Gene Expression Changes in the Ventral Tegmental Area of Male Mice with Alternative Social Behavior Experience in Chronic Agonistic Interactions
Abstract
:1. Introduction
2. Results
2.1. Differentially Expressed Genes (DEGs) in the VTA of Winners vs. Control Mice
2.2. DEGs in the VTA of Losers vs. Controls
2.3. DEGs with a Changed Expression Both in Winners and Losers (Common DEGs)
2.4. DEGs in the VTA of Winners vs. Losers
2.5. DEGs that Can Maximize the Differences between the Groups of Winners and Losers
2.6. Correlation Between the Expression of Nrgn, Ercc2, Otx2, and Six3 and the Genes Involved in the Synthesis and Transport of Dopamine in the VTA Was Determined by a Cluster Analysis Using Expression Data for the Genes Differentially Expressed in the VTA of Winners and Losers
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Generation of Alternative Forms of Social Behavior in Male Mice under Agonistic Interactions
4.3. RNA-Seq Analysis
4.4. Functional Annotation
4.5. Statistical Methods
5. Conclusions
- It is necessary to remember the complexity of the mechanisms regulating behavior. Accordingly, the results obtained in this study may be valid for mixed anxiety/depressive disorder and pathological aggressive behavior in mice within the framework of the used experimental model. However, we tried to describe the methodology of the experiment in detail in order to increase the replicability of the study.
- The sequencing and bioinformatic analysis carried out in this work is only the beginning of the process of studying the role of the identified candidate genes (Nrgn and other highlighted genes) in the formation of behavioral features under the influence of social confrontations. To establish the relationship between the transcription of the candidate genes and the external (behavioral) phenotype, additional studies at the proteome and metabolome levels are required.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kudryavtseva, N.N. The sensory contact model for the study of aggressive and submissive behaviors in male mice. Aggress. Behav. 1991, 17, 285–291. [Google Scholar] [CrossRef]
- Golden, S.A.; Covington, H.E., III; Berton, O.; Russo, S.J. A standardized protocol for repeated social defeat stress in mice. Nat. Protoc. 2011, 6, 1183–1191. [Google Scholar] [CrossRef]
- Kudryavtseva, N.N.; Smagin, D.A.; Kovalenko, I.L.; Vishnivetskaya, G.B. Repeated positive fighting experience in male inbred mice. Nat. Protoc. 2014, 9, 2705–2717. [Google Scholar] [CrossRef]
- Shimamoto, A. Social Defeat Stress, Sex, and Addiction-Like Behaviors. Int. Rev. Neurobiol. 2018, 140, 271–313. [Google Scholar] [CrossRef]
- Smagin, D.A.; Kovalenko, I.L.; Galyamina, A.G.; Bragin, A.O.; Orlov, Y.L.; Kudryavtseva, N.N. Dysfunction in Ribosomal Gene Expression in the Hypothalamus and Hippocampus following Chronic Social Defeat Stress in Male Mice as Revealed by RNA-Seq. Neural Plast. 2016, 2016, 3289187. [Google Scholar] [CrossRef] [Green Version]
- Galyamina, A.G.; Kovalenko, I.L.; Smagin, D.A.; Kudryavtseva, N.N. Interaction of depression and anxiety in the development of mixed anxiety/depression disorder: Experimental studies of the mechanisms of comorbidity (review). Neurosci. Behav. Physiol. 2017, 47, 699–713. [Google Scholar] [CrossRef]
- Kovalenko, I.L.; Smagin, D.A.; Galyamina, A.G.; Orlov, Y.L.; Kudryavtseva, N.N. Changes in the Expression of Dopaminergic Genes in Brain Structures of Male Mice Exposed to Chronic Social Defeat Stress: An RNA-seq Study. Mol. Biol. 2016, 50, 184–187. [Google Scholar] [CrossRef]
- Kudryavtseva, N.N.; Smagin, D.A.; Kovalenko, I.L.; Galyamina, A.G.; Vishnivetskaya, G.B.; Babenko, V.N.; Orlov, Y.L. Serotonergic genes in the development of anxiety/depression-like state and pathology of aggressive behavior in male mice: RNA-seq data. Mol. Biol. 2017, 51, 288–300. [Google Scholar] [CrossRef]
- Galyamina, A.G.; Kovalenko, I.L.; Smagin, D.A.; Kudryavtseva, N.N. Altered Expression of Neurotransmitters Systems’ Genes in the Ventral Tegmental Area of Depressive Male Mice: Data of RNA-Seq. Zhurnal Vysshey Nervnoy Deyatel’nosti IP Pavlova 2017, 67, 113–128. [Google Scholar]
- Smagin, D.A.; Kovalenko, I.L.; Galyamina, A.G.; Orlov, Y.L.; Babenko, V.N.; Kudryavtseva, N.N. Heterogeneity of Brain Ribosomal Genes Expression Following Positive Fighting Experience in Male Mice as Revealed by RNA-Seq. Mol. Neurobiol. 2018, 55, 390–401. [Google Scholar] [CrossRef]
- Babenko, V.N.; Smagin, D.A.; Kudryavtseva, N.N. RNA-Seq Mouse Brain Regions Expression Data Analysis: Focus on ApoE Functional Network. J. Integr. Bioinform. 2017, 14. [Google Scholar] [CrossRef]
- Babenko, V.N.; Smagin, D.A.; Galyamina, A.G.; Kovalenko, I.L.; Kudryavtseva, N.N. Altered Slc25 family gene expression as markers of mitochondrial dysfunction in brain regions under experimental mixed anxiety/depression-like disorder. BMC Neurosci. 2018, 19, 79. [Google Scholar] [CrossRef]
- Smagin, D.A.; Galyamina, A.G.; Kovalenko, I.L.; Babenko, V.N.; Kudryavtseva, N.N. Aberrant Expression of Collagen Gene Family in the Brain Regions of Male Mice with Behavioral Psychopathologies Induced by Chronic Agonistic Interactions. BioMed Res. Int. 2019, 2019, 7276389. [Google Scholar] [CrossRef] [Green Version]
- Morales, M.; Margolis, E.B. Ventral tegmental area: Cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 2017, 18, 73–85. [Google Scholar] [CrossRef]
- Han, X.; Jing, M.Y.; Zhao, T.Y.; Wu, N.; Song, R.; Li, J. Role of dopamine projections from ventral tegmental area to nucleus accumbens and medial prefrontal cortex in reinforcement behaviors assessed using optogenetic manipulation. Metab. Brain Dis. 2017, 32, 1491–1502. [Google Scholar] [CrossRef]
