Short-Term Combined Exercise Improves Inflammatory Profile in the Retina of Obese Mice
Abstract
:1. Introduction
2. Results
2.1. Physiological and Metabolic Parameters
2.2. Inflammatory Serum Profile and Hepatic Insulin Sensitivity
2.3. Inflammatory Retina Profile
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. High-Fat Diet
4.3. Experimental Groups
4.4. Adaptation of Animals to the Exercise Apparatus
4.5. Determination of Maximum Voluntary Carrying Capacity (MVCC) to Prescribe the Strength Exercise Intensity
4.6. Maximum Power Determination to Prescribe the Aerobic Exercise Intensity
4.7. Combined Exercise Protocol
4.8. Insulin Tolerance Test (ITT)
4.9. Glucose Tolerance Test (GTT)
4.10. Collection of Biological Material
4.11. Tissue Extraction and Immunoblotting Assay
4.12. Insulin Assay
4.13. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AIN | American Institute of Nutrition Guidelines |
AUC | Areas under the serum glucose curves |
BCR | B-cell receptor |
CT | Control group |
FGF2 | Fibroblast growth factor-2 |
HFD | High-fat diet |
IFN-γ | Interferon-γ |
IL-10 | Interleukin-10 |
IL-1R | Interleukin-1 receptor |
IL-1ra | Interleukin-1 receptor antagonist |
IL-6 | Interleukin-6 |
IL-1β | Interleukin-1 beta |
ITT | Insulin tolerance test |
kITT | Constant rate of plasma glucose uptake |
MGD | Meibomian gland dysfunction |
MMP-9 | Matrix metalloproteinase-9 |
MVCC | Maximum voluntary carrying capacity |
NF-κB | Nuclear factor-kappa B |
OB | Obese group |
Pmax | Maximum power |
pTAK1 | Transforming growth factor β-activated kinase 1 |
PVDF | Polyvinylidene difluoride |
RAGEs | Advanced glycation end products receiver |
SOB | Sedentary obese group |
TGF | Transforming growth factor |
TLR-4 | Toll-like receptor 4 |
TNF-α | Tumor necrosis factor-alpha |
TNFR | Tumor necrosis factor receptor |
TNFsr | Soluble TNF receptor |
TOB | Trained obese group |
TrkB | Tropomyosin receptor kinase B |
VEGF | Vascular endothelial growth factor |
References
- Oussaada, S.M.; van Galen, K.A.; Cooiman, M.I.; Kleinendorst, L.; Hazebroek, E.J.; van Haelst, M.M.; ter Horst, K.W.; Serlie, M.J. The pathogenesis of obesity. Metabolism 2019, 92, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, T.; Kuehn, S.; Tsiampalis, N.; Vu, M.-K.; Kakkassery, V.; Stute, G.; Dick, H.B.; Joachim, S.C. Anti-inflammatory cytokine and angiogenic factors levels in vitreous samples of diabetic retinopathy patients. PLoS ONE 2018, 13, e0194603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrick, A.M.; Gibson, M.V.; Kulshreshtha, A. Diabetic Retinopathy. Prim. Care Clin. Off. Pract. 2015, 42, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Kern, T.S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res. 2011, 30, 343–358. [Google Scholar] [CrossRef] [Green Version]
- Tseng, H.; Lee, I.; Lin, C.; Chi, P.; Cheng, S.; Shih, R.; Hsiao, L.-D.; Yang, C.-M. IL-1β Promotes Corneal Epithelial Cell Migration by Increasing MMP-9 Expression through NF-κB- and AP-1-Dependent Pathways. PLoS ONE 2013, 8, e57955. [Google Scholar] [CrossRef]
- Homayouni, M. Vascular endothelial growth factors and their inhibitors in ocular neovascular disorders. J. Ophthalmic Vis. Res. 2009, 4, 105–114. [Google Scholar]
- Starkie, R.; Ostrowski, S.R.; Jauffred, S.; Febbraio, M.; Pedersen, B.K. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans. FASEB J. 2003, 17, 1–10. [Google Scholar] [CrossRef]
- Pereira, R.; Botezelli, J.; da Cruz Rodrigues, K.; Mekary, R.; Cintra, D.; Pauli, J.; da Silva, A.; Ropelle, E.; de Moura, L. Fructose Consumption in the Development of Obesity and the Effects of Different Protocols of Physical Exercise on the Hepatic Metabolism. Nutrients 2017, 9, 405. [Google Scholar] [CrossRef] [Green Version]
