The Expression Profile of mRNA and tRNA Genes in Splenocytes and Neutrophils after In Vivo Delivery of Antitumor Short Hairpin RNA of Indoleamine 2,3- Dioxygenase
Abstract
:1. Introduction
2. Results
2.1. The Effect of IDO1 shRHA on LLC1 Tumor-Bearing Mice
2.2. The Expression Pattens of Inflammatory Molecules in Total Splencytes and Splenic Neutrophils
2.3. IDO shRNA-Mediated Pathways in Total Splenocytes and Splenic Neutrophils
2.4. The Expression Profile of Transfer RNA (tRNA)
2.5. The Potential Regulatory Mechanism of tRNA Transcription
2.6. The Fragments Derived from tRNAs
2.7. The Other Types of Non-Coding RNAs
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Plasmid Preparation
4.3. Animal Tumor Model and Therapautic Effect
4.4. Immunohistochemical Analysis of Ly6g+ Cells
4.5. Detection of Soluble Factors
4.6. Collection of Total Splenocytes and Enrichment of Neutrophils
4.7. RNA Sequencing
4.8. Gene ontology Analysis
4.9. Quantitative Real-Time Polymerase Chain Reaction (QPCR)
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Maruggi, G.; Shan, H.; Li, J. Advances in mRNA Vaccines for Infectious Diseases. Front. Immunol. 2019, 10, 594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolgin, E. Unlocking the potential of vaccines built on messenger RNA. Nature 2019, 574, S10–S12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeWeerdt, S. RNA therapies explained. Nature 2019, 574, S2–S3. [Google Scholar] [CrossRef] [Green Version]
- Conceicao, I. Novel RNA-targeted therapies for hereditary ATTR amyloidosis and their impact on the autonomic nervous system. Clin. Auton. Res. 2019, 29 (Suppl. 1), 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.X.; Wang, Y.; Blake, S.; Yu, M.; Mei, L.; Wang, H.; Shi, J. RNA Nanotechnology-Mediated Cancer Immunotherapy. Theranostics 2020, 10, 281–299. [Google Scholar] [CrossRef]
- Yen, M.C.; Chou, S.K.; Kan, J.Y.; Kuo, P.L.; Hou, M.F.; Hsu, Y.L. New Insight on Solute Carrier Family 27 Member 6 (SLC27A6) in Tumoral and Non-Tumoral Breast Cells. Int. J. Med. Sci. 2019, 16, 366–375. [Google Scholar] [CrossRef] [Green Version]
- Munn, D.H.; Sharma, M.D.; Hou, D.; Baban, B.; Lee, J.R.; Antonia, S.J.; Messina, J.L.; Chandler, P.; Koni, P.A.; Mellor, A.L. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Investig. 2004, 114, 280–290. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.D.; Baban, B.; Chandler, P.; Hou, D.Y.; Singh, N.; Yagita, H.; Azuma, M.; Blazar, B.R.; Mellor, A.L.; Munn, D.H. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J. Clin. Investig. 2007, 117, 2570–2582. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.; Bell, A.; Ladomersky, E.; Lauing, K.L.; Bollu, L.; Sosman, J.A.; Zhang, B.; Wu, J.D.; Miller, S.D.; Meeks, J.J.; et al. Immunosuppressive IDO in Cancer: Mechanisms of Action, Animal Models, and Targeting Strategies. Front. Immunol. 2020, 11, 1185. [Google Scholar] [CrossRef]