- Holly, E.N.; Miczek, K.A. Ventral tegmental area dopamine revisited: Effects of acute and repeated stress. Psychopharmacology (Berl.) 2016, 233, 163–186. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J.; Root, D.H.; Zhang, S.; Morales, M. Multiplexed neurochemical signaling by neurons of the ventral tegmental area. J. Chem. Neuroanat. 2016, 73, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Glick, A.R. The role of serotonin in impulsive aggression, suicide, and homicide in adolescents and adults: A literature review. Int. J. Adolesc. Med. Health 2015, 27, 143–150. [Google Scholar] [CrossRef]
- Dell’Osso, L.; Carmassi, C.; Mucci, F.; Marazziti, D. Depression, Serotonin and Tryptophan. Curr. Pharm. Des. 2016, 22, 949–954. [Google Scholar] [CrossRef]
- Kraus, C.; Castren, E.; Kasper, S.; Lanzenberger, R. Serotonin and neuroplasticity-Links between molecular, functional and structural pathophysiology in depression. Neurosci. Biobehav. Rev. 2017, 77, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtseva, N.N. Serotonergic Control of Aggressive Behavior: Novel Approaches--New Interpretations (Review). Zhurnal Vysshey Nervnoy Deyatel’nosti IP Pavlova 2015, 65, 546–563. [Google Scholar]
- Coccaro, E.F.; Fanning, J.R.; Phan, K.L.; Lee, R. Serotonin and impulsive aggression. CNS Spectr. 2015, 20, 295–302. [Google Scholar] [CrossRef]
- Bondar, N.P.; Boyarskikh, U.A.; Kovalenko, I.L.; Filipenko, M.L.; Kudryavtseva, N.N. Molecular implications of repeated aggression: Th, Dat1, Snca and Bdnf gene expression in the VTA of victorious male mice. PLoS ONE 2009, 4, e4190. [Google Scholar] [CrossRef]
- Avgustinovich, D.F.; Gorbach, O.V.; Kudryavtseva, N.N. Comparative analysis of anxiety-like behavior in partition and plus-maze tests after agonistic interactions in mice. Physiol. Behav. 1997, 61, 37–43. [Google Scholar] [CrossRef]
- Kudryavtseva, N.N.; Bondar, N.P.; Avgustinovich, D.F. Association between experience of aggression and anxiety in male mice. Behav. Brain Res. 2002, 133, 83–93. [Google Scholar] [CrossRef]
- Smagin, D.A.; Park, J.H.; Michurina, T.V.; Peunova, N.; Glass, Z.; Sayed, K.; Bondar, N.P.; Kovalenko, I.N.; Kudryavtseva, N.N.; Enikolopov, G. Altered Hippocampal Neurogenesis and Amygdalar Neuronal Activity in Adult Mice with Repeated Experience of Aggression. Front. Neurosci. 2015, 9, 443. [Google Scholar] [CrossRef]
- Petersen, A.; Gerges, N.Z. Neurogranin regulates CaM dynamics at dendritic spines. Sci. Rep. 2015, 5, 11135. [Google Scholar] [CrossRef] [Green Version]
- Gerendasy, D.D.; Sutcliffe, J.G. RC3/neurogranin, a postsynaptic calpacitin for setting the response threshold to calcium influxes. Mol. Neurobiol. 1997, 15, 131–163. [Google Scholar] [CrossRef]
- Li, H.Y.; Li, J.F.; Lu, G.W. Neurogranin: A brain-specific protein. Sheng Li Ke Xue Jin Zhan 2003, 34, 111–115. [Google Scholar]
- Pak, J.H.; Huang, F.L.; Li, J.; Balschun, D.; Reymann, K.G.; Chiang, C.; Westphal, H.; Huang, K.P. Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: A study with knockout mice. Proc. Natl. Acad. Sci. USA 2000, 97, 11232–11237. [Google Scholar] [CrossRef] [Green Version]
- Diez-Guerra, F.J. Neurogranin, a link between calcium/calmodulin and protein kinase C signaling in synaptic plasticity. IUBMB Life 2010, 62, 597–606. [Google Scholar] [CrossRef]
- Huang, F.L.; Huang, K.P. Methylphenidate improves the behavioral and cognitive deficits of neurogranin knockout mice. Genes Brain Behav. 2012, 11, 794–805. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.P.; Huang, F.L.; Jager, T.; Li, J.; Reymann, K.G.; Balschun, D. Neurogranin/RC3 enhances long-term potentiation and learning by promoting calcium-mediated signaling. J. Neurosci. 2004, 24, 10660–10669. [Google Scholar] [CrossRef] [Green Version]
- Kaleka, K.S.; Gerges, N.Z. Neurogranin restores amyloid beta-mediated synaptic transmission and long-term potentiation deficits. Exp. Neurol. 2016, 277, 115–123. [Google Scholar] [CrossRef]
- Braun, A.P.; Schulman, H. The multifunctional calcium/calmodulin-dependent protein kinase: From form to function. Annu. Rev. Physiol. 1995, 57, 417–445. [Google Scholar] [CrossRef]
- Hudmon, A.; Schulman, H. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem. J. 2002, 364, 593–611. [Google Scholar] [CrossRef]
- Yamauchi, T. Neuronal Ca2+/calmodulin-dependent protein kinase II--discovery, progress in a quarter of a century, and perspective: Implication for learning and memory. Biol. Pharm. Bull. 2005, 28, 1342–1354. [Google Scholar] [CrossRef] [Green Version]
- Robison, A.J. Emerging role of CaMKII in neuropsychiatric disease. Trends Neurosci. 2014, 37, 653–662. [Google Scholar] [CrossRef]
- Zalcman, G.; Federman, N.; Romano, A. CaMKII Isoforms in Learning and Memory: Localization and Function. Front. Mol. Neurosci. 2018, 11, 445. [Google Scholar] [CrossRef]
- Glaser, T.; Arnaud Sampaio, V.F.; Lameu, C.; Ulrich, H. Calcium signalling: A common target in neurological disorders and neurogenesis. Semin. Cell Dev. Biol. 2019, 95, 25–33. [Google Scholar] [CrossRef]
- Lerner, L.K.; Moreno, N.C.; Rocha, C.R.R.; Munford, V.; Santos, V.; Soltys, D.T.; Garcia, C.C.M.; Sarasin, A.; Menck, C.F.M. XPD/ERCC2 mutations interfere in cellular responses to oxidative stress. Mutagenesis 2019, 34, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Rhinn, M.; Dierich, A.; Shawlot, W.; Behringer, R.R.; Le Meur, M.; Ang, S.L. Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. Development 1998, 125, 845–856. [Google Scholar] [PubMed]
