Specific Receptors for the Chemokines CXCR2 and CXCR4 in Pancreatic Cancer
Abstract
:1. Introduction
2. Patients and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raman, D.; Baugher, P.J.; Thu, Y.M.; Richmond, A. Role of chemokines in tumor growth. Cancer Lett. 2007, 256, 137–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrivastava, M.S.; Hussain, Z.; Giricz, O.; Shenoy, N.; Polineni, R.; Maitra, A.; Verma, A.K. Targeting chemokine pathways in esophageal adenocarcinoma. Cell Cycle 2014, 13, 3320–3327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rot, A.; von Andrian, U.H. Chemokines in innate and adaptive host defense: Basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 2004, 22, 891–928. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Mo, X.; Shi, H.; Li, S. Mechanisms by which CXCR4/CXCL12 cause metastatic behavior in pancreatic cancer. Oncol. Lett. 2018, 15, 1771–1776. [Google Scholar] [CrossRef]
- Vandercappellen, J.; Van Damme, J.; Struyf, S. The role of CXC chemokines and their receptors in cancer. Cancer Lett. 2008, 267, 226–244. [Google Scholar] [CrossRef]
- Chatterjee, S.; Behnam Azad, B.; Nimmagadda, S. The intricate role of CXCR4 in cancer. Adv. Cancer Res. 2017, 124, 31–82. [Google Scholar]
- Zhao, H.; Guo, L.; Zhao, J.; Weng, H.; Zhao, B.; Zhao, H. CXCR4 over-expression and survival in cancer: A system review and meta-analysis. Oncotarget 2015, 6, 5022–5040. [Google Scholar] [CrossRef] [Green Version]
- Highfill, S.L.; Cui, Y.; Giles, A.; Smith, J.P.; Zhang, H.; Morse, E.; Kaplan, R.N.; Mackall, C.L. Disruption of CXCR2-Mediated MDSC Tumor Trafficking Enhances Anti-PD1 Efficacy. Sci. Transl. Med. 2014, 6, 237ra67. [Google Scholar] [CrossRef]
- Steele, C.W.; Karim, S.A.; Leach, J.D.; Bailey, P.; Upstill-Goddard, R.; Rishi, L.; Foth, M.; Bryson, S.; McDaid, K.; Wilson, Z.; et al. CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma. Cancer Cell 2016, 29, 832–845. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; Homey, B.; Soto, H. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Lazennec, G.; Richmond, A. Chemokines and chemokine receptors: New insights into cancer-related inflammation. Trends Mol. Med. 2010, 16, 133–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Ma, X.L.; Wei, Y.Q.; Wei, X.W. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim. Biophys. Acta Rev. Cancer 2019, 1871, 289–312. [Google Scholar] [CrossRef]
- Ikeda, O.; Egami, H.; Ishiko, T.; Ishikawa, S.; Kamohara, H.; Hidaka, H.; Takahashi, M.; Ogawa, M. Signal of proteinase-activated receptor-2 contributes to highly malignant potential of human pancreatic cancer by up-regulation of interleukin-8 release. Int. J. Oncol. 2006, 28, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Lesina, M.; Kurkowski, M.U.; Ludes, K.; Rose-John, S.; Treiber, M.; Klöppel, G.; Yoshimura, A.; Reindl, W.; Sipos, B.; Akira, S.; et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 2011, 19, 456–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuda, A.; Wang, S.C.; Morris, J.P.; Folias, A.E.; Liou, A.; Kim, G.E.; Akira, S.; Boucher, K.M.; Firpo, M.A.; Mulvihill, S.J.; et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 2011, 19, 441–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwada, Y.; Sasaki, T.; Morinaka, K.; Kitadai, Y.; Mukaida, N.; Chayama, K. Potential involvement of IL-8 and its receptors in the invasiveness of pancreatic cancer cells. Int. J. Oncol. 2003, 22, 765–771. [Google Scholar] [CrossRef]