- Liu, K.T.; Liu, Y.H.; Liu, H.L.; Chong, I.W.; Yen, M.C.; Kuo, P.L. Neutrophils are Essential in Short Hairpin RNA of Indoleamine 2,3- Dioxygenase Mediated-antitumor Efficiency. Mol. Ther. Nucleic Acids 2016, 5, e397. [Google Scholar] [CrossRef] [PubMed]
- Yen, M.C.; Lin, C.C.; Chen, Y.L.; Huang, S.S.; Yang, H.J.; Chang, C.P.; Lei, H.Y.; Lai, M.D. A novel cancer therapy by skin delivery of indoleamine 2,3-dioxygenase siRNA. Clin. Cancer Res. 2009, 15, 641–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.T.; Yen, M.C.; Lin, C.C.; Weng, T.Y.; Chen, Y.L.; Lin, C.M.; Lai, M.D. Skin delivery of short hairpin RNA of indoleamine 2,3 dioxygenase induces antitumor immunity against orthotopic and metastatic liver cancer. Cancer Sci. 2011, 102, 2214–2220. [Google Scholar] [CrossRef] [PubMed]
- Evrard, M.; Kwok, I.W.H.; Chong, S.Z.; Teng, K.W.W.; Becht, E.; Chen, J.; Sieow, J.L.; Penny, H.L.; Ching, G.C.; Devi, S.; et al. Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity 2018, 48, 364–379.e8. [Google Scholar] [CrossRef]
- Youn, J.I.; Collazo, M.; Shalova, I.N.; Biswas, S.K.; Gabrilovich, D.I. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J. Leukoc. Biol. 2012, 91, 167–181. [Google Scholar] [CrossRef] [Green Version]
- Bronte, V.; Brandau, S.; Chen, S.H.; Colombo, M.P.; Frey, A.B.; Greten, T.F.; Mandruzzato, S.; Murray, P.J.; Ochoa, A.; Ostrand-Rosenberg, S.; et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 2016, 7, 12150. [Google Scholar] [CrossRef] [Green Version]
- Ouzounova, M.; Lee, E.; Piranlioglu, R.; El Andaloussi, A.; Kolhe, R.; Demirci, M.F.; Marasco, D.; Asm, I.; Chadli, A.; Hassan, K.A.; et al. Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade. Nat. Commun. 2017, 8, 14979. [Google Scholar] [CrossRef]
- Fridlender, Z.G.; Sun, J.; Kim, S.; Kapoor, V.; Cheng, G.; Ling, L.; Worthen, G.S.; Albelda, S.M. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 2009, 16, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Slack, F.J.; Chinnaiyan, A.M. The Role of Non-coding RNAs in Oncology. Cell 2019, 179, 1033–1055. [Google Scholar] [CrossRef]
- Uchida, S.; Adams, J.C. Physiological roles of non-coding RNAs. Am. J. Physiol. Cell Physiol. 2019, 317, C1–C2. [Google Scholar] [CrossRef]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pages, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio Gomez, M.A.; Ibba, M. Aminoacyl-tRNA synthetases. RNA 2020, 26, 910–936. [Google Scholar] [PubMed]
- Keam, S.P.; Hutvagner, G. tRNA-Derived Fragments (tRFs): Emerging New Roles for an Ancient RNA in the Regulation of Gene Expression. Life 2015, 5, 1638–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schimmel, P. The emerging complexity of the tRNA world: Mammalian tRNAs beyond protein synthesis. Nat. Rev. Mol Cell. Biol. 2018, 19, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mudunuri, S.B.; Anaya, J.; Dutta, A. tRFdb: A database for transfer RNA fragments. Nucleic Acids Res. 2015, 43, D141–D145. [Google Scholar] [CrossRef]
