.H.; Battaglia, F.P. Oscillations in the prefrontal cortex: A gateway to memory and attention. Curr. Opin. Neurobiol. 2011, 21, 475–485. [Google Scholar] [CrossRef]
- Perouansky, M.; Rau, V.; Ford, T.; Oh, S.I.; Perkins, M.; Eger, E.I.I.; Pearce, R.A. Slowing of the Hippocampal Theta Rhythm Correlates with Anesthetic-Induced Amnesia. Anesthesiology 2010, 113, 1299–1309. [Google Scholar] [CrossRef] [Green Version]
- MacIver, M.B.; Bland, B.H. Chaos analysis of EEG during isoflurane-induced loss of righting in rats. Front. Syst. Neurosci. 2014, 8, 203. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Liang, P.; Liu, J.; Ke, B.; Wang, X.; Li, F.; Li, T.; Bayliss, D.A.; Chen, X. HCN1 channels contribute to the effects of amnesia and hypnosis but not immobility of volatile anesthetics. Anesth. Analg. 2015, 121, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, U.; Antkowiak, B. Molecular and neuronal substrates for general anaesthetics. Nat. Rev. Neurosci. 2004, 5, 709–720. [Google Scholar] [CrossRef]
- Sonner, J.M.; Antognini, J.F.; Dutton, R.C.; Flood, P.; Gray, A.T.; Harris, R.A.; Homanics, G.E.; Kendig, J.; Orser, B.; Raines, D.E.; et al. Inhaled Anesthetics and Immobility: Mechanisms, Mysteries, and Minimum Alveolar Anesthetic Concentration. Anesth. Analg. 2003, 97, 718–740. [Google Scholar] [CrossRef] [PubMed]
- Heurteaux, C.; Guy, N.; Laigle, C.; Blondeau, N.; Duprat, F.; Mazzuca, M.; Lang-Lazdunski, L.; Widmann, C.; Zanzouri, M.; Romey, G.; et al. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J. 2004, 23, 2684–2695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, S.-W.; Abbas, S.Y.; Harrison, N.L.; Goldstein, P.A. Propofol block of Ih contributes to the suppression of neuronal excitability and rhythmic burst firing in thalamocortical neurons. Eur. J. Neurosci. 2006, 23, 465–480. [Google Scholar] [CrossRef] [PubMed]
- Hill-Venning, C.; Belelli, D.; Peters, J.A.; Lambert, J.J. Subunit—dependent interaction of the general anaesthetic etomidate with the γ-aminobutyric acid type A receptor. Br. J. Pharmacol. 1997, 120, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Sanna, E.; Mascia, M.P.; Klein, R.L.; Whiting, P.J.; Biggio, G.; Harris, R.A. Actions of the general anesthetic propofol on recombinant human GABAA receptors: Influence of receptor subunits. J. Pharmacol. Exp. Ther. 1995, 274, 353–360. [Google Scholar]
- Benke, D.; Fakitsas, P.; Roggenmoser, C.; Michel, C.; Rudolph, U.; Mohler, H. Analysis of the presence and abundance of GABAA receptors containing two different types of alpha subunits in murine brain using point-mutated alpha subunits. J. Biol. Chem. 2004, 279, 43654–43660. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, D.S.; Rosahl, T.W.; Cirone, J.; O’Meara, G.F.; Haythornthwaite, A.; Newman, R.J.; Myers, J.; Sur, C.; Howell, O.; Rutter, A.R.; et al. Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J. Neurosci. 2003, 23, 8608–8617. [Google Scholar] [CrossRef] [Green Version]
- Drexler, B.; Antkowiak, B.; Engin, E.; Rudolph, U. Identification and characterization of anesthetic targets by mouse molecular genetics approaches. Can. J. Anaesth. 2011, 58, 178–190. [Google Scholar] [CrossRef] [Green Version]
- Jurd, R.; Arras, M.; Lambert, S.; Drexler, B.; Siegwart, R.; Crestani, F.; Zaugg, M.; Vogt, K.E.; Ledermann, B.; Antkowiak, B.; et al. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABAA receptor β3 subunit. FASEB J. 2003, 17, 250–252. [Google Scholar] [CrossRef]
- Drexler, B.; Jurd, R.; Rudolph, U.; Antkowiak, B. Distinct actions of etomidate and propofol at β3-containing γ -aminobutyric acid type A receptors. Neuropharmacology 2009, 57, 446–455. [Google Scholar] [CrossRef]
- Siegwart, R.; Jurd, R.; Rudolph, U. Molecular determinants for the action of general anesthetics at recombinant alpha(2)beta(3)gamma(2)gamma-aminobutyric acid(A) receptors. J. Neurochem. 2002, 80, 140–148. [Google Scholar] [CrossRef] [PubMed]