- Acampora, D.; Avantaggiato, V.; Tuorto, F.; Briata, P.; Corte, G.; Simeone, A. Visceral endoderm-restricted translation of Otx1 mediates recovery of Otx2 requirements for specification of anterior neural plate and normal gastrulation. Development 1998, 125, 5091–5104. [Google Scholar]
- Pena, C.J.; Kronman, H.G.; Walker, D.M.; Cates, H.M.; Bagot, R.C.; Purushothaman, I.; Issler, O.; Loh, Y.E.; Leong, T.; Kiraly, D.D.; et al. Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science 2017, 356, 1185–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufman, J.; Wymbs, N.F.; Montalvo-Ortiz, J.L.; Orr, C.; Albaugh, M.D.; Althoff, R.; O’Loughlin, K.; Holbrook, H.; Garavan, H.; Kearney, C.; et al. Methylation in OTX2 and related genes, maltreatment, and depression in children. Neuropsychopharmacology 2018, 43, 2204–2211. [Google Scholar] [CrossRef] [Green Version]
- Di Salvio, M.; Di Giovannantonio, L.G.; Acampora, D.; Prosperi, R.; Omodei, D.; Prakash, N.; Wurst, W.; Simeone, A. Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nat. Neurosci. 2010, 13, 1481–1488. [Google Scholar] [CrossRef] [Green Version]
- Blaudin de Thé, F.-X.; Rekaik, H.; Prochiantz, A.; Fuchs, J.; Joshi, R.L. Neuroprotective Transcription Factors in Animal Models of Parkinson Disease. Neural Plast. 2016, 2016, 6097107. [Google Scholar] [CrossRef] [Green Version]
- Appolloni, I.; Calzolari, F.; Corte, G.; Perris, R.; Malatesta, P. Six3 controls the neural progenitor status in the murine CNS. Cereb. Cortex 2008, 18, 553–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Liang, Q.; Song, X.; Zhang, Z.; Lindtner, S.; Li, Z.; Wen, Y.; Liu, G.; Guo, T.; Qi, D.; et al. SP8 and SP9 coordinately promote D2-type medium spiny neuron production by activating Six3 expression. Development 2018, 145. [Google Scholar] [CrossRef] [Green Version]
- Kaufling, J. Alterations and adaptation of ventral tegmental area dopaminergic neurons in animal models of depression. Cell Tissue Res. 2019, 377, 59–71. [Google Scholar] [CrossRef]
- Tadano, T.; Abe, Y.; Morikawa, Y.; Asao, T.; Hozumi, M.; Takahashi, N.; Tan-no, K.; Kisara, K. Involvement of dopaminergic neurons in mouse-killing aggression in rats. Methods Find. Exp. Clin. Pharmacol. 1997, 19, 527–531. [Google Scholar] [PubMed]
- Solecki, W.; Wilczkowski, M.; Pradel, K.; Karwowska, K.; Kielbinski, M.; Drwiega, G.; Zajda, K.; Blasiak, T.; Soltys, Z.; Rajfur, Z.; et al. Effects of brief inhibition of the ventral tegmental area dopamine neurons on the cocaine seeking during abstinence. Addict. Biol. 2019, e12826. [Google Scholar] [CrossRef] [PubMed]
- Simmons, S.C.; Wheeler, K.; Mazei-Robison, M.S. Determination of circuit-specific morphological adaptations in ventral tegmental area dopamine neurons by chronic morphine. Mol. Brain 2019, 12, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Luo, T.; Dong, D.; Wu, X.; Wang, Y. Characterization of long non-coding RNAs to reveal potential prognostic biomarkers in hepatocellular carcinoma. Gene 2018, 663, 148–156. [Google Scholar] [CrossRef]
- Ma, L.; Deng, C. Identification of a novel four-lncRNA signature as a prognostic indicator in cirrhotic hepatocellular carcinoma. PeerJ 2019, 7, e7413. [Google Scholar] [CrossRef] [Green Version]
- Grant, G.R.; Manduchi, E.; Stoeckert, C.J., Jr. Analysis and Management of Microarray Gene Expression Data. Curr. Protoc. Mol. Biol. 2007, 77. [Google Scholar] [CrossRef]
- Caetano-Anolles, K.; Rhodes, J.S.; Garland, T., Jr.; Perez, S.D.; Hernandez, A.G.; Southey, B.R.; Rodriguez-Zas, S.L. Cerebellum Transcriptome of Mice Bred for High Voluntary Activity Offers Insights into Locomotor Control and Reward-Dependent Behaviors. PLoS ONE 2016, 11, e0167095. [Google Scholar] [CrossRef] [Green Version]
- Garzon, M.; Duffy, A.M.; Chan, J.; Lynch, M.K.; Mackie, K.; Pickel, V.M. Dopamine D(2) and acetylcholine alpha7 nicotinic receptors have subcellular distributions favoring mediation of convergent signaling in the mouse ventral tegmental area. Neuroscience 2013, 252, 126–143. [Google Scholar] [CrossRef] [Green Version]
- Arenas, E.; Denham, M.; Villaescusa, J.C. How to make a midbrain dopaminergic neuron. Development 2015, 142, 1918–1936. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtseva, N.N. The psychopathology of repeated aggression: A neurobiological aspect. In Perspectives on the Psychology of Aggression; Morgan, J.P., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2006; pp. 35–64. [Google Scholar]
- Kudryavtseva, N.N.; Bakshtanovskaya, I.V.; Koryakina, L.A. Social model of depression in mice of C57BL/6J strain. Pharmacol. Biochem. Behav. 1991, 38, 315–320. [Google Scholar] [CrossRef]
- Allen Institute for Brain Science. Allen Mouse Brain Atlas 2004. Available online: http://mouse.brain-map.org/static/atlas (accessed on 9 September 2020).
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36. [Google Scholar] [CrossRef] [Green Version]
- Trapnell, C.; Hendrickson, D.G.; Sauvageau, M.; Goff, L.; Rinn, J.L.; Pachter, L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 2013, 31, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Kanehisa, M. Post-genome Informatics; Kyoto Encyclopedia of Genes and Genomes; Oxford University Press: Oxford, UK, 2000; 148p, Available online: http://www.genome.jp/kegg (accessed on 26 March 2020).
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Neurological Disease Portal, Rat Genome Database Web Site, Medical College of Wisconsin, Milwaukee, Wisconsin, USA. Available online: http://rgd.mcw.edu/ (accessed on 18 October 2019).