- Fan, Y.; Xia, J. miRNet-Functional Analysis and Visual Exploration of miRNA-Target Interactions in a Network Context. Methods Mol. Biol. 2018, 1819, 215–233. [Google Scholar]
- Giese, M.A.; Hind, L.E.; Huttenlocher, A. Neutrophil plasticity in the tumor microenvironment. Blood 2019, 133, 2159–2167. [Google Scholar] [CrossRef]
- Ohms, M.; Moller, S.; Laskay, T. An Attempt to Polarize Human Neutrophils Toward N1 and N2 Phenotypes in vitro. Front. Immunol. 2020, 11, 532. [Google Scholar] [CrossRef]
- Fridlender, Z.G.; Sun, J.; Mishalian, I.; Singhal, S.; Cheng, G.; Kapoor, V.; Horng, W.; Fridlender, G.; Bayuh, R.; Worthen, G.S.; et al. Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PLoS ONE 2012, 7, e31524. [Google Scholar] [CrossRef]
- Badawy, A.A. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017, 10, 1178646917691938. [Google Scholar] [CrossRef] [Green Version]
- Franchina, D.G.; Dostert, C.; Brenner, D. Reactive Oxygen Species: Involvement in T Cell Signaling and Metabolism. Trends Immunol. 2018, 39, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Nie, A.; Sun, B.; Fu, Z.; Yu, D. Roles of aminoacyl-tRNA synthetases in immune regulation and immune diseases. Cell Death Dis. 2019, 10, 901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, M. Unique roles of tryptophanyl-tRNA synthetase in immune control and its therapeutic implications. Exp. Mol. Med. 2019, 51, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.C.; Lee, E.S.; Uddin, M.B.; Kim, T.H.; Kim, J.H.; Chathuranga, K.; Chathuranga, W.A.G.; Jin, M.; Kim, S.; Kim, C.J.; et al. Released Tryptophanyl-tRNA Synthetase Stimulates Innate Immune Responses against Viral Infection. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.Y.; Shi, Y.; Min, Y.N.; Zhu, X.J.; Guo, C.S.; Peng, J.; Dong, X.Y.; Qin, P.; Sun, J.Z.; Hou, M. Decreased IDO activity and increased TTS expression break immune tolerance in patients with immune thrombocytopenia. J. Clin. Immunol. 2011, 31, 643–649. [Google Scholar] [CrossRef]
- Li, S.; Xu, Z.; Sheng, J. tRNA-Derived Small RNA: A Novel Regulatory Small Non-Coding RNA. Genes 2018, 9, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiou, N.T.; Kageyama, R.; Ansel, K.M. Selective Export into Extracellular Vesicles and Function of tRNA Fragments during T Cell Activation. Cell Rep. 2018, 25, 3356–3370.e4. [Google Scholar] [CrossRef] [Green Version]
- Driedonks, T.A.P.; van der Grein, S.G.; Ariyurek, Y.; Buermans, H.P.J.; Jekel, H.; Chow, F.W.N.; Wauben, M.H.M.; Buck, A.H.; ’t Hoen, P.A.C.; Nolte-’t Hoen, E.N.M. Immune stimuli shape the small non-coding transcriptome of extracellular vesicles released by dendritic cells. Cell Mol. Life Sci. 2018, 75, 3857–3875. [Google Scholar] [CrossRef] [Green Version]