- Ropelle, E.R.; Flores, M.B.; Cintra, D.E.; Rocha, G.Z.; Pauli, J.R.; Morari, J.; de Souza, C.T.; Moraes, J.C.; Prada, P.O.; Guadagnini, D.; et al. IL-6 and IL-10 Anti-Inflammatory Activity Links Exercise to Hypothalamic Insulin and Leptin Sensitivity through IKKβ and ER Stress Inhibition. PLoS Biol. 2010, 8, e1000465. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Theodorou, A.A.; Panayiotou, G.; Volaklis, K.A.; Douda, H.T.; Paschalis, V.; Nikolaidis, M.G.; Smilios, I.; Toubekis, A.; Kyprianou, D.; Papadopoulos, I.; et al. Aerobic, resistance and combined training and detraining on body composition, muscle strength, lipid profile and inflammation in coronary artery disease patients. Res. Sport. Med. 2016, 24, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Dieli-Conwright, C.M.; Parmentier, J.-H.; Sami, N.; Lee, K.; Spicer, D.; Mack, W.J.; Sattler, F.; Mittelman, S.D. Adipose tissue inflammation in breast cancer survivors: Effects of a 16-week combined aerobic and resistance exercise training intervention. Breast Cancer Res. Treat. 2018, 168, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-S.; Park, S.; Chun, Y.; Song, W.; Kim, H.; Kim, J. Treadmill Exercise Attenuates Retinal Oxidative Stress in Naturally-Aged Mice: An Immunohistochemical Study. Int. J. Mol. Sci. 2015, 16, 21008–21020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, E.C.; Han, M.K.; Sellers, J.T.; Chrenek, M.A.; Hanif, A.; Gogniat, M.A.; Boatright, J.H.; Pardue, M.T. Aerobic Exercise Protects Retinal Function and Structure from Light-Induced Retinal Degeneration. J. Neurosci. 2014, 34, 2406–2412. [Google Scholar] [CrossRef] [Green Version]
- Hanif, A.M.; Lawson, E.C.; Prunty, M.; Gogniat, M.; Aung, M.H.; Chakraborty, R.; Boatright, J.H.; Pardue, M.T. Neuroprotective Effects of Voluntary Exercise in an Inherited Retinal Degeneration Mouse Model. Investig. Opthalmol. Vis. Sci. 2015, 56, 6839. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.G.; Hayden, M.S.; Ghosh, S. NF-κB, Inflammation, and Metabolic Disease. Cell Metab. 2011, 13, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, V.R.; Gaspar, R.C.; Crisol, B.M.; Formigari, G.P.; Sant’Ana, M.R.; Botezelli, J.D.; Gaspar, R.S.; da Silva, A.S.R.; Cintra, D.E.; de Moura, L.P.; et al. Physical exercise reduces pyruvate carboxylase (PCB) and contributes to hyperglycemia reduction in obese mice. J. Physiol. Sci. 2018, 68, 493–501. [Google Scholar] [CrossRef]
- Gaspar, R.C.; Botezelli, J.D.; Kuga, G.K.; Muñoz, V.R.; Coope, A.; Pereira, R.M.; da Silva, A.S.R.; Cintra, D.E.; de Moura, L.P.; Ropelle, E.R.; et al. High Dosage of Vitamin D Regulates the Energy Metabolism and Increases Insulin Sensitivity, but are Associated with High Levels of Kidney Damage. Drug Dev. Res. 2017, 78, 203–209. [Google Scholar] [CrossRef]
- Fried, S.K. Omental and Subcutaneous Adipose Tissues of Obese Subjects Release Interleukin-6: Depot Difference and Regulation by Glucocorticoid. J. Clin. Endocrinol. Metab. 1998, 83, 847–850. [Google Scholar] [CrossRef]
- Park, H.S.; Park, J.Y.; Yu, R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6. Diabetes Res. Clin. Pract. 2005, 69, 29–35. [Google Scholar] [CrossRef]
