An Increased Burden of Highly Active Retrotransposition Competent L1s Is Associated with Parkinson’s Disease Risk and Progression in the PPMI Cohort
Abstract
:1. Introduction
2. Results
2.1. Characterizing Reference and Non-Reference RC-L1s
2.2. An Increase in the Number of Highly Active RC-L1s Is Associated with an Increased Risk of Parkinson’s Disease
2.3. Individuals with a Higher Number of Highly Active RC-L1s Show an Increase in Markers of Parkinson’s Disease Progression
3. Discussion
4. Materials and Methods
4.1. Identification of Retrotransposition Competent L1s
4.2. Genotyping of RC-L1s in Whole-Genome Sequencing Data from the PPMI Cohort
4.3. Statistical Analysis of Polymorphic RC-L1s
4.4. Association Analysis of the Burden of Highly Active RC-L1s with Clinical Features and Progression Markers of PD in PPMI Longitudinal Data
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DAT | Dopamine Transporter |
CI | Confidence Interval |
HA | Highly Active |
LINE-1/L1 | Long interspersed element-1 |
MDS-UPDRS | Movement Disorder Society—Unified Parkinson’s Disease Rating Scale |
MOCA | Montreal Cognitive Assessment |
NR_RCL1 | Non-reference retrotransposition competent long interspersed element-1 |
ORF | Open reading frame |
PD | Parkinson’s disease |
PPMI | Parkinson’s progression markers initiative |
RC | Retrotransposition competent |
Ref_RCL1 | Reference retrotransposition competent long interspersed element-1 |
SBR | Striatal binding ratio |
SCOPA-AUT | Scales for Outcomes in Parkinson’s disease—autonomic dysfunction |
TSD | Target site duplication |
UTR | Untranslated region |
References
- Penzkofer, T.; Jager, M.; Figlerowicz, M.; Badge, R.; Mundlos, S.; Robinson, P.N.; Zemojtel, T. L1Base 2: More retrotransposition-active LINE-1s, more mammalian genomes. Nucleic Acids Res. 2017, 45, D68–D73. [Google Scholar] [CrossRef]
- Feng, Q.; Moran, J.V.; Kazazian, H.H., Jr.; Boeke, J.D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 1996, 87, 905–916. [Google Scholar] [CrossRef] [Green Version]
- Khazina, E.; Weichenrieder, O. Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. Proc. Natl. Acad. Sci. USA 2009, 106, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Mathias, S.L.; Scott, A.F.; Kazazian, H.H., Jr.; Boeke, J.D.; Gabriel, A. Reverse transcriptase encoded by a human transposable element. Science 1991, 254, 1808–1810. [Google Scholar] [CrossRef]
- Moran, J.V.; Holmes, S.E.; Naas, T.P.; DeBerardinis, R.J.; Boeke, J.D.; Kazazian, H.H., Jr. High frequency retrotransposition in cultured mammalian cells. Cell 1996, 87, 917–927. [Google Scholar] [CrossRef] [Green Version]
- Cost, G.J.; Feng, Q.; Jacquier, A.; Boeke, J.D. Human L1 element target-primed reverse transcription in vitro. EMBO J. 2002, 21, 5899–5910. [Google Scholar] [CrossRef]
- Feusier, J.; Watkins, W.S.; Thomas, J.; Farrell, A.; Witherspoon, D.J.; Baird, L.; Ha, H.; Xing, J.; Jorde, L.B. Pedigree-based estimation of human mobile element retrotransposition rates. Genome Res. 2019, 29, 1567–1577. [Google Scholar] [CrossRef] [Green Version]
- Hancks, D.C.; Kazazian, H.H., Jr. Roles for retrotransposon insertions in human disease. Mob. DNA 2016, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Burns, K.H. Transposable elements in cancer. Nat. Rev. Cancer 2017, 17, 415–424. [Google Scholar] [CrossRef]