- Okuyama, K.; Ogata, J.; Yamakawa, N.; Chanda, B.; Kotani, A. Small RNA as a regulator of hematopoietic development, immune response in infection and tumorigenesis. Int. J. Hematol. 2014, 99, 553–560. [Google Scholar] [CrossRef]
- Gonzalez Plaza, J.J. Small RNAs as Fundamental Players in the Transference of Information during Bacterial Infectious Diseases. Front. Mol. Biosci. 2020, 7, 101. [Google Scholar] [CrossRef]
- Weng, T.Y.; Li, C.J.; Li, C.Y.; Hung, Y.H.; Yen, M.C.; Chang, Y.W.; Chen, Y.H.; Chen, Y.L.; Hsu, H.P.; Chang, J.Y.; et al. Skin Delivery of Clec4a Small Hairpin RNA Elicited an Effective Antitumor Response by Enhancing CD8+ Immunity In Vivo. Mol. Ther. Nucleic Acids 2017, 9, 419–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, T.Y.; Huang, S.S.; Yen, M.C.; Lin, C.C.; Chen, Y.L.; Lin, C.M.; Chen, W.C.; Wang, C.Y.; Chang, J.Y.; Lai, M.D. A novel cancer therapeutic using thrombospondin 1 in dendritic cells. Mol. Ther. 2014, 22, 292–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.T.; Chang, C.C.; Yen, M.C.; Tu, C.F.; Chu, C.L.; Peng, Y.T.; Chen, D.Y.; Lan, J.L.; Lin, C.C. RNA interference-mediated silencing of Foxo3 in antigen-presenting cells as a strategy for the enhancement of DNA vaccine potency. Gene Ther. 2011, 18, 372–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastor, F.; Berraondo, P.; Etxeberria, I.; Frederick, J.; Sahin, U.; Gilboa, E.; Melero, I. An RNA toolbox for cancer immunotherapy. Nat. Rev. Drug Discov. 2018, 17, 751–767. [Google Scholar] [CrossRef] [PubMed]
- Varghese, F.; Bukhari, A.B.; Malhotra, R.; De, A. IHC Profiler: An open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS ONE 2014, 9, e96801. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Gene Ontology Term | Count | p Value 1 |
---|---|---|
GO: 0006778~porphyrin-containing compound metabolic process | 13 | 1.77 × 10−12 |
GO: 0006779~porphyrin-containing compound biosynthetic process | 11 | 1.09 × 10−11 |
GO: 0042168~heme metabolic process | 10 | 3.48 × 10−09 |
GO: 0098754~detoxification | 17 | 3.93 × 10−09 |
GO: 0051186~cofactor metabolic process | 28 | 5.38 × 10−09 |
GO: 0048821~erythrocyte development | 11 | 6.56 × 10−09 |
GO: 0046501~protoporphyrinogen IX metabolic process | 7 | 7.39 × 10−09 |
GO: 0010035~response to inorganic substance | 34 | 1.30 × 10−08 |
GO: 0009636~response to toxic substance | 33 | 1.82 × 10−08 |
GO: 0030218~erythrocyte differentiation | 16 | 2.98 × 10−08 |
GO: 0002262~myeloid cell homeostasis | 18 | 4.65 × 10−08 |
GO: 1990748~cellular detoxification | 15 | 5.21 × 10−08 |
GO: 0061515~myeloid cell development | 13 | 7.53 × 10−08 |
GO: 0006783~heme biosynthetic process | 8 | 8.70 × 10−08 |
GO: 0097237~cellular response to toxic substance | 21 | 1.13 × 10−07 |
GO: 0055076~transition metal ion homeostasis | 15 | 2.17 × 10−07 |
GO: 0016209~antioxidant activity | 13 | 3.79 × 10−07 |
GO: 0051188~cofactor biosynthetic process | 17 | 7.02 × 10−07 |