- Rajarathnam, K.; Desai, U.R. Structural Insights Into How Proteoglycans Determine Chemokine-CXCR1/CXCR2 Interactions: Progress and Challenges. Front. Immunol. 2020, 11, 660. [Google Scholar] [CrossRef]
- Ali, S.; Lazennec, G. Chemokines: Novel targets for breast cancer metastasis. Cancer Metastasis Rev. 2007, 26, 401–420. [Google Scholar] [CrossRef] [Green Version]
- Strieter, R.M.; Burdick, M.D.; Gomperts, B.N.; Belperio, J.A.; Keane, M.P. CXC chemokines in angiogenesis. Cytokine Growth Factor Rev. 2005, 16, 593–609. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Xia, G.-K.; Xiang, Z.; Liu, M.; Wei, Z.-W.; Yan, J.; Chen, W.; Zhu, J.-T.; Awasthi, N.; Sun, X.; et al. C-X-C chemokine receptor type 2-dominated crosstalk between tumor cells and macrophages drives gastric cancer metastasis. Clin. Cancer Res. 2019. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Shi, M.; Yu, G.-Z.; Qin, X.-R.; Jin, G.; Chen, P.; Zhu, M.-H. Interleukin-8, a promising predictor for prognosis of pancreatic cancer. World J. Gastroenterol. 2012, 18, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Sleightholm, R.L.; Neilsen, B.K.; Li, J. Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol. Ther. 2017, 179, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Wehler, T.; Wolfert, F.; Schimanski, C.C.; Gockel, I.; Herr, W.; Biesterfeld, S.; Seifert, J.K.; Adwan, H.; Berger, M.R.; Junginger, T.; et al. Strong expression of chemokine receptor CXCR4 by pancreatic cancer correlates with advanced disease. Oncol. Rep. 2006, 16, 1159–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saur, D.; Seidler, B.; Schneider, G.; Algül, H.; Beck, R.; Senekowitsch–Schmidtke, R.; Schwaiger, M.; Schmid, R.M. CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. Gastroenterology 2005, 129, 1344–1347. [Google Scholar] [CrossRef]
- Chu, L.C.; Goggins, M.G.; Fishman, E.K. Diagnosis and Detection of Pancreatic Cancer. Cancer J. 2017, 23, 333–342. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [Green Version]
- National Cancer Institute. SEER Cancer Statistics Review, 1975–2014. 2017. Available online: https://seer.cancer.gov/csr/1975_2014/ (accessed on 27 March 2019).
- Chang, J.C.; Kundranda, M. Novel Diagnostic and Predictive Biomarkers in Pancreatic Adenocarcinoma. Int. J. Mol. Sci. 2017, 18, 667. [Google Scholar] [CrossRef] [Green Version]
- Heaney, M.L.; Golde, D.W. Soluble receptor in human disease. J. Leukoc. Biol. 1998, 64, 135–146. [Google Scholar] [CrossRef]
- Levine, S.J. Mechanism of soluble cytokine receptor generation. J. Immunol. 2004, 173, 5343–5348. [Google Scholar] [CrossRef] [Green Version]
- Tsimanis, T.; Kalinkovich, A.; Bentwich, Z. Soluble chemokine CCR5 receptor is present in human plasma. Immunol. Lett. 2005, 96, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Katlinski, K.; Akalovich, S.; Katlinskaya, Y. Immunoregulation SLBAW2-C Soluble human CXCR2: Structure, properties, bioactivity. Cytokine 2009, 48, 81. [Google Scholar] [CrossRef]