- MacIver, M.B.; Mandema, J.W.; Stanski, D.R.; Bland, B.H. Thiopental uncouples hippocampal and cortical synchronized electroencephalographic activity. Anesthesiology 1996, 84, 1411–1424. [Google Scholar] [CrossRef] [PubMed]
- Young, C.K.; McNaughton, N. Coupling of Theta Oscillations between Anterior and Posterior Midline Cortex and with the Hippocampus in Freely Behaving Rats. Cereb. Cortex 2009, 19, 24–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.J.; Oxley, B.; Malpas, S.; Pillai, G.V.; Simpson, P.B. Compounds exhibiting selective efficacy for different beta subunits of human recombinant gamma-aminobutyric acidA receptors. J. Pharmacol. Exp. Ther. 2004, 311, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; De Blas, A.L. Coexistence of two beta subunit isoforms in the same gamma-aminobutyric acid type A receptor. J. Biol. Chem. 1997, 272, 16564–16569. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.L.; Macdonald, R.L. Functional properties of recombinant GABA(A) receptors composed of single or multiple beta subunit subtypes. Neuropharmacology 1997, 36, 1601–1610. [Google Scholar] [CrossRef]
- Butovas, S.; Rudolph, U.; Jurd, R.; Schwarz, C.; Antkowiak, B. Activity Patterns in the Prefrontal Cortex and Hippocampus during and after Awakening from Etomidate Anesthesia. Anesthesiology 2010, 113, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Goldman-Rakic, P.S. Cellular basis of working memory. Neuron 1995, 14, 477–485. [Google Scholar] [CrossRef] [Green Version]
- Siapas, A.G.; Lubenov, E.V.; Wilson, M.A. Prefrontal Phase Locking to Hippocampal Theta Oscillations. Neuron 2005, 46, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Veselis, R.A.; Pryor, K.O.; Reinsel, R.A.; Mehta, M.; Pan, H.; Johnson, R. Low-dose propofol—induced amnesia is not due to a failure of encoding: Left inferior prefrontal cortex is still active. Anesthesiology 2008, 109, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.-X.; McNaughton, N. The medial supramammillary nucleus, spatial learning and the frequency of hippocampal theta activity. Brain Res. 1997, 764, 101–108. [Google Scholar] [CrossRef]
- Heldt, S.A.; Ressler, K.J. Forebrain and midbrain distribution of major benzodiazepine-sensitive GABAA receptor subunits in the adult C57 mouse as assessed with in situ hybridization. Neuroscience 2007, 150, 370–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperk, G.; Kirchmair, E.; Bakker, J.; Sieghart, W.; Drexel, M.; Kondova, I. Immunohistochemical distribution of 10 GABA(A) receptor subunits in the forebrain of the rhesus monkey Macaca mulatta. J. Comp. Neurol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisden, W.; Laurie, D.J.; Monyer, H.; Seeburg, P.H. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J. Neurosci. 1992, 12, 1040–1062. [Google Scholar] [CrossRef] [Green Version]
- Fritschy, J.M.; Mohler, H. GABAA-receptor heterogeneity in the adult rat brain: Differential regional and cellular distribution of seven major subunits. J. Comp. Neurol. 1995, 359, 154–194. [Google Scholar] [CrossRef]
- Lachaux, J.P.; Rodriguez, E.; Martinerie, J.; Varela, F.J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 1999, 8, 194–208. [Google Scholar] [CrossRef] [Green Version]
- Liebe, S.; Hoerzer, G.M.; Logothetis, N.K.; Rainer, G. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nat. Neurosci. 2012, 15, 456–462. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, P.-K.; Gordon, J.A.; Sigurdsson, T. Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion. J. Neurosci. 2013, 33, 14211–14224. [Google Scholar] [CrossRef]