- Bednarek-Tupikowska, G.; Zdrojowy-Wełna, A.; Stachowska, B.; Kuliczkowska-Płaksej, J.; Matczak-Giemza, M.; Kubicka, E.; Tworowska-Bardzińska, U.; Milewicz, A.; Bolanowski, M. Accumulation of abdominal fat in relation to selected proinflammatory cytokines concentrations in non-obese Wrocław inhabitants. Endokrynol. Pol. 2014, 65, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Méndez-García, L.A.; Cid-Soto, M.; Aguayo-Guerrero, J.A.; Carrero-Aguirre, M.; Trejo-Millán, F.; Islas-Andrade, S.; Fragoso, J.M.; Olivos-García, A.; Escobedo, G. Low Serum Interleukin-6 Is a Differential Marker of Obesity-Related Metabolic Dysfunction in Women and Men. J. Interf. Cytokine Res. 2020, 40, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Bobbo, V.C.D.; Jara, C.P.; Mendes, N.F.; Morari, J.; Velloso, L.A.; Araújo, E.P. Interleukin-6 Expression by Hypothalamic Microglia in Multiple Inflammatory Contexts: A Systematic Review. Biomed. Res. Int. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beilfuss, J.; Berg, V.; Sneve, M.; Jorde, R.; Kamycheva, E. Effects of a 1-year supplementation with cholecalciferol on interleukin-6, tumor necrosis factor-alpha and insulin resistance in overweight and obese subjects. Cytokine 2012, 60, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Steensberg, A.; Fischer, C.P.; Keller, C.; Møller, K.; Pedersen, B.K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E433–E437. [Google Scholar] [CrossRef]
- Pereira, R.M.; Rodrigues, K.C.d.C.; Anaruma, C.P.; Sant’Ana, M.R.; de Campos, T.D.P.; Gaspar, R.S.; Canciglieri, R.d.S.; de Melo, D.G.; Mekary, R.A.; da Silva, A.S.R.; et al. Short-term strength training reduces gluconeogenesis and NAFLD in obese mice. J. Endocrinol. 2019, 241, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Benitez-del-Castillo, J.; Cantu-Dibildox, J.; Sanz-González, S.M.; Zanón-Moreno, V.; Pinazo-Duran, M.D. Cytokine expression in tears of patients with glaucoma or dry eye disease: A prospective, observational cohort study. Eur. J. Ophthalmol. 2019, 29, 437–443. [Google Scholar] [CrossRef]
- Landsend, E.C.S.; Utheim, Ø.A.; Pedersen, H.R.; Aass, H.C.D.; Lagali, N.; Dartt, D.A.; Baraas, R.C.; Utheim, T.P. The Level of Inflammatory Tear Cytokines is Elevated in Congenital Aniridia and Associated with Meibomian Gland Dysfunction. Investig. Opthalmol. Vis. Sci. 2018, 59, 2197. [Google Scholar] [CrossRef] [Green Version]
- Sriwijitkamol, A.; Christ-Roberts, C.; Berria, R.; Eagan, P.; Pratipanawatr, T.; DeFronzo, R.A.; Mandarino, L.J.; Musi, N. Reduced Skeletal Muscle Inhibitor of B Content Is Associated With Insulin Resistance in Subjects With Type 2 Diabetes: Reversal by Exercise Training. Diabetes 2006, 55, 760–767. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Sun, K.; Xie, W.; Hu, G.; Kong, H.; Wang, Q.; Wang, H. Etanercept attenuates short-term cigarette-smoke-exposure-induced pulmonary arterial remodelling in rats by suppressing the activation of TNF-α/NF-κB signal and the activities of MMP-2 and MMP-9. Pulm. Pharm. 2012, 25, 208–215. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Atkin, S.L.; Simental-Mendía, L.E.; Sahebkar, A. Molecular mechanisms by which aerobic exercise induces insulin sensitivity. J. Cell. Physiol. 2019, 234, 12385–12392. [Google Scholar] [CrossRef] [PubMed]
- Hirata, Y.; Takahashi, M.; Morishita, T.; Noguchi, T.; Matsuzawa, A. Post-Translational Modifications of the TAK1-TAB Complex. Int. J. Mol. Sci. 2017, 18, 205. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Z.A.; Armour, C.L.; Phipps, S.; Sukkar, M.B. RAGE and TLRs: Relatives, friends or neighbours? Mol. Immunol. 2013, 56, 739–744. [Google Scholar] [CrossRef]
- Bierhaus, A.; Humpert, P.M.; Morcos, M.; Wendt, T.; Chavakis, T.; Arnold, B.; Stern, D.M.; Nawroth, P.P. Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. 2005, 83, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C. AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef]