- Malvoisin, E.; Livrozet, J.-M.; Makloufi, D.; Vincent, N. Soluble chemokine receptor CXCR4 is present in human sera. Anal. Biochem. 2011, 414, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Łukaszewicz-Zając, M.; Mroczko, B.; Kozłowski, M.; Szmitkowski, M. Serum Concentrations of Chemokine CXCL12 and Its Specific Receptor CXCR4 in Patients with Esophageal Cancer. Dis. Markers 2016, 2016, 7963895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łukaszewicz-Zając, M.; Muszyński, P.; Kozłowski, M.; Kulczyńska-Przybik, A.; Szmitkowski, M.; Mroczko, B. Serum concentrations of receptor for interleukin 8 in patients with esophageal cancer. Pol. Arch. Med. Wewn. 2016, 126, 854–861. [Google Scholar] [CrossRef]
- Łukaszewicz-Zając, M.; Pączek, S.; Muszyński, P.; Kozłowski, M.; Mroczko, B. Comparison between clinical significance of serum CXCL-8 and classical tumor markers in oesophageal cancer (OC) patients. Clin. Exp. Med. 2019. [Google Scholar] [CrossRef] [Green Version]
- Litman-Zawadzka, A.; Łukaszewicz-Zając, M.; Gryko, M.; Kulczyńska-Przybik, A.; Mroczko, B. Serum chemokine CXCL8 as a better biomarker for diagnosis and prediction of pancreatic cancer than its specific receptor CXCR2, C-reactive protein, and classic tumor markers CA 19-9 and CEA. Pol. Arch. Med. Wewn. 2018, 128, 524–531. [Google Scholar]
- Jass, J.R.; Sobin, L.H. WHO International Histological Classification of Tumors. Histological Typing of Intestinal Tumors; Springer: New York, NY, USA, 1989. [Google Scholar]
- Hollander, M.; Wolfe, D.A. Nonparametric Statistical Methods; John Wiley & Sons: New York, NY, USA, 1999; pp. 240–249. [Google Scholar]
- Evans, U.B.; Lee, J.E.; Pisters, P.W.T.; Charnsangavej, C.; Ellis, L.M.; Chiao, P.J.; Lenzi, R.; Abbruzzese, J.L. Advances in the diagnosis and treatment of adenocarcinoma of the pancreas. Cancer Treat. Res. 1997, 90, 109–125. [Google Scholar]
- Wanebo, H.J.; Vezeridis, M.P. Pancreatic carcinoma in perspective. A continuing challenge. Cancer 1996, 78, 580–591. [Google Scholar] [CrossRef]
- Sarvaiya, P.J.; Guo, D.; Ulasov, I.; Gabikian, P.; Lesniak, M.S. Chemokines in tumor progression and metastasis. Oncotarget 2013, 4, 2171–2185. [Google Scholar] [CrossRef] [Green Version]
- Groblewska, M.; Mroczko, B.; Wereszczynska-Siemiatkowska, U.; Mysliwiec, P.; Kędra, B.; Szmitkowski, M. Serum levels of granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) in pancreatic cancer patients. Clin. Chem. Lab. Med. 2007, 45, 30–34. [Google Scholar] [CrossRef]
- Mroczko, B.; Lukaszewicz-Zajac, M.; Wereszczynska-Siemiatkowska, U.; Groblewska, M.; Gryko, M.; Kedra, B.; Jurkowska, G.; Szmitkowski, M. Clinical significance of the measurements of serum matrix metalloproteinase-9 and its inhibitor (tissue inhibitor of metalloproteinase-1) in patients with pancreatic cancer: Metalloproteinase-9 as an independent prognostic factor. Pancreas 2009, 38, 613–618. [Google Scholar] [CrossRef]
- Łukaszewicz-Zając, M.; Gryko, M.; Pączek, S.; Szmitkowski, M.; Kędra, B.; Mroczko, B. Matrix metalloproteinase 2 (MMP-2) and its tissue inhibitor 2 (TIMP-2) in pancreatic cancer (PC). Oncotarget 2019, 10, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zheng, J.; Ni, Q.; Zhu, H.; Lu, Y.; Qian, H.; Zhu, J. Prognostic significance of CXCR2 expression in pancreatic ductal carcinoma. Zhonghua Yi Xue Za Zhi 2014, 94, 3805–3808. [Google Scholar] [PubMed]