- Hentschke, H.; Schwarz, C.; Antkowiak, B. Neocortex is the major target of sedative concentrations of volatile anaesthetics: Strong depression of firing rates and increase of GABAA receptor-mediated inhibition. Eur. J. Neurosci. 2005, 21, 93–102. [Google Scholar] [CrossRef]
- Hofmann, J.I.; Schwarz, C.; Rudolph, U.; Antkowiak, B. Effects of Diazepam on Low-Frequency and High-Frequency Electrocortical γ-Power Mediated by α1- and α2-GABA(A) Receptors. Int. J. Mol. Sci. 2019, 20, 3486. [Google Scholar] [CrossRef] [Green Version]
- Haiss, F.; Butovas, S.; Schwarz, C. A miniaturized chronic microelectrode drive for awake behaving head restrained mice and rats. J. Neurosci. Methods 2010, 187, 67–72. [Google Scholar] [CrossRef]
- Schwarz, C.; Hentschke, H.; Butovas, S.; Haiss, F.; Stüttgen, M.C.; Gerdjikov, T.V.; Bergner, C.G.; Waiblinger, C. The head-fixed behaving rat—procedures and pitfalls. Somatosens. Mot. Res. 2010, 27, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Freeman, W. Hilbert transform for brain waves. Scholarpedia 2007, 2, 1338. [Google Scholar] [CrossRef]
- Le Van Quyen, M.; Foucher, J.; Lachaux, J.; Rodriguez, E.; Lutz, A.; Martinerie, J.; Varela, F.J. Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J. Neurosci. Methods 2001, 111, 83–98. [Google Scholar] [CrossRef]
- Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461. [Google Scholar] [CrossRef] [Green Version]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [Google Scholar] [CrossRef] [Green Version]
- Hentschke, H.; Stuttgen, M.C. Computation of measures of effect size for neuroscience data sets. Eur. J. Neurosci. 2011, 34, 1887–1894. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; p. 567. [Google Scholar]
Type | Frequency | Hedge’s g (95% CI) | |||
---|---|---|---|---|---|
Spectral Power | PLV | MI | |||
Cortex | Hippocampus | 10 Bins | |||
Wild-type | 4–6 Hz | −0.40 (−1.25, 0.32) | −1.55 (−2.68, −1.05) | −0.60 (−2.31, 0.18) | 0.39 (−1.13, 1.19) |
6–8 Hz | 0.29 (−0.45, 1.04) | 0.10 (−0.71, 0.65) | 0.78 (0.21, 1.60) | 1.04 (0.39, 1.90) | |
8–10 Hz | 0.50 (−0.29, 1.41) | 0.48 (−0.53, 1.39) | 1.80 (1.20, 3.01) | 1.16 (0.68, 2.06) | |
10–12 Hz | −0.42 (−1.07, 0.10) | −0.46 (−1.17, 0.22) | 1.11 (0.68, 1.88) | 1.09 (0.80, 1.81) | |
β3(N265M)Mutant | 4–6 Hz | 0.29 (−1.02, 1.98) | −0.28 (−0.70, 0.16) | −1.03 (−4.30, 0.33) | −0.09 (−2.21, 0.85) |
6–8 Hz | −0.42 (−2.93, 1.02) | 0.38 (−0.16, 1.54) | 1.06 (0.38, 2.85) | 0.78 (0.03, 4.69) | |
8–10 Hz | 0.40 (−1.23, 1.31) | −0.87 (−3.50, −0.69) | −0.62 (−3.49, 0.25) | 0.68 (0.59, 1.84) | |
10–12 Hz | −0.43 (−6.27, 0.57) | −0.28 (−1.12, 0.95) | −0.27 (−2.66, 8.03) | 0.64 (−0.18, 2.34) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kreuzer, M.; Butovas, S.; García, P.S.; Schneider, G.; Schwarz, C.; Rudolph, U.; Antkowiak, B.; Drexler, B. Propofol Affects Cortico-Hippocampal Interactions via β3 Subunit-Containing GABAA Receptors. Int. J. Mol. Sci. 2020, 21, 5844. https://doi.org/10.3390/ijms21165844
Kreuzer M, Butovas S, García PS, Schneider G, Schwarz C, Rudolph U, Antkowiak B, Drexler B. Propofol Affects Cortico-Hippocampal Interactions via β3 Subunit-Containing GABAA Receptors. International Journal of Molecular Sciences. 2020; 21(16):5844. https://doi.org/10.3390/ijms21165844
Chicago/Turabian StyleKreuzer, Matthias, Sergejus Butovas, Paul S García, Gerhard Schneider, Cornelius Schwarz, Uwe Rudolph, Bernd Antkowiak, and Berthold Drexler. 2020. "Propofol Affects Cortico-Hippocampal Interactions via β3 Subunit-Containing GABAA Receptors" International Journal of Molecular Sciences 21, no. 16: 5844. https://doi.org/10.3390/ijms21165844
APA StyleKreuzer, M., Butovas, S., García, P. S., Schneider, G., Schwarz, C., Rudolph, U., Antkowiak, B., & Drexler, B. (2020). Propofol Affects Cortico-Hippocampal Interactions via β3 Subunit-Containing GABAA Receptors. International Journal of Molecular Sciences, 21(16), 5844. https://doi.org/10.3390/ijms21165844