- Faulkner, G.J.; Billon, V. L1 retrotransposition in the soma: A field jumping ahead. Mob. DNA 2018, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Muotri, A.R.; Marchetto, M.C.; Coufal, N.G.; Oefner, R.; Yeo, G.; Nakashima, K.; Gage, F.H. L1 retrotransposition in neurons is modulated by MeCP2. Nature 2010, 468, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Macia, A.; Widmann, T.J.; Heras, S.R.; Ayllon, V.; Sanchez, L.; Benkaddour-Boumzaouad, M.; Munoz-Lopez, M.; Rubio, A.; Amador-Cubero, S.; Blanco-Jimenez, E.; et al. Engineered LINE-1 retrotransposition in nondividing human neurons. Genome Res. 2017, 27, 335–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coufal, N.G.; Garcia-Perez, J.L.; Peng, G.E.; Marchetto, M.C.; Muotri, A.R.; Mu, Y.; Carson, C.T.; Macia, A.; Moran, J.V.; Gage, F.H. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc. Natl. Acad. Sci. USA 2011, 108, 20382–20387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, O.H.; Rozhkov, N.V.; Shaw, R.; Kim, D.; Hubbard, I.; Fennessey, S.; Propp, N.; Fagegaltier, D.; Ostrow, L.W.; Phatnani, H.; et al. Postmortem cortex samples identify distinct molecular subtypes of ALS: Retrotransposon activation, oxidative stress, and activated glia. Cell Rep. 2019, 29, 1164–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, A.L.; Schumann, G.G.; Breen, G.; Bubb, V.J.; Al-Chalabi, A.; Quinn, J.P. Retrotransposons in the development and progression of amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.A.; Tejwani, L.; Trujillo, C.A.; Negraes, P.D.; Herai, R.H.; Mesci, P.; Macia, A.; Crow, Y.J.; Muotri, A.R. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell 2017, 21, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Jeong, H.H.; Hsieh, Y.C.; Klein, H.U.; Bennett, D.A.; De Jager, P.L.; Liu, Z.; Shulman, J.M. Tau activates transposable elements in Alzheimer’s disease. Cell Rep. 2018, 23, 2874–2880. [Google Scholar] [CrossRef]
- Terry, D.M.; Devine, S.E. Aberrantly high levels of somatic LINE-1 expression and retrotransposition in human neurological disorders. Front. Genet. 2019, 10, 1244. [Google Scholar] [CrossRef] [Green Version]
- Baeken, M.W.; Moosmann, B.; Hajieva, P. Retrotransposon activation by distressed mitochondria in neurons. Biochem. Biophys. Res. Commun. 2020, 525, 570–575. [Google Scholar] [CrossRef]
- Blaudin de The, F.X.; Rekaik, H.; Peze-Heidsieck, E.; Massiani-Beaudoin, O.; Joshi, R.L.; Fuchs, J.; Prochiantz, A. Engrailed homeoprotein blocks degeneration in adult dopaminergic neurons through LINE-1 repression. EMBO J. 2018, 37. [Google Scholar] [CrossRef]
- De Cecco, M.; Ito, T.; Petrashen, A.P.; Elias, A.E.; Skvir, N.J.; Criscione, S.W.; Caligiana, A.; Brocculi, G.; Adney, E.M.; Boeke, J.D.; et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 2019, 566, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Brouha, B.; Schustak, J.; Badge, R.M.; Lutz-Prigge, S.; Farley, A.H.; Moran, J.V.; Kazazian, H.H., Jr. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl. Acad. Sci. USA 2003, 100, 5280–5285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, C.R.; Collier, P.; Macfarlane, C.; Malig, M.; Kidd, J.M.; Eichler, E.E.; Badge, R.M.; Moran, J.V. LINE-1 retrotransposition activity in human genomes. Cell 2010, 141, 1159–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouha, B.; Meischl, C.; Ostertag, E.; de Boer, M.; Zhang, Y.; Neijens, H.; Roos, D.; Kazazian, H.H., Jr. Evidence consistent with human L1 retrotransposition in maternal meiosis I. Am. J. Hum. Genet. 2002, 71, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Gardner, E.J.; Lam, V.K.; Harris, D.N.; Chuang, N.T.; Scott, E.C.; Pittard, W.S.; Mills, R.E.; Genomes Project, C.; Devine, S.E. The Mobile Element Locator Tool (MELT): Population-scale mobile element discovery and biology. Genome Res. 2017, 27, 1916–1929. [Google Scholar] [CrossRef] [Green Version]
- Sudmant, P.H.; Rausch, T.; Gardner, E.J.; Handsaker, R.E.; Abyzov, A.; Huddleston, J.; Zhang, Y.; Ye, K.; Jun, G.; Fritz, M.H.; et al. An integrated map of structural variation in 2504 human genomes. Nature 2015, 526, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Transm. 2017, 124, 901–905. [Google Scholar] [CrossRef]
