Alumina Ceramic Exacerbates the Inflammatory Disease by Activation of Macrophages and T Cells
Abstract
:1. Introduction
2. Results
2.1. Number of Spleen Macrophages Was Increased by Al2O3 FPs
2.2. Al2O3 FPs Promoted the Activation of Spleen Macrophages
2.3. Al2O3 FPs Elicited Helper T 1 (Th1) and Cytotoxic T 1 (Tc1) Cell Responses
2.4. DSS-Induced Colitis Was Exacerbated by Al2O3 FPs
2.5. Al2O3 FPs-Induced Th1 and Tc1 Cells Contributed in the Exacerbation of Colitis
3. Discussion
4. Materials and Methods
4.1. Mice
4.2. Reagents
4.3. Transmission Electron Microscopy (TEM)
4.4. Antibodies
4.5. Preparation of Single Cell Suspension from Tissues
4.6. Analysis of Innate Immune Cells
4.7. Stimulation and Intracellular Staining of T cells
4.8. Enzyme Linked Immunosorbent Assay (ELISA)
4.9. Mouse Model of DSS-Induced Colitis
4.10. Histological Analysis
4.11. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Al2O3 | Aluminum oxide |
FP | Fine particle |
DC | Dendritic cell |
cDC | Conventional DC |
pDC | Plasmacytoid DC |
NK | Natural killer |
APC | Antigen presenting cell |
Th | Helper T |
Tc | Cytotoxic T |
IFN | Interferon |
TNF | Tumor necrosis factor |
DSS | Dextran sulfate sodium salt |
IBD | Inflammatory bowel disease |
References
- Hamadouche, M.; Boutin, P.; Daussange, J.; Bolander, M.E.; Sedel, L. Alumina-on-alumina total hip arthroplasty: A minimum 18.5-year follow-up study. J. Bone Joint Surg. Am. 2002, 84, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.S.A.; Choudhury, D.; Osman, N.A.A.; Shasmin, H.N.; Abas, W.A.B.W. In vivo and in vitro outcomes of alumina, zirconia and their composited ceramic-on-ceramic hip joints. J. Ceram. Soc. Jpn. 2013, 121, 382–387. [Google Scholar] [CrossRef] [Green Version]
- Griss, P.; Heimke, G.; Von Andrian-Werburg, H.; Krempien, B.; Reipa, S.; Lauterbach, H.J.; Hartung, H.J. Morphological and biomechanical aspects of Al2O3 ceramic joint replacement. Experimental results and design considerations for human endoprostheses. J. Biomed. Mater. Res. 1975, 9, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Zajac, F.E.; Winters, J.M. Modeling musculoskeletal movement systems: Joint and body segmental dynamics, musculoskeletal actuation, and neuromuscular control. In Multiple Muscle Systems; Springer: Berlin/Heidelberg, Germany, 1990; pp. 121–148. [Google Scholar]
- Bertrand, J.; Delfosse, D.; Mai, V.; Awiszus, F.; Harnisch, K.; Lohmann, C. Ceramic prosthesis surfaces induce an inflammatory cell response and fibrotic tissue changes. Bone Joint J. 2018, 100, 882–890. [Google Scholar] [CrossRef]
- El-Hussainy, E.-H.M.; Hussein, A.M.; Abdel-Aziz, A.; El-Mehasseb, I. Effects of aluminum oxide (Al2O3) nanoparticles on ECG, myocardial inflammatory cytokines, redox state, and connexin 43 and lipid profile in rats: Possible cardioprotective effect of gallic acid. Can. J. Physiol. Pharmacol. 2016, 94, 868–878. [Google Scholar] [CrossRef] [PubMed]
- Gibon, E.; Amanatullah, D.F.; Loi, F.; Pajarinen, J.; Nabeshima, A.; Yao, Z.; Hamadouche, M.; Goodman, S.B. The biological response to orthopaedic implants for joint replacement: Part I: Metals. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 2162–2173. [Google Scholar] [CrossRef]