- Ravasi, T.; Suzuki, H.; Cannistraci, C.V.; Katayama, S.; Bajic, V.B.; Tan, K.; Akalin, A.; Schmeier, S.; Kanamori-Katayama, M.; Bertin, N.; et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 2010, 140, 744–752. [Google Scholar] [CrossRef] [Green Version]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Polunin, D.; Shtaiger, I.; Efimov, V. JACOBI4 software for multivariate analysis of biological data. bioRxiv 2019, 803684. [Google Scholar] [CrossRef] [Green Version]
Gene Symbol | Locus | Expression in VTA (FPKM) | Log2 (Fold Change) Winners/Controls | q_Value | Definition | |
---|---|---|---|---|---|---|
Control Mice | Winners | |||||
Winners vs. Control Mice | ||||||
Dnaja1 | chr4:40720153-40757885 | 41.90 | 104.77 | 1.32 | 2.05 × 10−2 | DnaJ heat shock protein family (Hsp40) member A1 |
Ercc2# | chr7:19382024-19404104 | 53.42 | 8.72 | −2.62 | 2.05 × 10−2 | excision repair cross-complementing rodent repair deficiency, complementation group 2 |
Lbx1 | chr19:45232619-45235377 | 7.18 | 3.19 | −1.17 | 2.05 × 10−2 | ladybird homeobox homolog 1 (Drosophila) |
Maf | chr8:115682935-115707940 | 9.66 | 5.98 | −0.69 | 3.58 × 10−2 | avian musculoaponeurotic fibrosarcoma oncogene homolog |
Myh6 | chr14:54936101-54966607 | 1.47 | 59.90 | 5.35 | 2.05 × 10−2 | myosin, heavy polypeptide 6, cardiac muscle, alpha |
Ngfr | chr11:95568820-95587698 | 3.55 | 2.01 | −0.82 | 2.05 × 10−2 | nerve growth factor receptor (TNFR superfamily, member 16) |
Nkx6-1 | chr5:101658055-101665361 | 5.01 | 2.79 | −0.85 | 3.58 × 10−2 | NK6 homeobox 1 |
Nptx2 | chr5:144545886-144557478 | 3.28 | 1.59 | −1.04 | 2.05 × 10−2 | neuronal pentraxin 2 |
Nrgn | chr9:37544492-37552745 | 22.35 | 14.15 | −0.66 | 3.58 × 10−2 | neurogranin |
Slc17a7#,§,© | chr7:45163920-45176328 | 10.74 | 20.59 | 0.94 | 2.05 × 10−2 | solute carrier family 17 (sodium-dependent inorganic phosphate cotransporter), member 7 |
Slc6a4#,§,© | chr11:76998596-77032343 | 5.03 | 9.99 | 0.99 | 2.05 × 10−2 | solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 |
Sox18 | chr2:181669836-181671640 | 9.60 | 5.15 | −0.90 | 2.05 × 10−2 | SRY (sex determining region Y)-box 18 |
Tcf7l2 | chr19:55741714-55933693 | 6.56 | 3.44 | −0.93 | 2.05 × 10−2 | transcription factor 7 like 2, T cell specific, HMG box |
Tph2#,∆,¶,§,© | chr10:115078553-115185022 | 7.52 | 13.79 | 0.87 | 4.87 × 10−2 | tryptophan hydroxylase 2 |
Losers vs. Control Mice | ||||||
Gene Symbol | Locus | Control Mice | Losers | Log2 (Fold Change) Losers/Controls | q_Value | Definition |
Akap12 | chr10:4266328-4359605 | 30.74 | 19.84 | −0.63 | 0.0159 | A kinase (PRKA) anchor protein (gravin) 12 |
Anxa4 | chr6:86736652-86793645 | 5.40 | 2.37 | −1.19 | 0.0063 | annexin A4 |
Bag3 | chr7:128523582-128546979 | 21.99 | 9.86 | −1.16 | 0.0063 | BCL2-associated athanogene 3 |
Cacna1e#,§ | chr1:154390344-154884412 | 7.26 | 11.61 | 0.68 | 0.0275 | calcium channel, voltage-dependent, R type, alpha 1E subunit |
Calca | chr7:114631477-114636357 | 23.97 | 5.14 | −2.22 | 0.0063 | calcitonin/calcitonin-related polypeptide, alpha |
Camk2a#,∆,¶,§,© | chr18:60925325-60988993 | 21.04 | 32.70 | 0.64 | 0.0275 | calcium/calmodulin-dependent protein kinase II alpha |
Cdkn1a | chr17:29090985-29100722 | 5.82 | 3.43 | −0.76 | 0.0275 | cyclin-dependent kinase inhibitor 1A (P21) |
Cdkn1c | chr7:143458338-143461074 | 5.59 | 3.08 | −0.86 | 0.0063 | cyclin-dependent kinase inhibitor 1C (P57) |
Col25a1 | chr3:130180797-130599886 | 3.25 | 5.24 | 0.69 | 0.0205 | collagen, type XXV, alpha 1 |
Colq | chr14:31523083-31577383 | 2.14 | 0.78 | −1.45 | 0.0063 | collagen-like tail subunit (single strand of homotrimer) of asymmetric acetylcholinesterase |
Dao#,§ | chr5:114003734-114025676 | 5.17 | 2.55 | −1.02 | 0.0063 | D-amino acid oxidase |
Ddc#,§ | chr11:11814099-11898144 | 14.29 | 35.12 | 1.30 | 0.0063 | dopa decarboxylase |
Dnaja1 | chr4:40720153-40757885 | 41.15 | 155.22 | 1.92 | 0.0063 | DnaJ heat shock protein family (Hsp40) member A1 |
E2f1 | chr2:154559399-154569892 | 4.75 | 2.38 | −0.99 | 0.0063 | E2F transcription factor 1 |
Egr1#,∆ | chr18:34861206-34864956 | 9.62 | 15.75 | 0.71 | 0.0115 | early growth response 1 |
En1#,§ | chr1:120602486-120607991 | 5.32 | 10.27 | 0.95 | 0.0063 | engrailed 1 |
En2#,∆ | chr5:28165695-28172166 | 3.09 | 5.95 | 0.94 | 0.0063 | engrailed 2 |
Fev#,∆,¶,§ | chr1:74881508-74885408 | 1.25 | 3.95 | 1.66 | 0.0063 | FEV (ETS oncogene family) |
Foxp2# | chr6:14901169-15442450 | 1.59 | 3.15 | 0.98 | 0.0063 | forkhead box P2 |
Gabra1#,§ | chr11:42130920-42183066 | 45.26 | 77.94 | 0.78 | 0.0063 | gamma-aminobutyric acid (GABA) A receptor, subunit alpha 1 |
Gabrb2 | chr11:42419746-42632694 | 19.55 | 29.08 | 0.57 | 0.0446 | gamma-aminobutyric acid (GABA) A receptor, subunit beta 2 |
Gabrg2#,§ | chr11:41909958-42000874 | 25.14 | 38.21 | 0.60 | 0.0159 | gamma-aminobutyric acid (GABA) A receptor, subunit gamma 2 |