- Marek, K.; Jennings, D.; Lasch, S.; Siderowf, A.; Tanner, C.; Simuni, T.; Coffey, C.; Kieburtz, K.; Flagg, E.; Chowdhury, S.; et al. The Parkinson progression marker initiative (PPMI). Prog. Neurobiol. 2011, 95, 629–635. [Google Scholar] [CrossRef]
- Tubio, J.M.C.; Li, Y.; Ju, Y.S.; Martincorena, I.; Cooke, S.L.; Tojo, M.; Gundem, G.; Pipinikas, C.P.; Zamora, J.; Raine, K.; et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 2014, 345, 1251343. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Martin, B.; Alvarez, E.G.; Baez-Ortega, A.; Zamora, J.; Supek, F.; Demeulemeester, J.; Santamarina, M.; Ju, Y.S.; Temes, J.; Garcia-Souto, D.; et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat. Genet. 2020, 52, 306–319. [Google Scholar] [CrossRef] [Green Version]
- Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.; et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019, 18, 1091–1102. [Google Scholar] [CrossRef]
- Blauwendraat, C.; Nalls, M.A.; Singleton, A.B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020, 19, 170–178. [Google Scholar] [CrossRef]
- Ikeda, K.; Ebina, J.; Kawabe, K.; Iwasaki, Y. Dopamine transporter imaging in parkinson disease: Progressive changes and therapeutic modification after anti-parkinsonian medications. Intern. Med. 2019, 58, 1665–1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ba, F.; Martin, W.R. Dopamine transporter imaging as a diagnostic tool for parkinsonism and related disorders in clinical practice. Parkinsonism Relat. Disord. 2015, 21, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Turnbull, D.M.; Reeve, A.K. Mitochondrial dysfunction in Parkinson’s disease-cause or consequence? Biology 2019, 8, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, A.; Macia, A.; Muotri, A.R. Transposable elements, inflammation, and neurological disease. Front. Neurol. 2019, 10, 894. [Google Scholar] [CrossRef] [Green Version]
- Tam, O.H.; Ostrow, L.W.; Gale Hammell, M. Diseases of the nERVous system: Retrotransposon activity in neurodegenerative disease. Mob. DNA 2019, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Rice, G.I.; Meyzer, C.; Bouazza, N.; Hully, M.; Boddaert, N.; Semeraro, M.; Zeef, L.A.H.; Rozenberg, F.; Bondet, V.; Duffy, D.; et al. Reverse-Transcriptase Inhibitors in the Aicardi-Goutieres Syndrome. N. Engl. J. Med. 2018, 379, 2275–2277. [Google Scholar] [CrossRef]
- Dai, L.; Huang, Q.; Boeke, J.D. Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem. 2011, 12, 18. [Google Scholar] [CrossRef] [Green Version]
- Rausch, T.; Zichner, T.; Schlattl, A.; Stutz, A.M.; Benes, V.; Korbel, J.O. DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 2012, 28, i333–i339. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Healthy Controls | PD Subjects | ||||
---|---|---|---|---|---|---|
Total (n = 178) | ≤8 HA RC-L1 (n = 94) | ≥9 HA RC-L1 (n = 77) | Total (n = 372) | ≤8 HA RC-L1 (n = 148) | ≥9 HA RC-L1 (n = 198) | |
Gender | ||||||
Male | 116 (65%) | 61 (65%) | 49 (64%) | 242 (65%) | 98 (66%) | 128 (65%) |
Female | 62 (35%) | 33 (35%) | 28 (36%) | 130 (35%) | 50 (34%) | 70 (35%) |
Age | ||||||
Mean (min, max) | 61.3 (30.6–82.7) | 60.8 (31.2–79.3) | 61.4 (30.6–82.7) | 61.9 (33.5–84.9) | 62.9 (33.5–83.0) | 61.9 (39.2–84.9) |
Age of onset | ||||||
Mean (min, max) | na | na | na | 60.0 (29.2–83.0) | 60.9 (29.2–81.3) | 60.0 (35.9–83.0) |
Family history of PD * | ||||||
1st degree family member | 0 (0%) | 0 (0%) | 0 (0%) | 51 (15.7%) | 16 (10.8%) | 29 (14.7%) |
Other family member | 10 (5.6%) | 6 (6.4%) | 4 (5.2%) | 43 (11.6%) | 16 (10.8%) | 24 (12.2%) |