- Catelas, I.; Petit, A.; Marchand, R.; Zukor, D.J.; Yahia, L.; Huk, O.L. Cytotoxicity and macrophage cytokine release induced by ceramic and polyethylene particles in vitro. J. Bone Joint Surg. Br. 1999, 81, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Petit, A.; Catelas, I.; Antoniou, J.; Zukor, D.J.; Huk, O.L. Differential apoptotic response of J774 macrophages to alumina and ultra-high-molecular-weight polyethylene particles. J. Orthop. Res. 2002, 20, 9–15. [Google Scholar] [CrossRef]
- Sterner, T.; Schutze, N.; Saxler, G.; Jakob, F.; Rader, C.P. Effects of clinically relevant alumina ceramic, zirconia ceramic and titanium particles of different sizes and concentrations on TNF-alpha release in a human macrophage cell line. Biomed. Tech. (Berl.) 2004, 49, 340–344. [Google Scholar] [CrossRef]
- Rony, L.; de Sainte Hermine, P.; Steiger, V.; Mallet, R.; Hubert, L.; Chappard, D. Characterization of wear debris released from alumina-on-alumina hip prostheses: Analysis of retrieved femoral heads and peri-prosthetic tissues. Micron 2018, 104, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cronkite, D.A.; Strutt, T.M. The Regulation of Inflammation by Innate and Adaptive Lymphocytes. J. Immunol. Res. 2018, 2018, 1467538. [Google Scholar] [CrossRef] [PubMed]
- Rock, K.L.; Kono, H. The inflammatory response to cell death. Annu. Rev. Pathol. 2008, 3, 99–126. [Google Scholar] [CrossRef] [PubMed]
- Yahyapour, R.; Amini, P.; Rezapour, S.; Cheki, M.; Rezaeyan, A.; Farhood, B.; Shabeeb, D.; Musa, A.E.; Fallah, H.; Najafi, M. Radiation-induced inflammation and autoimmune diseases. Mil. Med. Res. 2018, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, C.; Gudino, C.V.; Gibson, F.C., 3rd; Genco, C.A. Review: Pathogen-induced inflammation at sites distant from oral infection: Bacterial persistence and induction of cell-specific innate immune inflammatory pathways. Mol. Oral Microbiol. 2010, 25, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Ryan, G.B.; Majno, G. Acute inflammation. A review. Am. J. Pathol. 1977, 86, 183. [Google Scholar]
- Feghali, C.A.; Wright, T.M. Cytokines in acute and chronic inflammation. Front. Biosci. 1997, 2, d12–d26. [Google Scholar]
- Ivashkiv, L.B. Inflammatory signaling in macrophages: Transitions from acute to tolerant and alternative activation states. Eur. J. Immunol. 2011, 41, 2477–2481. [Google Scholar] [CrossRef] [Green Version]
- Cerwenka, A.; Lanier, L.L. Natural killer cell memory in infection, inflammation and cancer. Nat. Rev. Immunol. 2016, 16, 112. [Google Scholar] [CrossRef]
- Agrawal, A.; Agrawal, S.; Gupta, S. Role of Dendritic Cells in Inflammation and Loss of Tolerance in the Elderly. Front. Immunol. 2017, 8, 896. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Orekhov, A.N.; Sobenin, I.A.; Bobryshev, Y.V. Plasmacytoid dendritic cells: Development, functions, and role in atherosclerotic inflammation. Front. Physiol. 2014, 5, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald-Bocarsly, P.; Dai, J.; Singh, S. Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history. Cytokine Growth Factor Rev. 2008, 19, 3–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudino, S.J.; Kumar, P. Cross-Talk Between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front. Immunol. 2019, 10, 360. [Google Scholar] [CrossRef] [Green Version]