Gad1 | chr2:70489939-70602029 | 48.93 | 79.73 | 0.70 | 0.0063 | glutamate decarboxylase 1 |
Gad2#,∆,§,© | chr2:22622057-22694078 | 34.04 | 54.29 | 0.67 | 0.0243 | glutamic acid decarboxylase 2 |
Gjc2 | chr11:59175476-59183213 | 41.32 | 24.81 | −0.74 | 0.0115 | gap junction protein, gamma 2 |
Inhbb | chr1:119415464-119422248 | 3.44 | 2.15 | −0.68 | 0.0374 | inhibin beta-B |
Irs4 | chrX:141710996-141725254 | 1.76 | 3.33 | 0.92 | 0.0063 | insulin receptor substrate 4 |
Isl1 | chr13:116298269-116309693 | 1.61 | 0.49 | −1.72 | 0.0063 | ISL1 transcription factor, LIM/homeodomain |
Lbx1 | chr19:45232619-45235377 | 7.04 | 0.71 | −3.32 | 0.0063 | ladybird homeobox homolog 1 (Drosophila) |
Maf | chr8:115682935-115707940 | 9.48 | 5.55 | −0.77 | 0.0063 | avian musculoaponeurotic fibrosarcoma oncogene homolog |
Mafb | chr2:160363676-160367065 | 4.47 | 2.51 | −0.84 | 0.0063 | v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (avian) |
Mecom | chr3:29951264-30013204 | 1.23 | 0.60 | −1.04 | 0.0063 | MDS1 and EVI1 complex locus |
Mmp9 | chr2:164948218-164955849 | 2.26 | 0.89 | −1.34 | 0.0063 | matrix metallopeptidase 9 |
Myh6 | chr14:54936101-54966607 | 1.44 | 20.92 | 3.86 | 0.0243 | myosin, heavy polypeptide 6, cardiac muscle, alpha |
Nefh | chr11:4938562-5042794 | 287.73 | 119.70 | −1.27 | 0.0063 | neurofilament, heavy polypeptide |
Nefl | chr14:68082365-68092351 | 914.72 | 422.75 | −1.11 | 0.0063 | neurofilament, light polypeptide |
Nefm | chr14:68119465-68131373 | 690.57 | 269.10 | −1.36 | 0.0063 | neurofilament, medium polypeptide |
Neurod2 | chr11:98325416-98329645 | 2.92 | 1.59 | −0.88 | 0.0243 | neurogenic differentiation 2 |
Ngb | chr12:87097530-87102539 | 9.25 | 20.21 | 1.13 | 0.0063 | neuroglobin |
Ngfr | chr11:95568820-95587698 | 3.48 | 1.91 | −0.86 | 0.0159 | nerve growth factor receptor (TNFR superfamily, member 16) |
Nkx6-1 | chr5:101658055-101665361 | 4.91 | 1.66 | −1.56 | 0.0063 | NK6 homeobox 1 |
Nrgn | chr9:37544492-37552745 | 21.95 | 42.78 | 0.96 | 0.0063 | neurogranin |
Ntng2 | chr2:29193828-29253707 | 25.61 | 14.93 | −0.78 | 0.0275 | netrin G2 |
Otx2 | chr14:48657676-48667644 | 0.73 | 2.03 | 1.49 | 0.0115 | orthodenticle homeobox 2 |
Pax7 | chr4:139737093-139832968 | 0.45 | 1.64 | 1.85 | 0.0063 | paired box 7 |
Phox2b | chr5:67094327-67099126 | 7.03 | 1.56 | −2.17 | 0.0063 | paired-like homeobox 2b |
Prss12#,§ | chr3:123446912-123506602 | 4.23 | 1.89 | −1.16 | 0.0063 | protease, serine 12 neurotrypsin (motopsin) |
Pvalb#,§ | chr15:78191044-78206351 | 119.09 | 70.07 | −0.77 | 0.0063 | parvalbumin |
Scn3a | chr2:65456990-65567519 | 3.86 | 6.64 | 0.78 | 0.0346 | sodium channel, voltage-gated, type III, alpha |
Slc17a8 | chr10:89574019-89621249 | 0.90 | 2.12 | 1.24 | 0.0063 | solute carrier family 17 (sodium-dependent inorganic phosphate cotransporter), member 8 |
Slc18a3 | chr14:32407354-32466004 | 33.83 | 13.30 | −1.35 | 0.0063 | solute carrier family 18 (vesicular monoamine), member 3 |
Slc6a2#,§,© | chr8:92960641-93001667 | 7.52 | 4.87 | −0.63 | 0.0346 | solute carrier family 6 (neurotransmitter transporter, noradrenalin), member 2 |
Slc6a3#,§,© | chr13:73536746-73578672 | 1.03 | 9.51 | 3.21 | 0.0063 | solute carrier family 6 (neurotransmitter transporter, dopamine), member 3 |
Slc6a4#,§,© | chr11:76998596-77032343 | 4.94 | 22.71 | 2.20 | 0.0063 | solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 |
Slc6a5 | chr7:49909938-49963861 | 45.06 | 13.79 | −1.71 | 0.0063 | solute carrier family 6 (neurotransmitter transporter, glycine), member 5 |
Spp1 | chr5:104435110-104441053 | 54.80 | 23.57 | −1.22 | 0.0063 | secreted phosphoprotein 1 |
Syt1 | chr10:108497647-109010983 | 51.32 | 86.93 | 0.76 | 0.0063 | synaptotagmin I |
Tgfb3 | chr12:86056580-86079159 | 6.99 | 4.46 | −0.65 | 0.0374 | transforming growth factor, beta 3 |
Th#,§ | chr7:142892670-142901960 | 10.93 | 21.96 | 1.01 | 0.0063 | tyrosine hydroxylase |
Tph2#,∆,¶,§,© | chr10:115078553-115185022 | 7.40 | 26.97 | 1.87 | 0.0063 | tryptophan hydroxylase 2 |
Vdr# | chr15:97854426-97908296 | 0.76 | 0.29 | −1.41 | 0.0115 | vitamin D receptor |
Vgf | chr5:137025191-137033857 | 119.24 | 78.61 | −0.60 | 0.0473 | VGF nerve growth factor inducible |
Vipr2 | chr12:116077725-116146261 | 1.83 | 0.39 | −2.24 | 0.0063 | vasoactive intestinal peptide receptor 2 |
Whrn | chr4:63414854-63496130 | 21.72 | 13.85 | −0.65 | 0.0275 | whirlin |
Gene Symbol | Locus | Expression in VTA (FPKM) | log2 (Fold Change) Winners/Controls | q_Value | Definition | |
---|---|---|---|---|---|---|
Control Mice | Winners | |||||
Winners vs. Control Mice | ||||||
Ddx5 | chr11:106780156-106818861 | 121.77 | 381.38 | 1.65 | 2.05 × 10−2 | DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 |
Ercc2 * | chr7:19382024-19404104 | 53.42 | 8.72 | −2.62 | 2.05 × 10−2 | excision repair cross-complementing rodent repair deficiency, complementation group 2 |
Fubp3 | chr2:31572650-31617590 | 11.21 | 60.26 | 2.43 | 2.05 × 10−2 | far upstream element (FUSE) binding protein 3 |