No family member | 168 (94.4%) | 88 (93.6%) | 73 (94.8%) | 277 (74.7%) | 116 (78.4%) | 144 (73.1%) |
Associated Feature | Time of Visit (Months) | ≤8 HA RC-L1 Mean (95% CI) | ≥9 HA RC-L1 Mean (95% CI) | p-Value |
---|---|---|---|---|
MDS-UPDRS Part I Score | 0 | 5.31 (4.53–60.8) | 5.57 (4.90–6.23) | 0.62 |
12 | 6.65 (5.87–7.43) | 6.74 (6.06–7.42) | 0.87 | |
24 | 7.51 (6.72–8.30) | 7.63 (6.94–8.32) | 0.83 | |
36 | 7.69 (6.90–8.48) | 9.12 (8.43–9.82) | 0.008 | |
Total Levodopa Equivalent Daily Dose | 12 | 266 (208–324) | 256 (203–308) | 0.80 |
24 | 374 (318–429) | 395 (346–443) | 0.57 | |
36 | 444 (390–498) | 525 (477–574) | 0.03 | |
SCOPA-AUT Gastrointestinal Score | 0 | 2.25 (1.88–2.62) | 1.96 (1.64–2.27) | 0.23 |
12 | 2.80 (2.43–3.17) | 2.83 (2.50–3.15) | 0.91 | |
24 | 2.87 (2.49–3.24) | 2.94 (2.61–3.37) | 0.78 | |
36 | 2.85 (2.48–3.23) | 3.49 (3.16–3.82) | 0.01 | |
MoCA Score (adjusted for education) | 0 | 27.6 (27.2–28.0) | 27.0 (26.6–27.4) | 0.04 |
12 | 26.4 (25.9–26.8) | 26.6 (26.2–27.0) | 0.48 | |
24 | 26.5 (26.0–26.9) | 26.6 (26.2–27.0) | 0.56 | |
36 | 26.4 (26.0–26.9) | 26.6 (26.2–27.0) | 0.45 | |
Highest caudate measure (SBR) | 0 | 2.10 (2.01–2.19) | 2.24 (2.16–2.32) | 0.02 |
12 | 1.89 (1.80–1.98) | 1.96 (1.88–2.04) | 0.26 | |
24 | 1.83 (1.74–1.92) | 1.82 (1.74–1.90) | 0.84 | |
Mean caudate measure (SBR) | 0 | 1.93 (1.84–2.01) | 2.05 (1.98–2.12) | 0.03 |
12 | 1.74 (1.66–1.83) | 1.79 (1.72–1.86) | 0.40 | |
24 | 1.67 (1.58–1.75) | 1.66 (1.58–1.73) | 0.88 | |
Ipsilateral caudate measure (SBR) | 0 | 2.08 (1.99–2.17) | 2.22 (2.14–2.29) | 0.03 |
12 | 1.86 (1.77–1.96) | 1.94 (1.86–2.02) | 0.22 | |
24 | 1.82 (1.72–1.91) | 1.79 (1.71–1.87) | 0.72 | |
Contralateral caudate measure (SBR) | 0 | 1.78 (1.69–1.86) | 1.89 (1.82–1.96) | 0.045 |
12 | 1.62 (1.54–1.70) | 1.64 (1.57–1.71) | 0.74 | |
24 | 1.52 (1.43–1.60) | 1.52 (1.45–1.59) | 0.95 | |
Highest striatum measure (SBR) | 0 | 3.03 (2.90–3.17) | 3.24 (3.12–3.35) | 0.02 |
12 | 2.67 (2.53–2.80) | 2.76 (2.64–2.88) | 0.33 | |
24 | 2.56 (2.42–2.70) | 2.55 (2.43–2.67) | 0.94 | |
Mean striatum measure (SBR) | 0 | 1.36 (1.30–1.42) | 1.44 (1.40–1.50) | 0.04 |
12 | 1.21 (1.15–1.27) | 1.24 (1.19–1.30) | 0.43 | |
24 | 1.15 (1.09–1.22) | 1.15 (1.10–1.21) | 0.97 | |
Ipsilateral striatum measure (SBR) | 0 | 3.00 (2.87–3.14) | 3.20 (3.09–3.32) | 0.03 |
12 | 2.63 (2.49–2.77) | 2.73 (2.61–2.85) | 0.25 | |
24 | 2.54 (2.40–2.68) | 2.52 (2.40–2.64) | 0.84 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfaff, A.L.; Bubb, V.J.; Quinn, J.P.; Koks, S. An Increased Burden of Highly Active Retrotransposition Competent L1s Is Associated with Parkinson’s Disease Risk and Progression in the PPMI Cohort. Int. J. Mol. Sci. 2020, 21, 6562. https://doi.org/10.3390/ijms21186562
Pfaff AL, Bubb VJ, Quinn JP, Koks S. An Increased Burden of Highly Active Retrotransposition Competent L1s Is Associated with Parkinson’s Disease Risk and Progression in the PPMI Cohort. International Journal of Molecular Sciences. 2020; 21(18):6562. https://doi.org/10.3390/ijms21186562
Chicago/Turabian StylePfaff, Abigail L., Vivien J. Bubb, John P. Quinn, and Sulev Koks. 2020. "An Increased Burden of Highly Active Retrotransposition Competent L1s Is Associated with Parkinson’s Disease Risk and Progression in the PPMI Cohort" International Journal of Molecular Sciences 21, no. 18: 6562. https://doi.org/10.3390/ijms21186562
APA StylePfaff, A. L., Bubb, V. J., Quinn, J. P., & Koks, S. (2020). An Increased Burden of Highly Active Retrotransposition Competent L1s Is Associated with Parkinson’s Disease Risk and Progression in the PPMI Cohort. International Journal of Molecular Sciences, 21(18), 6562. https://doi.org/10.3390/ijms21186562