GO: 0004869~cysteine-type endopeptidase inhibitor activity | 11 | 1.97 × 10−06 |
GO: 0048872~homeostasis of number of cells | 21 | 3.61 × 10−06 |
GO: 0010038~response to metal ion | 23 | 8.59 × 10−06 |
GO: 0004857~enzyme inhibitor activity | 22 | 3.90 × 10−05 |
GO: 0017144~drug metabolic process | 27 | 4.02 × 10−05 |
GO: 0004601~peroxidase activity | 9 | 4.48 × 10−05 |
GO: 0051187~cofactor catabolic process | 9 | 5.89 × 10−05 |
GO: 0046394~carboxylic acid biosynthetic process | 18 | 1.12 × 10−04 |
GO: 0015669~gas transport | 6 | 1.17 × 10−04 |
GO: 0034755~iron ion transmembrane transport | 6 | 1.17 × 10−04 |
GO: 0045861~negative regulation of proteolysis | 21 | 1.56 × 10−04 |
GO: 0030099~myeloid cell differentiation | 21 | 2.62 × 10−04 |
GO: 0042743~hydrogen peroxide metabolic process | 8 | 3.37 × 10−04 |
GO: 1904018~positive regulation of vasculature development | 14 | 4.16 × 10−04 |
GO: 0032787~monocarboxylic acid metabolic process | 26 | 4.61 × 10−04 |
GO: 0070541~response to platinum ion | 3 | 4.46 × 10−04 |
GO: 0072593~reactive oxygen species metabolic process | 17 | 5.32 × 10−04 |
GO: 0004866~endopeptidase inhibitor activity | 14 | 9.98 × 10−04 |
Gene Ontology Term | Count | p Value 1 |
---|---|---|
GO: 0031640~killing of cells of other organism | 7 | 2.77 × 10−04 |
GO: 0051873~killing by host of symbiont cells | 5 | 3.41 × 10−04 |
GO: 1904018~positive regulation of vasculature development | 14 | 4.16 × 10−04 |
GO: 0002444~myeloid leukocyte mediated immunity | 8 | 7.59 × 10−04 |
GO: 0000070~mitotic sister chromatid segregation | 9 | 1.26 × 10−03 |
GO: 0061515~myeloid cell development | 7 | 1.33 × 10−03 |
GO: 0000086~G2/M transition of mitotic cell cycle | 8 | 1.44 × 10−03 |
GO: 0002446~neutrophil mediated immunity | 5 | 2.01 × 10−03 |
GO: 0051702~interaction with symbiont | 7 | 2.70 × 10−03 |
GO:0030218~erythrocyte differentiation | 8 | 3.12 × 10−03 |
GO:0008519~ammonium transmembrane transporter activity | 3 | 3.68 × 10−03 |
GO:1902850~microtubule cytoskeleton organization involved in mitosis | 8 | 4.26 × 10−03 |
GO:0002262~myeloid cell homeostasis | 9 | 4.30 × 10−03 |
GO:0140014~mitotic nuclear division | 11 | 4.38 × 10−03 |
GO:0006335~DNA replication-dependent nucleosome assembly | 4 | 5.15 × 10−03 |
GO:0002888~positive regulation of myeloid leukocyte mediated immunity | 5 | 6.90 × 10−03 |
GO:0030168~platelet activation | 6 | 8.14 × 10−03 |
GO:0000050~urea cycle | 3 | 8.24 × 10−03 |
GtRNAdb Gene Symbol | Locus | Mean Expression Ratio 1 | Mean Expression Ratio |
---|---|---|---|
Total Splenocytes | Splenic Neutrophils | ||
tRNA-Gly-TCC-1-4 | chr1:171079948-171080019 (−) | 5.98 × 106 | 4.05 × 10−04 |
tRNA-Gly-TCC-1-2 | chr1:171064699-171064770 (−) | 2.48 × 100 | 7.58 × 10−02 |
tRNA-Asp-GTC-1-2 | chr1:171065358-171065429 (−) | 1.21 × 10−02 | 4.05 × 10−04 |
tRNA-Asp-GTC-1-1 | chr1:171037029-171037100 (−) | 2.23 × 10−01 | 7.54 × 10−02 |