Lbx1 * | chr19:45232619-45235377 | 7.18 | 3.19 | −1.17 | 2.05 × 10−2 | ladybird homeobox homolog 1 (Drosophila) |
Maf * | chr8:115682935-115707940 | 9.66 | 5.98 | −0.69 | 3.58 × 10−2 | avian musculoaponeurotic fibrosarcoma oncogene homolog |
Nkx6-1 * | chr5:101658055-101665361 | 5.01 | 2.79 | −0.85 | 3.58 × 10−2 | NK6 homeobox 1 |
Parp1 | chr1:180568937-180601389 | 12.93 | 102.04 | 2.98 | 2.05 × 10−2 | poly (ADP-ribose) polymerase family, member 1 |
Tcf24 | chr1:9960162-9967485 | 0.39 | 0.89 | 1.19 | 4.87 × 10−2 | transcription factor 24 |
Tcf7l2 * | chr19:55741714-55933693 | 6.56 | 3.44 | −0.93 | 2.05 × 10−2 | transcription factor 7 like 2, T cell specific, HMG box |
Losers vs. Control Mice | ||||||
Gene Symbol | Locus | Control Mice | Losers | log2 (Fold Change) Losers/Controls | q_Value | Definition |
Ctdspl | chr9:118921134-119044353 | 5.14 | 26.56 | 2.37 | 0.0063 | CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like |
E2f1 * | chr2:154559399-154569892 | 4.75 | 2.38 | −0.99 | 0.0063 | E2F transcription factor 1 |
Egr1 *,#,∆ | chr18:34861206-34864956 | 9.62 | 15.75 | 0.71 | 0.0115 | early growth response 1 |
En1 *,#,§ | chr1:120602486-120607991 | 5.32 | 10.27 | 0.95 | 0.0063 | engrailed 1 |
En2 *,#,∆ | chr5:28165695-28172166 | 3.09 | 5.95 | 0.94 | 0.0063 | engrailed 2 |
Fev *,#,∆,¶,§ | chr1:74881508-74885408 | 1.25 | 3.95 | 1.66 | 0.0063 | FEV (ETS oncogene family) |
Foxp2 *,# | chr6:14901169-15442450 | 1.59 | 3.15 | 0.98 | 0.0063 | forkhead box P2 |
Hoxb2 | chr11:96323125-96354174 | 3.72 | 0.64 | −2.54 | 0.0063 | homeobox B2 |
Hoxb3 | chr11:96323125-96354174 | 2.98 | 0.31 | −3.26 | 0.0063 | homeobox B3 |
Hoxd3 | chr2:74710043-74765142 | 1.82 | 0.08 | −4.53 | 0.0115 | homeobox D3 |
Isl1 * | chr13:116298269-116309693 | 1.61 | 0.49 | −1.72 | 0.0063 | ISL1 transcription factor, LIM/homeodomain |
Lbx1 * | chr19:45232619-45235377 | 7.04 | 0.71 | −3.32 | 0.0063 | ladybird homeobox homolog 1 (Drosophila) |
Maf * | chr8:115682935-115707940 | 9.48 | 5.55 | −0.77 | 0.0063 | avian musculoaponeurotic fibrosarcoma oncogene homolog |
Mafb * | chr2:160363676-160367065 | 4.47 | 2.51 | −0.84 | 0.0063 | v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (avian) |
Neurod2 * | chr11:98325416-98329645 | 2.92 | 1.59 | −0.88 | 0.0243 | neurogenic differentiation 2 |
Nkx6-1 * | chr5:101658055-101665361 | 4.91 | 1.66 | −1.56 | 0.0063 | NK6 homeobox 1 |
Otx1 | chr11:21994763-22001651 | 0.62 | 2.50 | 2.01 | 0.0063 | orthodenticle homeobox 1 |
Otx2 * | chr14:48657676-48667644 | 0.73 | 2.03 | 1.49 | 0.01154 | orthodenticle homeobox 2 |
Pax2 | chr19:44746709-44838266 | 8.34 | 3.02 | −1.47 | 0.0063 | paired box 2 |
Pax7 * | chr4:139737093-139832968 | 0.45 | 1.64 | 1.85 | 0.0063 | paired box 7 |
Phox2b * | chr5:67094327-67099126 | 7.03 | 1.56 | −2.17 | 0.0063 | paired-like homeobox 2b |
Rorc | chr3:94372793-94398274 | 2.97 | 1.40 | −1.08 | 0.0063 | RAR-related orphan receptor gamma |
Scrt2 | chr2:152081528-152095802 | 13.30 | 7.04 | −0.92 | 0.0063 | scratch family zinc finger 2 |
Sox14 | chr9:99874105-99876170 | 0.74 | 2.21 | 1.57 | 0.0063 | SRY (sex determining region Y)-box 14 |
Tal1 | chr4:115056425-115071758 | 2.45 | 4.25 | 0.80 | 0.0205 | T cell acute lymphocytic leukemia 1 |
Tbx20 | chr9:24720811-24774303 | 0.86 | 0.25 | −1.77 | 0.0063 | T-box 20 |
Vdr *,# | chr15:97854426-97908296 | 0.76 | 0.29 | −1.41 | 0.0115 | vitamin D receptor |
Zkscan16 | chr4:58943559-58962705 | 7.72 | 12.67 | 0.71 | 0.0063 | zinc finger with KRAB and SCAN domains 16 |
Term | Count | p Value | Genes |
---|---|---|---|
Nicotine addiction | 5 | 4.25 × 10−4 | Slc17a8, Gabrg2, Gabra1, Gabrb2, Chrna6 |
Axon guidance | 6 | 5.86 × 10−3 | Plxnc1, Nrp1, Sema7a, Sema3f, Ntng2, Slit1 |
GABAergic synapse | 5 | 7.55 × 10−3 | Gabrg2, Gad2, Gabra1, Gabrb2, Gad1 |
Amyotrophic lateral sclerosis (ALS) | 4 | 1.06 × 10−2 | Prph, Nefh, Nefl, Nefm |
Amphetamine addiction | 4 | 2.20 × 10−2 | Ddc, Slc6a3, Th, Camk2a |
Chronic myeloid leukemia | 4 | 2.65 × 10−2 | E2f1, Cdkn1a, Tgfb3, Mecom |
Bladder cancer | 3 | 5.20 × 10−2 | E2f1, Cdkn1a, Mmp9 |
Transcriptional misregulation in cancer | 5 | 6.03 × 10−2 | Maf, Cdkn1a, Mmp9, Ngfr, Fev |
Retrograde endocannabinoid signaling | 4 | 6.48 × 10−2 | Slc17a8, Gabrg2, Gabra1, Gabrb2 |
Cocaine addiction | 3 | 7.12 × 10−2 | Ddc, Slc6a3, Th |
Taurine and hypotaurine metabolism | 2 | 9.44 × 10−2 | Gad2, Gad1 |
Gene Symbol | Log2 (Fold_Change) Winners/Controls | q_Value | Log2 (Fold_Change) Losers/Controls | q_Value | Definition |
---|---|---|---|---|---|
Apba3 | 1.14 | 2.05 × 10−2 | 1.38 | 6.29 × 10−3 | amyloid beta (A4) precursor protein-binding, family A, member 3 |
Brd3 | −1.91 | 2.05 × 10−2 | −1.69 | 6.29 × 10−3 | bromodomain containing 3 |
Cdk12 | −5.45 | 2.05 × 10−2 | −5.43 | 6.29 × 10−3 | cyclin-dependent kinase 12 |
Dnaja1 | 1.32 | 2.05 × 10−2 | 1.92 | 6.29 × 10−3 | DnaJ heat shock protein family (Hsp40) member A1 |
