Nitrite reductase 1 is a target of nitric oxidemediated post-translational modifications and controls nitrogen flux and growth in Arabidopsis

Álvaro Costa-Broseta, MariCruz Castillo and José León*

Figure S1 Figure S2 Table S1 Table S2 Table S3 Table S4

Figue S1. Phylogenetric tree of plant orthologues of Arabidopsis NiR1. Data collected from EggNOG 5.0 (http://eggnog5.embl.de/#/app/home).

Figure S2. Generation of *nir1-1* mutant plants by CRISPR/Cas9 technology. A, Scheme showing the process for the generation of a transgenic plant expressing both Cas9 and a guide with a scaffold to induce a mutation in the *NIR1* locus. The NiR1 specific guide was subcloned in the pDONR207-Cas9 vector via SLIM (two separate inverse PCRs with tailed primers) and hybridization. The construction was amplified and ligated with the egg cell-specific promoter *pHEE2E-TRI* that carries the CRISPR/Cas9 technology. Such a vector was transformed into Agrobacterium and then into Arabidopsis plants. The names of the primers used for the PCRs are included. B, Scheme showing the process for the generation of a homozygous *nir1-1* mutant plant. In purple it is highlighted the region of the peptide sequence conserved from the wild type NIR1 protein. * represents the stop codon. In light blue it is highlighted the region of the *NIR1* gene corresponding to the designed specific *NIR1* guide. Bottom panel shows a 2% agarose gel electrophoresis of the genotyping via RFLP (amplifying by PCR and cutting with *AluI*) of a wild type, heterozygous and homozygous *nir1-1* plant, all three from a second generation of transgenic *pU6::gNIR1-1* plants. The size of the bands is shown at the right side of panel.

Table S1. List of NiR1 (Q39161) peptides identified in *35S:3xHA-NiR1* plants carrying nitration, S-nitrosylation or ubiquitylation sites. Plants were treated with 50 mM ABA for 3h to generate endogenous NO accumulation. Nine independent samples were analyzed, and one miss cleavage was allowed in peptide identification.

Saguanca	Modifications	VCom		ΔM	Missed
Sequence	Modifications			[ppm]	Cleavages
AVLEAyR	Y6(Nitro)	1,30	866,43633	-0,42	0
AVLEAyR	Y6(Nitro)	1,23	866,43590	-0,91	0
AVLEAyR	Y6(Nitro)	1,01	866,43651	-0,21	0
AVLEAyR	Y6(Nitro)	1,46	866,43620	-0,56	0
AVLEAyR	Y6(Nitro)	1,15	866,43675	0,07	0
AVLEAyR	Y6(Nitro)	1,48	866,43627	-0,49	0
AVLEAyR	Y6(Nitro)	1,48	866,43596	-0,84	0
aVLEAyRDLGTR	N-Term(Acetyl); Y6(Nitro)	1,80	1450,72693	-1,11	1
GLVAcTGSQFcGQ AIIETK	C5(Nitrosyl); C11(Nitrosyl)	2,12	1983,93620	4,96	0
KyGEDGcADVTTR	Y2(Nitro); C7(Nitrosyl)	1,06	1488,59465	-4,95	1
mHWTGCPNTCG QVQVADIGFMGc LTR	N-Term(Acetyl); C23(Nitrosyl)	2,43	2896,26487	6,60	0
dGFFILk	N-Term(Acetyl); K7(GlyGly)	1,34	995,51305	-6,69	0
dGFFILk	N-Term(Acetyl); K7(GlyGly)	0,93	995,51970	0,00	0
dGFFILk	N-Term(Acetyl); K7(GlyGly)	1,26	995,51982	0,12	0
dGFFILKEk	N-Term(Acetyl); K9(GlyGly)	1,35	1252,65886	1,27	1
dGFFILkEK	N-Term(Acetyl); K7(GlyGly)	1,30	1252,65166	-4,48	1
dGFFILKEk	N-Term(Acetyl); K9(GlyGly)	1,27	1252,65203	-4,19	1
dGFFILKEk	N-Term(Acetyl); K9(GlyGly)	1,78	1252,65287	-3,52	1
FGFNLLVGGFFSP k	K14(GlyGly)	1,12	1643,86492	4,14	0
GEEGkPVEGADV YVGGR	K5(GlyGly)	2,93	1832,86455	-7,03	0
iGSDSHIGEIyKK	N-Term(Acetyl); Y11(Nitro)	1,75	1533,74663	-5,08	1
IGSDSHIGEIyKK	Y11(Nitro)	1,32	1491,75163	5,22	1
IGSDSHIGEIyKK	Y11(Nitro)	0,97	1491,75408	6,86	1
kSMEELDSEK	K1(GlyGly)	1,26	1309,59270	-1,06	1
kSMEELDSEK	K1(GlyGly)	1,23	1309,59148	-1,99	1
LADTyGSGELR	Y5(Nitro)	1,26	1226,56426	-0,46	0
LERGSSEDLVNk	K12(GlyGly)	1,14	1460,73821	2,86	1
LERGSSEDLVNk	K12(GlyGly)	1,81	1460,74248	5,79	1
lFMENGIEELAk	N-Term(Acetyl); K12(GlyGly)	1,70	1549,74907	-4,96	0
lFMENGIEELAk	N-Term(Acetyl); K12(GlyGly)	0,99	1549,75017	-4,25	0
nRFSPEPSILMk	N-Term(Acetyl); K12(GlyGly)	1,19	1574,80766	5,11	1
iGSDSHIGEIYkk	N-Term(Acetyl); K12(GlyGly); K13(GlyGly)	1,10	1716,85185	-1,94	1
RDYFGVNPQk	K10(GlyGly)	1,23	1337,66875	6,75	1