- Chaperot, L.; Chokri, M.; Jacob, M.C.; Drillat, P.; Garban, F.; Egelhofer, H.; Molens, J.P.; Sotto, J.J.; Bensa, J.C.; Plumas, J. Differentiation of antigen-presenting cells (dendritic cells and macrophages) for therapeutic application in patients with lymphoma. Leukemia 2000, 14, 1667–1677. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, L.; Park, H.B.; Hwang, J.; Kwak, M.; Lee, P.C.W.; Liang, G.; Zhang, X.; Xu, J.; Jin, J.O. Escherichia coli adhesion portion FimH functions as an adjuvant for cancer immunotherapy. Nat. Commun. 2020, 11, 1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, M.; Yu, K.; Lee, P.C.; Jin, J.O. Rehmannia glutinosa polysaccharide functions as a mucosal adjuvant to induce dendritic cell activation in mediastinal lymph node. Int. J. Biol. Macromol. 2018, 120 Pt B, 1618–1623. [Google Scholar] [CrossRef]
- Heath, W.R.; Kato, Y.; Steiner, T.M.; Caminschi, I. Antigen presentation by dendritic cells for B cell activation. Curr. Opin. Immunol. 2019, 58, 44–52. [Google Scholar] [CrossRef]
- Tai, Y.; Wang, Q.; Korner, H.; Zhang, L.; Wei, W. Molecular Mechanisms of T Cells Activation by Dendritic Cells in Autoimmune Diseases. Front. Pharmacol. 2018, 9, 642. [Google Scholar] [CrossRef]
- Hilhorst, M.; Shirai, T.; Berry, G.; Goronzy, J.J.; Weyand, C.M. T cell-macrophage interactions and granuloma formation in vasculitis. Front. Immunol. 2014, 5, 432. [Google Scholar] [CrossRef] [Green Version]
- Hodson, R. Inflammatory bowel disease. Nature 2016, 540, S97. [Google Scholar] [CrossRef]
- Shapiro, J.M.; Subedi, S.; LeLeiko, N.S. Inflammatory Bowel Disease. Pediatr. Rev. 2016, 37, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Campieri, M.; Gionchetti, P. Bacteria as the cause of ulcerative colitis. Gut 2001, 48, 132–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, D.C.; Shaker, A.; Levin, M.S. Chronic intestinal inflammation: Inflammatory bowel disease and colitis-associated colon cancer. Front. Immunol. 2012, 3, 107. [Google Scholar] [CrossRef] [Green Version]
- Saleh, M.M.; Frisbee, A.L.; Leslie, J.L.; Buonomo, E.L.; Cowardin, C.A.; Ma, J.Z.; Simpson, M.E.; Scully, K.W.; Abhyankar, M.M.; Petri, W.A., Jr. Colitis-Induced Th17 Cells Increase the Risk for Severe Subsequent Clostridium difficile Infection. Cell Host Microbe 2019, 25, 756–765.e5. [Google Scholar] [CrossRef] [PubMed]
- Eichele, D.D.; Kharbanda, K.K. Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J. Gastroenterol. 2017, 23, 6016–6029. [Google Scholar] [CrossRef]
- Meers, G.K.; Bohnenberger, H.; Reichardt, H.M.; Luhder, F.; Reichardt, S.D. Impaired resolution of DSS-induced colitis in mice lacking the glucocorticoid receptor in myeloid cells. PLoS ONE 2018, 13, e0190846. [Google Scholar] [CrossRef]
- Feng, T.; Qin, H.; Wang, L.; Benveniste, E.N.; Elson, C.O.; Cong, Y. Th17 cells induce colitis and promote Th1 cell responses through IL-17 induction of innate IL-12 and IL-23 production. J. Immunol. 2011, 186, 6313–6318. [Google Scholar] [CrossRef] [Green Version]
- Gomez, P.F.; Morcuende, J.A. Early attempts at hip arthroplasty--1700s to 1950s. Iowa Orthop. J. 2005, 25, 25–29. [Google Scholar]
- Nich, C.; Goodman, S.B. Role of macrophages in the biological reaction to wear debris from joint replacements. J. Long Term Eff. Med. Implants 2014, 24, 259–265. [Google Scholar] [CrossRef]