Egfl7 | −0.95 | 2.05 × 10−2 | −0.97 | 6.29 × 10−3 | EGF-like domain 7 |
Gcn1l1 | −4.17 | 2.05 × 10−2 | −3.96 | 6.29 × 10−3 | GCN1 general control of amino-acid synthesis 1-like 1 (yeast) |
Gfap | −0.90 | 2.05 × 10−2 | −1.43 | 6.29 × 10−3 | glial fibrillary acidic protein |
Gm13889 | −0.73 | 3.58 × 10−2 | −0.82 | 6.29 × 10−3 | predicted gene 13889 |
Lbx1* | −1.17 | 2.05 × 10−2 | −3.32 | 6.29 × 10−3 | ladybird homeobox homolog 1 (Drosophila) |
Maf * | −0.69 | 3.58 × 10−2 | −0.77 | 6.29 × 10−3 | avian musculoaponeurotic fibrosarcoma oncogene homolog |
Myh14 | −0.64 | 4.87 × 10−2 | −0.79 | 6.29 × 10−3 | myosin, heavy polypeptide 14 |
Myh6 | 5.35 | 2.05 × 10−2 | 3.86 | 2.43 × 10−2 | myosin, heavy polypeptide 6, cardiac muscle, alpha |
Myoc | −1.89 | 2.05 × 10−2 | −2.08 | 6.29 × 10−3 | myocilin |
Ngfr | −0.82 | 2.05 × 10−2 | −0.86 | 1.59 × 10−2 | nerve growth factor receptor (TNFR superfamily, member 16) |
Nkx6-1 * | −0.85 | 3.58 × 10−2 | −1.56 | 6.29 × 10−3 | NK6 homeobox 1 |
Nrgn | −0.66 | 3.58 × 10−2 | 0.96 | 6.29 × 10−3 | neurogranin |
Prph | −0.84 | 2.05 × 10−2 | −2.22 | 6.29 × 10−3 | peripherin |
Rln3 | −1.70 | 2.05 × 10−2 | −3.54 | 6.29 × 10−3 | relaxin 3 |
Slc6a4 | 0.99 | 2.05 × 10−2 | 2.20 | 6.29 × 10−3 | solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 |
Smo | −0.85 | 2.05 × 10−2 | −0.82 | 3.74 × 10−2 | smoothened, frizzled class receptor |
Taf1d | 4.61 | 2.05 × 10−2 | 4.58 | 6.29 × 10−3 | TATA-box binding protein associated factor, RNA polymerase I, D |
Tph2 | 0.87 | 4.87 × 10−2 | 1.87 | 6.29 × 10−3 | tryptophan hydroxylase 2 |
Vezt | 1.73 | 4.87 × 10−2 | 2.10 | 6.29 × 10−3 | vezatin, adherens junctions transmembrane protein |
Gene Symbol | Mice | Log2 (Fold_Change) Losers/Winners | q_Value | Definition | |
---|---|---|---|---|---|
Winners FPKM | Losers FPKM | ||||
Amphetamine addiction, p Value = 3.30 × 10−3 | |||||
Camk2a | 22.69 | 33.70 | 0.57 | 6.12 × 10−3 | calcium/calmodulin-dependent protein kinase II alpha |
Ddc | 21.21 | 36.21 | 0.77 | 6.12 × 10−3 | dopa decarboxylase |
Fos | 3.97 | 6.68 | 0.75 | 6.12 × 10−3 | FBJ osteosarcoma oncogene |
Slc6a3 | 1.53 | 9.77 | 2.68 | 6.12 × 10−3 | solute carrier family 6 (neurotransmitter transporter, dopamine), member 3 |
Th | 12.78 | 22.60 | 0.82 | 6.12 × 10−3 | tyrosine hydroxylase |
Dopaminergic synapse, p Value = 7.74 × 10−3 | |||||
Caly | 79.62 | 118.76 | 0.58 | 6.12 × 10−3 | calcyon neuron-specific vesicular protein |
Camk2a | 22.69 | 33.70 | 0.57 | 6.12 × 10−3 | calcium/calmodulin-dependent protein kinase II alpha |
Ddc | 21.21 | 36.21 | 0.77 | 6.12 × 10−3 | dopa decarboxylase |
Fos | 3.97 | 6.68 | 0.75 | 6.12 × 10−3 | FBJ osteosarcoma oncogene |
Slc6a3 | 1.53 | 9.77 | 2.68 | 6.12 × 10−3 | solute carrier family 6 (neurotransmitter transporter, dopamine), member 3 |
Th | 12.78 | 22.60 | 0.82 | 6.12 × 10−3 | tyrosine hydroxylase |
Adrenergic signaling in cardiomyocytes, p Value = 9.81 × 10−3 | |||||
Cacna2d3 | 14.22 | 9.93 | −0.52 | 2.68 × 10−2 | calcium channel, voltage-dependent, alpha2/delta subunit 3 |
Cacnb3 | 14.49 | 21.10 | 0.54 | 6.12 × 10−3 | calcium channel, voltage-dependent, beta 3 subunit |
Camk2a | 22.69 | 33.70 | 0.57 | 6.12 × 10−3 | calcium/calmodulin-dependent protein kinase II alpha |
Scn4b | 73.35 | 50.16 | −0.55 | 1.54 × 10−2 | sodium channel, type IV, beta |
Scn5a | 0.43 | 0.84 | 0.99 | 6.12 × 10−3 | sodium channel, voltage-gated, type V, alpha |
Tnnt2 | 2.35 | 4.39 | 0.90 | 1.09 × 10−2 | troponin T2, cardiac |
Amyotrophic lateral sclerosis, p Value = 1.14 × 10−2 | |||||
Nefh | 253.37 | 123.42 | −1.04 | 6.12 × 10−3 | neurofilament, heavy polypeptide |
Nefl | 710.19 | 436.14 | −0.70 | 6.12 × 10−3 | neurofilament, light polypeptide |
Nefm | 557.04 | 277.66 | −1.00 | 6.12 × 10−3 | neurofilament, medium polypeptide |
Prph | 26.44 | 10.15 | −1.38 | 6.12 × 10−3 | peripherin |
Axon guidance, p Value = 3.10 × 10−2 | |||||
Nrp1 | 5.38 | 41.27 | 2.94 | 6.12 × 10−3 | neuropilin 1 |
Plxnc1 | 3.03 | 4.52 | 0.58 | 1.54 × 10−2 | plexin C1 |
Sema3f | 5.26 | 8.44 | 0.68 | 4.25 × 10−2 | sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3F |
Slit1 | 8.89 | 13.38 | 0.59 | 6.12 × 10−3 | slit homolog 1 (Drosophila) |
Unc5d | 2.72 | 3.78 | 0.48 | 4.25 × 10−2 | unc-5 netrin receptor D |
ECM-receptor interaction, p Value = 4.74 × 10−2 | |||||
Col27a1 | 3.92 | 2.29 | −0.78 | 6.12 × 10−3 | collagen, type XXVII, alpha 1 |
Spp1 | 59.64 | 24.33 | −1.29 | 6.12 × 10−3 | secreted phosphoprotein 1 |
Sv2b | 20.72 | 14.58 | −0.51 | 1.09 × 10−2 | synaptic vesicle glycoprotein 2 b |
Sv2c | 36.92 | 26.11 | −0.50 | 1.09 × 10−2 | synaptic vesicle glycoprotein 2c |
Tyrosine metabolism, p Value = 5.00 × 10−2 | |||||
Dbh | 21.59 | 11.27 | −0.94 | 6.12 × 10−3 | dopamine beta hydroxylase |
Ddc | 21.21 | 36.21 | 0.77 | 6.12 × 10−3 | dopa decarboxylase |
Th | 12.78 | 22.60 | 0.82 | 6.12 × 10−3 | tyrosine hydroxylase |
Cocaine addiction, p Value = 7.49 × 10−2 | |||||