tRNA-Glu-TTC-2-1 | chr1:34434812-34434883 (−) | 2.75 × 10−01 | 3.58 × 10−01 |
tRNA-Gly-GCC-2-1 | chr1:171044985-171045055 (+) | 5.94 × 10−02 | 1.55 × 1011 |
tRNA-Gly-GCC-1-1 | chr1:171066631-171066701 (+) | 1.09 × 10−07 | 1.22 × 10−06 |
tRNA-Val-CAC-2-1 | chr1:171111443-171111515 (+) | 2.81 × 10−01 | 1.47 × 10−01 |
tRNA-Asp-GTC-1-8 | chr10:93452978-93453049 (−) | 1.15 × 10−01 | 5.80 × 10−02 |
tRNA-Gly-GCC-2-6 | chr11:69118794-69118864 (−) | 1.26 × 103 | 4.69 × 10−06 |
tRNA-Val-CAC-2-3 | chr11:48818542-48818614 (+) | 1.76 × 104 | 5.40 × 103 |
tRNA-Glu-TTC-1-3 | chr13:23463535-23463606 (+) | 8.99 × 105 | 6.39 × 107 |
tRNA-Gly-GCC-2-8 | chr13:23517203-23517273 (+) | 4.23 × 10−01 | 2.21 × 10−04 |
tRNA-Gly-GCC-2-7 | chr13:21710580-21710650 (+) | 2.77 × 10−05 | 2.49 × 10−02 |
tRNA-Val-CAC-2-4 | chr13:22026548-22026620 (+) | 1.76 × 104 | 1.47 × 10−01 |
tRNA-Asp-GTC-1-12 | chr13:21935497-21935568 (−) | 5.91 × 10−02 | 3.14 × 10−02 |
tRNA-Glu-TTC-1-4 | chr14:76152774-76152845 (+) | 8.99 × 105 | 1.81 × 101 |
tRNA-Glu-TTC-2-2 | chr14:79481668-79481739 (+) | 2.50 × 10−05 | 1.12 × 102 |
tRNA-Lys-CTT-3-5 | chr17:23533962-23534034 (+) | 2.77 × 10−01 | 1.15 × 102 |
tRNA-Lys-CTT-3-7 | chr17:23547360-23547432 (+) | 9.35 × 107 | 1.15 × 102 |
tRNA-Gly-GCC-2-2 | chr2:57182394-57182464 (−) | 2.57 × 102 | 5.62 × 10−06 |
tRNA-Val-CAC-2-2 | chr3:96332740-96332812 (+) | 1.76 × 104 | 1.47 × 10−01 |
tRNA-Lys-CTT-3-1 | chr3:96428235-96428307 (+) | 1.87 × 108 | 1.06 × 10−09 |
tRNA-Gly-GCC-2-3 | chr3:84229011-84229081 (−) | 1.58 × 10−04 | 2.05 × 103 |
tRNA-Asp-GTC-1-7 | chr5:125409016-125409087 (−) | 1.24 × 10−01 | 7.85 × 10−02 |
tRNA-Asp-GTC-1-6 | chr5:125405607-125405678 (−) | 1.24 × 10−01 | 3.60 × 101 |
tRNA-Val-CAC-4-1 | chr6:10100371-10100443 (+) | 1.03 × 106 | 1.71 × 10−06 |
tRNA-Glu-TTC-1-1 | chr7:58399315-58399386 (+) | 8.99 × 105 | 1.81 × 101 |
tRNA-Gly-GCC-2-5 | chr8:110631246-110631316 (−) | 3.88 × 100 | 2.22 × 108 |
tRNA-Gly-GCC-2-4 | chr8:110630553-110630623 (−) | 1.95 × 106 | 4.54 × 10−01 |
GtRNAdb Gene Symbol | tRF ID | Type | Sequence |
---|---|---|---|
tRNA-Gly-GCC-1-1 | 5002a 5002b | trf-5 | GCATGGGTGGTTCAGTGGTAGA GCATGGGTGGTTCAGTGGTAGAATTCTCGCC |
tRNA-Gly-GCC-2-1 tRNA-Gly-GCC-2-6 tRNA-Gly-GCC-2-7 tRNA-Gly-GCC-2-8 tRNA-Gly-GCC-2-2 tRNA-Gly-GCC-2-3 | 5004a 5004b | trf-5 | GCATTGGTGGTTCAGTGGTAGA GCATTGGTGGTTCAGTGGTAGAATTCTCGCC |
tRNA-Lys-CTT-3-1 tRNA-Lys-CTT-3-1 | 5006a 5006b | trf-5 | GCCCGGCTAGCTCAGTCGG GCCCGGCTAGCTCAGTCGGTAGAGC |
tRNA-Val-CAC-2-1 tRNA-Val-CAC-2-2 tRNA-Val-CAC-2-3 tRNA-Val-CAC-2-4 | 5019a 5019b | trf-5 | GTTTCCGTAGTGTAGTGG GTTTCCGTAGTGTAGTGGTTATCACG |
tRNA-Glu-TTC-1-3 | 5020a 5020b | trf-5 | TCCCACATGGTCTAGCGG TCCCACATGGTCTAGCGGTTAGG |
GtRNAdb Gene Symbol | tRF ID | Type | Sequence |
---|---|---|---|
tRNA-Gly-GCC-1-1 | 3043a 3043b | trf-3 | TTCCCGGCCCATGCACCA TCGATTCCCGGCCCATGCACCA |
tRNA-Gly-GCC-2-1 tRNA-Gly-GCC-2-2 tRNA-Gly-GCC-2-3 tRNA-Gly-GCC-2-6 tRNA-Gly-GCC-2-7 tRNA-Gly-GCC-2-8 | 3042a 3042b | trf-3 | TTCCCGGCCAATGCACCA TCGATTCCCGGCCAATGCACCA |