- Wang, Y.; Smith, W.; Hao, D.; He, B.; Kong, L. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int. Immunopharmacol. 2019, 70, 459–466. [Google Scholar] [CrossRef]
- Martinez, F.O.; Gordon, S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 2014, 6, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Classen, A.; Lloberas, J.; Celada, A. Macrophage activation: Classical versus alternative. Methods Mol. Biol. 2009, 531, 29–43. [Google Scholar] [PubMed]
- Wynn, T.A.; Vannella, K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44, 450–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chassaing, B.; Aitken, J.D.; Malleshappa, M.; Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 2014, 104. [Google Scholar] [CrossRef] [PubMed]
- Kiesler, P.; Fuss, I.J.; Strober, W. Experimental Models of Inflammatory Bowel Diseases. Cell. Mol. Gastroenterol. Hepatol. 2015, 1, 154–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.; Du, L.; Xu, X.; Yang, Y.; Wang, H.; Qu, A.; Qu, X.; Wang, C. Aberrant expression of circulating Th17, Th1 and Tc1 cells in patients with active and inactive ulcerative colitis. Int. J. Mol. Med. 2013, 31, 989–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilbert, J.; Nather, C.; Bensch, W. Utilization of mixtures of aromatic N-donor ligands of different coordination ability for the solvothermal synthesis of thiostannate containing molecules. Dalton Trans. 2015, 44, 11542–11550. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.Y.; Cho, K.A.; Kang, J.L.; Kim, K.H.; Woo, S.Y. Comparison of experimental mouse models of inflammatory bowel disease. Int. J. Mol. Med. 2014, 33, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.-O.; Han, X.; Yu, Q. Interleukin-6 induces the generation of IL-10-producing Tr1 cells and suppresses autoimmune tissue inflammation. J. Autoimmun. 2013, 40, 28–44. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xu, L.; Zhang, X.; Xu, J.; Jin, J.O. CD8alpha(-) conventional dendritic cells control Vbeta T-cell immunity in response to Staphylococcus aureus infection in mice. Immunology 2020, 159, 404–412. [Google Scholar] [CrossRef]
- Zhang, W.; Okimura, T.; Oda, T.; Jin, J.O. Ascophyllan Induces Activation of Natural Killer Cells in Mice in vivo and in vitro. Mar. Drugs 2019, 17, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.-M.; Hwang, J.; Park, H.-B.; Park, C.H.; Jin, J.-O. Alumina Ceramic Exacerbates the Inflammatory Disease by Activation of Macrophages and T Cells. Int. J. Mol. Sci. 2020, 21, 7114. https://doi.org/10.3390/ijms21197114
Lim S-M, Hwang J, Park H-B, Park CH, Jin J-O. Alumina Ceramic Exacerbates the Inflammatory Disease by Activation of Macrophages and T Cells. International Journal of Molecular Sciences. 2020; 21(19):7114. https://doi.org/10.3390/ijms21197114
Chicago/Turabian StyleLim, Seong-Min, Juyoung Hwang, Hae-Bin Park, Chan Ho Park, and Jun-O Jin. 2020. "Alumina Ceramic Exacerbates the Inflammatory Disease by Activation of Macrophages and T Cells" International Journal of Molecular Sciences 21, no. 19: 7114. https://doi.org/10.3390/ijms21197114
APA StyleLim, S. -M., Hwang, J., Park, H. -B., Park, C. H., & Jin, J. -O. (2020). Alumina Ceramic Exacerbates the Inflammatory Disease by Activation of Macrophages and T Cells. International Journal of Molecular Sciences, 21(19), 7114. https://doi.org/10.3390/ijms21197114