Ddc | 21.21 | 36.21 | 0.77 | 6.12 × 10−3 | dopa decarboxylase |
Slc6a3 | 1.53 | 9.77 | 2.68 | 6.12 × 10−3 | solute carrier family 6 (neurotransmitter transporter, dopamine), member 3 |
Th | 12.78 | 22.60 | 0.82 | 6.12 × 10−3 | tyrosine hydroxylase |
MAPK signaling pathway, p Value = 8.15 × 10−2 | |||||
Cacna1h | 3.63 | 5.58 | 0.62 | 6.12 × 10−3 | calcium channel, voltage-dependent, T type, alpha 1H subunit |
Cacna2d3 | 14.22 | 9.93 | −0.52 | 2.68 × 10−2 | calcium channel, voltage-dependent, alpha2/delta subunit 3 |
Cacnb3 | 14.49 | 21.10 | 0.54 | 6.12 × 10−3 | calcium channel, voltage-dependent, beta 3 subunit |
Fos | 3.97 | 6.68 | 0.75 | 6.12 × 10−3 | FBJ osteosarcoma oncogene |
Hspb1 | 16.73 | 9.18 | −0.87 | 6.12 × 10−3 | heat shock protein 1 |
Mecom | 1.06 | 0.62 | −0.79 | 2.32 × 10−2 | MDS1 and EVI1 complex locus |
Gene Symbol | Losers/Control | Winners/Control | Losers/Winners | Definition | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Controls FPKM | Losers FPKM | Log2 (Fold_Change) Losers/Controls | q Value | Controls FPKM | Winners FPKM | Log2 (Fold_Change) Winners/Controls | q Value | Log2 (Fold_Change) Losers/winners | q Value | ||
Ercc2 *,#,∆ | 52.51 | 143.52 | 1.45 | 5.07 × 10−2 | 53.42 | 8.72 | −2.62 | 2.05 × 10−2 | 4.06 | 6.12 × 10−3 | excision repair cross-complementing rodent repair deficiency, complementation group 2 |
Loxl2 | 1.04 | 0.69 | −0.59 | 9.99 × 10−1 | 1.06 | 46.25 | 5.45 | 2.05 × 10−2 | −6.04 | 6.12 × 10−3 | lysyl oxidase-like 2 |
Nrgn# | 21.95 | 42.78 | 0.96 | 6.29 × 10−3 | 22.35 | 14.15 | −0.66 | 3.58 × 10−2 | 1.62 | 6.12 × 10−3 | neurogranin |
Otx2 *,# | 0.73 | 2.03 | 1.49 | 1.15 × 10−2 | 0.74 | 0.32 | −1.19 | 6.96 × 10−1 | 2.67 | 6.12 × 10−3 | orthodenticle homeobox 2 |
Six3 * | 1.93 | 6.56 | 1.77 | 7.09 × 10−1 | 1.96 | 0.68 | −1.52 | 9.99 × 10−1 | 3.28 | 6.12 × 10−3 | sine oculis-related homeobox 3 |
Tcf7l2 *,# | 6.44 | 9.72 | 0.59 | 1.07 × 10−1 | 6.56 | 3.44 | −0.93 | 2.05 × 10−2 | 1.52 | 6.12 × 10−3 | transcription factor 7 like 2, T cell specific, HMG box |
Term ID | Pathway | Count | p Value | Genes |
---|---|---|---|---|
mmu04916 | Melanogenesis | 8 | 8.60 × 10−3 | Wnt3, Adcy9, Adcy6, Mitf, Edn1, Crebbp, Camk2a *, Fzd7 |
mmu04020 | Calcium signaling pathway | 11 | 9.76 × 10−3 | Gnal, P2rx6, Slc8a2 *, Adcy9, Ryr1, Cacna1g, Ppp3cc, Plcd4, Camk2a*, Htr5a, Cacna1b |
mmu04713 | Circadian entrainment | 7 | 2.77 × 10−2 | Adcy9, Adcy6, Per2, Ryr1, Cacna1g, Per3, Camk2a * |
mmu04141 | Protein processing in endoplasmic reticulum | 9 | 4.39 × 10−2 | Hsph1, Eif2ak1, Dnajb11, Man1a, Ubqln2, Ubqln1, Eif2ak2, Hspa8, Bcap31 |
mmu04350 | TGF-beta signaling pathway | 6 | 4.95 × 10−2 | Acvr2b, Nog, Zfyve9, Crebbp, Chrd, Pitx2 * |
mmu04261 | Adrenergic signaling in cardiomyocytes | 8 | 5.00 × 10−2 | Adcy9, Adcy6, Scn4b *, Cacnb3 *, Myh6, Cacna2d3 *, Scn5a *, Camk2a * |
Correlation in VTA of Winners | |||||
Gene Symbol | Nrgn | Camk2a | Ercc2 | Otx2 | Six3 |
Drd2 | 0.722 | 0.920 ** | 0.605 | 0.895 * | 0.902 * |
Slc6a3 | 0.585 | 0.881 * | 0.518 | 0.885 * | 0.893 * |
Th | 0.517 | 0.696 | 0.202 | 0.527 | 0.537 |
Ddc | 0.475 | 0.865 * | 0.324 | 0.731 | 0.749 |
Correlation in VTA of Losers | |||||
Gene Symbol | Nrgn | Camk2a | Ercc2 | Otx2 | Six3 |
Drd2 | 0.991 *** | 0.970 ** | 0.909 * | 0.924 ** | 0.944 ** |
Slc6a3 | 0.953 ** | 0.965 ** | 0.881 * | 0.917 ** | 0.941 ** |
Th | 0.910 * | 0.789 | 0.747 | 0.651 | 0.703 |
Ddc | 0.865 * | 0.942 ** | 0.860 * | 0.951 ** | 0.954 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redina, O.; Babenko, V.; Smagin, D.; Kovalenko, I.; Galyamina, A.; Efimov, V.; Kudryavtseva, N. Gene Expression Changes in the Ventral Tegmental Area of Male Mice with Alternative Social Behavior Experience in Chronic Agonistic Interactions. Int. J. Mol. Sci. 2020, 21, 6599. https://doi.org/10.3390/ijms21186599
Redina O, Babenko V, Smagin D, Kovalenko I, Galyamina A, Efimov V, Kudryavtseva N. Gene Expression Changes in the Ventral Tegmental Area of Male Mice with Alternative Social Behavior Experience in Chronic Agonistic Interactions. International Journal of Molecular Sciences. 2020; 21(18):6599. https://doi.org/10.3390/ijms21186599
Chicago/Turabian StyleRedina, Olga, Vladimir Babenko, Dmitry Smagin, Irina Kovalenko, Anna Galyamina, Vadim Efimov, and Natalia Kudryavtseva. 2020. "Gene Expression Changes in the Ventral Tegmental Area of Male Mice with Alternative Social Behavior Experience in Chronic Agonistic Interactions" International Journal of Molecular Sciences 21, no. 18: 6599. https://doi.org/10.3390/ijms21186599
APA StyleRedina, O., Babenko, V., Smagin, D., Kovalenko, I., Galyamina, A., Efimov, V., & Kudryavtseva, N. (2020). Gene Expression Changes in the Ventral Tegmental Area of Male Mice with Alternative Social Behavior Experience in Chronic Agonistic Interactions. International Journal of Molecular Sciences, 21(18), 6599. https://doi.org/10.3390/ijms21186599