- Ding, Y.; Du, Y. Clinicopathological significance and prognostic role of chemokine receptor CXCR4 expression in pancreatic ductal adenocarcinoma, a meta-analysis and literature review. Int. J. Surg. 2019. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, F.; Monti, P.; Leone, B.E.; Zerbi, A.; Vecchi, A.; Piemonti, L.; Mantovani, A.; Allavena, P. Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res. 2004, 64, 8420–8427. [Google Scholar] [CrossRef] [Green Version]
Variable Tested | Number of Patients | |
---|---|---|
Group | Pancreatic cancer (PC) | 32 |
Gender | Male | 20 |
Female | 12 | |
TNM Stage | I + II | 8 |
III | 10 | |
IV | 14 | |
Depth of Tumor Invasion (T Factor) | T1 + 2 + 3 | 10 |
T4 | 22 | |
Nodal Involvement (N Factor) | N0 | 13 |
N1 | 19 | |
Distant Metastases (M factor) | M0 | 18 |
M1 | 14 |
Group Tested | CXCR-4 [ng/mL] | CXCR-2 [ng/mL] | CRP [mg/L] | CEA [ng/mL] | |
---|---|---|---|---|---|
Pancreatic Cancer (PC) | Min | 0.54 | 0.00 | 0.30 | 0.92 |
Me | 6.48 | 1.02 | 10.30 | 2.67 | |
Max | 45.03 | 2.26 | 269.40 | 319.21 | |
Control Group (Healthy Subjects) | Min | 0.07 | 0.000 | 0.20 | 0.50 |
Me | 0.89 | 0.63 | 0.95 | 1.34 | |
Max | 25.05 | 1.72 | 5.00 | 4.54 | |
p (PC vs. Healthy Controls) | <0.001 a | 0.001 a | <0.001 a | <0.001 a |
CXCR4 [ng/mL] | CXCR2 [ng/mL] | CRP [mg/L] | CEA [ng/mL] | ||
---|---|---|---|---|---|
I + II | Min | 1.70 | 0.00 | 0.30 | 1.20 |
Me | 3.95 | 1.03 | 12.95 | 1.72 | |
Max | 45.03 | 1.86 | 161.50 | 10.94 | |
III | Min | 0.69 | 0.08 | 0.30 | 0.92 |
Me | 6.39 | 1.02 | 2.80 | 2.69 | |
Max | 22.36 | 2.17 | 39.20 | 17.35 | |
IV | Min | 0.54 | 0.25 | 0.60 | 1.31 |
Me | 7.08 | 1.02 | 26.15 | 2.91 | |
Max | 25.62 | 2.26 | 269.40 | 319.21 | |
Control Group (CG) | Min | 0.07 | 0.00 | 0.20 | 0.50 |
Me | 0.89 | 0.63 | 0.95 | 1.34 | |
Max | 25.05 | 1.72 | 5.00 | 4.54 | |
p (Kruskal-Wallis Test) | <0.001 a | 0.01 a | <0.001 a | 0.02 a | |
p (post hoc Dwass-Steele-Critchlow-Fligner test | I + II vs. III | 0.98 | 1.00 | 0.63 | 0.76 |
I + II vs. IV | 0.99 | 1.00 | 0.76 | 0.29 | |
I + II vs. CG | 0.01 a | 0.16 | 0.04 a | 0.49 | |
III vs. IV | 0.90 | 1.00 | 0.10 | 0.90 | |
III vs. CG | 0.01 a | 0.21 | 0.31 | 0.10 | |
IV vs. CG | <0.001 a | 0.03 a | <0.001 a | 0.01 a |
Pancreatic Cancer (PC) | CXCR4 [ng/mL] | CXCR2 [ng/mL] | CRP [mg/L] | CEA [ng/mL] | ||
---|---|---|---|---|---|---|
Depth of tumor invasion (T factor) | T1 + 2 + 3 | Min | 1.70 | 0.00 | 0.70 | 1.20 |
Me | 5.88 | 0.93 | 12.65 | 1.99 | ||
Max | 45.03 | 1.86 | 161.50 | 10.94 | ||
T4 | Min | 0.54 | 0.08 | 0.30 | 0.92 | |
Me | 6.70 | 1.05 | 8.10 | 2.91 | ||
Max | 25.62 | 2.26 | 269.40 | 319.21 | ||
Control group (CG) | Min | 0.07 | 0.00 | 0.20 | 0.50 | |
Me | 0.89 | 0.63 | 0.95 | 1.34 | ||
Max | 25.05 | 1.72 | 5.00 | 4.54 | ||
p (Kruskal-Wallis test) | <0.001 a | 0.01 a | <0.001 a | 0.01 a | ||
p (post hoc Dwass-Steele-Critchlow-Fligner test) | 1 + 2 + 3 vs. 4 | 0.98 | 0.90 | 1.00 | 0.54 | |
1 + 2 + 3 vs. | 0.01 a | 0.12 | 0.01 a | 0.10 | ||
4 vs. CG | <0.001 a | 0.01 a | 0.01 a | 0.10 | ||
Presence of lymph node metastasis (N factor) | N0 | Min | 0.69 | 0.08 | 0.30 | 0.92 |
Me | 3.15 | 0.77 | 7.10 | 1.92 | ||
Max | 45.03 | 1.86 | 161.50 | 7.22 | ||
N1 | Min | 0.54 | 0.00 | 0.30 | 1.24 | |
Me | 6.74 | 1.06 | 14.30 | 3.00 | ||
Max | 25.62 | 2.26 | 269.40 | 319.21 | ||
Control group (CG) | Min | 0.07 | 0.00 | 0.20 | 0.50 | |
Me | 0.89 | 0.63 | 0.95 | 1.34 | ||