tRNA-Lys-CTT-3-1 tRNA-Lys-CTT-3-1 | 3031a 3031b | trf-3 | AGCCCCACGTTGGGCGCCA TCGAGCCCCACGTTGGGCGCCA |
tRNA-Val-CAC-2-1 tRNA-Val-CAC-2-2 tRNA-Val-CAC-2-3 tRNA-Val-CAC-2-4 | 3009a 3009b | trf-3 | ACCGGGCGGAAACACCA TCGAAACCGGGCGGAAACACCA |
tRNA-Glu-TTC-1-3 | 3029a 3029b | trf-3 | CTCCCGGTGTGGGAACCA TCGACTCCCGGTGTGGGAACCA |
tRNA-Trp-CCA-4-1 | 3002a 3002b | trf-3 | ATCACGTCGGGGTCACCA TCAAATCACGTCGGGGTCACCA |
Target Gene | Primer Sequence |
---|---|
Hypoxanthine phosphoribosyltransferase (HPRT) | Forward: 5′-GTTGGATACAGGCCAGACTTTGTTG-3′ Reverse: 5′-GATTCAACTTGCGCTCATCTTAGGC-3′ |
IFN-γ | Forward: 5′-AACGCTACACACTGCATCTTGG-3′ Reverse: 5′-CAAGACTTCAAAGAGTCTGAGG-3 |
TNF-α | Forward: 5′-CCCCAAAGGGATGAGAAGTT-3′ Reverse: 5′-CACTTGGTGGTTTGCTACGA-3′ |
IL-10 | Forward: 5′-CCAGTTTTACCTGGTAGAAGTGATG-3′ Reverse: 5′-TGTCTAGGTCCTGGAGTCCAGCAGACTCAA-3′ |
TGF-β | Forward: 5′-TGCGCTTGCAGAGATTAAAA-3′ Reverse: 5′-CGTCAAAAGACAGCCACTCA-3 |
Arginase 1 | Forward: 5′-CAGAAGAATGGAAGAGTCAG-3′ Reverse: 5′-CAGATATGCAGGGAGTCACC-3 |
tRNA-Glu-CTC-1-6 | Forward: 5′-TCCCTGGTGGTCTAGTGGTTAG-3′ Reverse: 5′-TTCCCTGACCGGGAATCGAAC-3 |
tRNA-Leu-CAA-2-1 | Forward: 5′-GTCAGGATGGCCGAGTGGTCTAA-3′ Reverse: 5′-TGTCAGAAGTGGGATTCGAACG-3 |
tRNA-Ile-TAT-2-3 | Forward: 5′-GCTCCAGTGGCGCAATCGGTT-3′ Reverse: 5′-TGCTCCAGGTGAGGCTCGAAC-3 |
tRNA-Trp-CAA-4-1 | Forward: 5′-GACCTCGTGGCGCAACGGTA-3′ Reverse: 5′-TGACCCCGACGTGATTTG-3′ |
U6 | Forward: 5′-CGATACAGAGAAGATTAGCATGGC-3′ Reverse: 5′-AACGCTTCACGAATTTGCGT-3′ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.-S.; Hsu, Y.-L.; Yeh, I.-J.; Liu, K.-T.; Yen, M.-C. The Expression Profile of mRNA and tRNA Genes in Splenocytes and Neutrophils after In Vivo Delivery of Antitumor Short Hairpin RNA of Indoleamine 2,3- Dioxygenase. Int. J. Mol. Sci. 2020, 21, 6703. https://doi.org/10.3390/ijms21186703
Huang M-S, Hsu Y-L, Yeh I-J, Liu K-T, Yen M-C. The Expression Profile of mRNA and tRNA Genes in Splenocytes and Neutrophils after In Vivo Delivery of Antitumor Short Hairpin RNA of Indoleamine 2,3- Dioxygenase. International Journal of Molecular Sciences. 2020; 21(18):6703. https://doi.org/10.3390/ijms21186703
Chicago/Turabian StyleHuang, Ming-Shyan, Ya-Ling Hsu, I-Jeng Yeh, Kuan-Ting Liu, and Meng-Chi Yen. 2020. "The Expression Profile of mRNA and tRNA Genes in Splenocytes and Neutrophils after In Vivo Delivery of Antitumor Short Hairpin RNA of Indoleamine 2,3- Dioxygenase" International Journal of Molecular Sciences 21, no. 18: 6703. https://doi.org/10.3390/ijms21186703
APA StyleHuang, M. -S., Hsu, Y. -L., Yeh, I. -J., Liu, K. -T., & Yen, M. -C. (2020). The Expression Profile of mRNA and tRNA Genes in Splenocytes and Neutrophils after In Vivo Delivery of Antitumor Short Hairpin RNA of Indoleamine 2,3- Dioxygenase. International Journal of Molecular Sciences, 21(18), 6703. https://doi.org/10.3390/ijms21186703