- Oliveira, V.; Marinho, R.; Vitorino, D.; Santos, G.A.; Moraes, J.C.; Dragano, N.; Sartori-Cintra, A.; Pereira, L.; Catharino, R.R.; da Silva, A.S.R.; et al. Diets Containing α-Linolenic (ω3) or Oleic (ω9) Fatty Acids Rescues Obese Mice From Insulin Resistance. Endocrinology 2015, 156, 4033–4046. [Google Scholar] [CrossRef]
- Cassilhas, R.C.; Reis, I.T.; Venâncio, D.; Fernandes, J.; Tufik, S.; De Mello, M.T. Animal model for progressive resistance exercise: A detailed description of model and its implications for basic research in exercise. Motriz Rev. Educ. Fis. 2013, 19, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Speretta, G.F.; Silva, A.A.; Vendramini, R.C.; Zanesco, A.; Delbin, M.A.; Menani, J.V.; Bassi, M.; Colombari, E.; Colombari, D.S.A. Resistance training prevents the cardiovascular changes caused by high-fat diet. Life Sci. 2016, 146, 154–162. [Google Scholar] [CrossRef]
- Ferreira, J.C.; Rolim, N.P.; Bartholomeu, J.B.; Gobatto, C.A.; Kokubun, E.; Brum, P.C. Maximal lactate steady state in running mice: Effect of exercise training. Clin. Exp. Pharm. Physiol. 2007, 34, 760–765. [Google Scholar] [CrossRef]
- Frajacomo, F.T.; Kannen, V.; Deminice, R.; Geraldino, T.H.; Pereira-Da-Silva, G.; Uyemura, S.A.; Jordão, A.A., Jr.; Garcia, S.B. Aerobic Training Activates Interleukin 10 for Colon Anticarcinogenic Effects. Med. Sci. Spor. Exerc. 2015, 47, 1806–1813. [Google Scholar] [CrossRef]
- Senn, S. Analysis of serial measurements in medical research (I). Br. Med. J. 1990, 300, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonora, E.; Moghetti, P.; Zancanaro, C.; Cigolini, M.; Querena, M.; Cacciatori, V.; Corgnati, A.; Muggeo, M. Estimates of in vivo insulin action in man: Comparison of insulin tolerance tests with euglycemic and hyperglycemic glucose clamp studies. J. Clin. Endocrinol. Metab. 1989, 68, 374–378. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dantis Pereira de Campos, T.; da Cruz Rodrigues, K.C.; Martins Pereira, R.; Morelli, A.P.; da Rocha, A.L.; dos Santos Canciglieri, R.; Sanchez Ramos da Silva, A.; Rochete Ropelle, E.; Pauli, J.R.; Moreira Simabuco, F.; et al. Short-Term Combined Exercise Improves Inflammatory Profile in the Retina of Obese Mice. Int. J. Mol. Sci. 2020, 21, 6099. https://doi.org/10.3390/ijms21176099
Dantis Pereira de Campos T, da Cruz Rodrigues KC, Martins Pereira R, Morelli AP, da Rocha AL, dos Santos Canciglieri R, Sanchez Ramos da Silva A, Rochete Ropelle E, Pauli JR, Moreira Simabuco F, et al. Short-Term Combined Exercise Improves Inflammatory Profile in the Retina of Obese Mice. International Journal of Molecular Sciences. 2020; 21(17):6099. https://doi.org/10.3390/ijms21176099
Chicago/Turabian StyleDantis Pereira de Campos, Thaís, Kellen Cristina da Cruz Rodrigues, Rodrigo Martins Pereira, Ana Paula Morelli, Alisson Luiz da Rocha, Raphael dos Santos Canciglieri, Adelino Sanchez Ramos da Silva, Eduardo Rochete Ropelle, José Rodrigo Pauli, Fernando Moreira Simabuco, and et al. 2020. "Short-Term Combined Exercise Improves Inflammatory Profile in the Retina of Obese Mice" International Journal of Molecular Sciences 21, no. 17: 6099. https://doi.org/10.3390/ijms21176099
APA StyleDantis Pereira de Campos, T., da Cruz Rodrigues, K. C., Martins Pereira, R., Morelli, A. P., da Rocha, A. L., dos Santos Canciglieri, R., Sanchez Ramos da Silva, A., Rochete Ropelle, E., Pauli, J. R., Moreira Simabuco, F., Esper Cintra, D., & Pereira de Moura, L. (2020). Short-Term Combined Exercise Improves Inflammatory Profile in the Retina of Obese Mice. International Journal of Molecular Sciences, 21(17), 6099. https://doi.org/10.3390/ijms21176099