Max | 25.05 | 1.72 | 5.00 | 4.54 | ||
p (Kruskal-Wallis test) | <0.001 a | 0.01 a | <0.001 a | 0.01 a | ||
p (post hoc Dwass-Steele-Critchlow-Fligner test) | 0 vs. 1 | 0.47 | 0.64 | 0.36 | 0.25 | |
0 vs. CG | 0.01 a | 0.11 | 0.01 a | 0.13 | ||
1 vs. CG | <0.001 a | 0.01 a | <0.001 a | 0.01 a | ||
Presence of distant metastasis (M factor) | M0 | Min | 0.69 | 0.00 | 0.30 | 0.92 |
Me | 5.78 | 1.03 | 6.75 | 1.99 | ||
Max | 45.03 | 2.17 | 161.50 | 17.35 | ||
M1 | Min | 0.54 | 0.25 | 0.60 | 1.31 | |
Me | 7.08 | 1.02 | 26.15 | 2.91 | ||
Max | 25.62 | 2.26 | 269.40 | 319.21 | ||
Control group (CG) | Min | 0.07 | 0.00 | 0.20 | 0.50 | |
Me | 0.89 | 0.63 | 0.95 | 1.34 | ||
Max | 25.05 | 1.72 | 5.00 | 4.54 | ||
p (Kruskal-Wallis test) | <0.001 a | 0.01 a | <0.001 a | 0.01 a | ||
p (post hoc Dwass-Steele-Critchlow-Fligner test) | 0 vs. 1 | 0.82 | 1.00 | 0.10 | 0.32 | |
0 vs. CG | <0.001 a | 0.03 a | 0.01 a | 0.04 a | ||
1 vs. CG | <0.001 a | 0.02 a | <0.001 a | 0.01 a |
T | N | TNM | Age | CXCR4 | CXCR2 | CRP | CEA | ||
---|---|---|---|---|---|---|---|---|---|
T | r | 1.00 | 0.42 | 0.49 | 0.01 | −0.04 | 0.06 | 0.02 | 0.22 |
p | 0.02 a | <0.001 a | 0.97 | 0.84 | 0.74 | 0.90 | 0.24 | ||
N | r | 0.42 | 1.00 | 0.53 | 0.00 | 0.21 | 0.16 | 0.24 | 0.29 |
p | 0.02 a | <0.001 a | 0.99 | 0.25 | 0.38 | 0.18 | 0.11 | ||
TNM | r | 0.49 | 0.53 | 1.00 | 0.33 | 0.04 | −0.02 | 0.26 | 0.30 |
p | <0.001 a | <0.001 a | 0.06 | 0.81 | 0.90 | 0.15 | 0.09 | ||
Age | r | 0.01 | 0.00 | 0.33 | 1.00 | 0.41 | 0.44 | 0.57 | 0.31 |
p | 0.97 | 0.99 | 0.06 | <0.001 a | <0.001 a | <0.00 a | <0.001 a | ||
CXCR4 | R | −0.04 | 0.21 | 0.04 | 0.41 | 1.00 | 0.71 | 0.37 | 0.11 |
p | 0.84 | 0.25 | 0.81 | <0.001 a | <0.001 a | <0.00 a | 0.39 | ||
CXCR2 | R | 0.06 | 0.16 | −0.02 | 0.44 | 0.71 | 1.00 | 0.27 | 0.00 |
p | 0.74 | 0.38 | 0.90 | <0.001 a | <0.00 a | 0.03 a | 0.98 | ||
CRP | R | 0.02 | 0.24 | 0.26 | 0.57 | 0.37 | 0.27 | 1.00 | 0.44 |
p | 0.90 | 0.18 | 0.15 | <0.001 a | <0.001 a | 0.03 a | <0.001 a | ||
CEA | R | 0.22 | 0.29 | 0.30 | 0.31 | 0.11 | 0.00 | 0.44 | 1.00 |
p | 0.24 | 0.11 | 0.09 | 0.01 a | 0.39 | 0.98 | <0.001 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Litman-Zawadzka, A.; Łukaszewicz-Zając, M.; Gryko, M.; Kulczyńska-Przybik, A.; Kędra, B.; Mroczko, B. Specific Receptors for the Chemokines CXCR2 and CXCR4 in Pancreatic Cancer. Int. J. Mol. Sci. 2020, 21, 6193. https://doi.org/10.3390/ijms21176193
Litman-Zawadzka A, Łukaszewicz-Zając M, Gryko M, Kulczyńska-Przybik A, Kędra B, Mroczko B. Specific Receptors for the Chemokines CXCR2 and CXCR4 in Pancreatic Cancer. International Journal of Molecular Sciences. 2020; 21(17):6193. https://doi.org/10.3390/ijms21176193
Chicago/Turabian StyleLitman-Zawadzka, Ala, Marta Łukaszewicz-Zając, Mariusz Gryko, Agnieszka Kulczyńska-Przybik, Bogusław Kędra, and Barbara Mroczko. 2020. "Specific Receptors for the Chemokines CXCR2 and CXCR4 in Pancreatic Cancer" International Journal of Molecular Sciences 21, no. 17: 6193. https://doi.org/10.3390/ijms21176193
APA StyleLitman-Zawadzka, A., Łukaszewicz-Zając, M., Gryko, M., Kulczyńska-Przybik, A., Kędra, B., & Mroczko, B. (2020). Specific Receptors for the Chemokines CXCR2 and CXCR4 in Pancreatic Cancer. International Journal of Molecular Sciences, 21(17), 6193. https://doi.org/10.3390/ijms21176193