SMEELDSEk	K9(GlyGly)	0,99	1181,50725	6,88	0
SSkDDIDVR	K3(GlyGly)	1,29	1148,55217	-1,82	1
SSkDDIDVR	K3(GlyGly)	1,09	1148,56072	5,62	1
tEALLQEPFLk	N-Term(Acetyl); K11(GlyGly)	1,35	1444,77483	4,53	0
yGEDGCADVTTR	Y1(Nitro)	1,08	1331,51030	-4,95	0
yLASVIR	Y1(Nitro)	1,00	866,47185	-1,41	0
yLASVIRK	Y1(Nitro)	1,04	994,56731	-0,73	1
yLASVIRK	Y1(Nitro)	1,29	994,56713	-0,92	1
yLASVIRK	Y1(Nitro)	1,29	994,56761	-0,43	1
YLASVIRk	K8(GlyGly)	0,95	1063,62615	0,24	1
yLASVIRK	Y1(Nitro)	1,36	994,56743	-0,61	1
YLASVIRk	K8(GlyGly)	0,98	1063,62615	0,24	1
yLASVIRK	Y1(Nitro)	1,08	994,56902	0,98	1

Table S2. In silico prediction of ubiquitylation sites in Arabidopsis NiR1 protein.

Prediction was performed by using the UbPred tool (www.ubpred.org; Radivojac et al., 2010).

>SP|Q39161|NIR_ARATH FERREDOXIN--NITRITE REDUCTASE NIR1

MTSFSLTFTSPLLPSSSTKPKRSVLVAAAQTTAPAESTASVDADRLEPRVELKDGFFILKEKFRKGINPQ EKVKIEREPMKLFMENGIEELAKKSMEELDSEKSSKDDIDVRLKWLGLFHRRKHQYGKFMMRLKLPNGVT TSAQTRYLASVIRKYGEDGCADVTTRQNWQIRGVVLPDVPEILKGLASVGLTSLQSGMDNVRNPVGNPIA GIDPEEIVDTRPYTNLLSQFITANSQGNPDFTNLPRKWNVCVVGTHDLYEHPHINDLAYMPANKDGRFGF NLLVGGFFSPKRCEEAIPLDAWVPADDVLPLCKAVLEAYRDLGTRGNRQKTRMMWLIDELGVEGFRTEVE KRMPNGKLERGSSEDLVNKQWERRDYFGVNPQKQEGLSFVGLHVPVGRLQADDMDELARLADTYGSGELR LTVEQNIIIPNVETSKTEALLQEPFLKNRFSPEPSILMKGLVACTGSQFCGQAIIETKLRALKVTEEVER LVSVPRPIRMHWTGCPNTCGQVQVADIGFMGCLTRGEEGKPVEGADVYVGGRIGSDSHIGEIYKKGVRVT ELVPLVAEILIKEFGAVPREREENED

Position	Sequence	Ubiquitylation	Score
19	TSPLLPSSSTKPKRSVLVAAA	Y	0.62
21	PLLPSSSTKPKRSVLVAAAQT	Y	0.68
53	ADRLEPRVELKDGFFILKEKF	Ν	0.42
60	VELKDGFFILKEKFRKGINPQ	Ν	0.50
62	LKDGFFILKEKFRKGINPQEK	Ν	0.49
65	GFFILKEKFRKGINPQEKVKI	Y	0.51
72	KFRKGINPQEKVKIEREPMKL	Y	0.55
74	RKGINPQEKVKIEREPMKLFM	Y	0.69
81	EKVKIEREPMKLFMENGIEEL	Ν	0.45
93	FMENGIEELAKKSMEELDSEK	Y	0.54
94	MENGIEELAKKSMEELDSEKS	Y	0.67
103	KKSMEELDSEKSSKDDIDVRL	Y	0.59
106	MEELDSEKSSKDDIDVRLKWL	Y	0.59
114	SSKDDIDVRLKWLGLFHRRKH	Ν	0.46
123	LKWLGLFHRRKHQYGKFMMRL	Y	0.54
128	LFHRRKHQYGKFMMRLKLPNG	Y	0.62
134	HQYGKFMMRLKLPNGVTTSAQ	Y	0.52
154	QTRYLASVIRKYGEDGCADVT	Ν	0.36
184	VVLPDVPEILKGLASVGLTSL	Ν	0.45
247	GNPDFTNLPRKWNVCVVGTHD	Ν	0.49
274	INDLAYMPANKDGRFGFNLLV	Ν	0.20
291	NLLVGGFFSPKRCEEAIPLDA	Y	0.69
313	VPADDVLPLCKAVLEAYRDLG	Y	0.65
330	RDLGTRGNRQKTRMMWLIDEL	Ν	0.49
351	GVEGFRTEVEKRMPNGKLERG	Y	0.80
357	TEVEKRMPNGKLERGSSEDLV	Y	0.80
369	ERGSSEDLVNKQWERRDYFGV	Y	0.85
383	RRDYFGVNPQKQEGLSFVGLH	Ν	0.43
436	NIIIPNVETSKTEALLQEPFL	Ν	0.38
447	TEALLOEPFLKNRFSPEPSIL	Y	0.71

459	RFSPEPSILMKGLVACTGSQF	Y	0.53
478	QFCGQAIIETKLRALKVTEEV	Ν	0.17
483	AIIETKLRALKVTEEVERLVS	Ν	0.25
530	MGCLTRGEEGKPVEGADVYVG	Y	0.57
554	GSDSHIGEIYKKGVRVTELVP	Ν	0.36
555	SDSHIGEIYKKGVRVTELVPL	Ν	0.36
572	LVPLVAEILIKEFGAVPRERE	Ν	0.40

Table S3. Orthologues of Arabidopsis NiR1 in phosynthetic organisms. Data were collected from the EggNOG 5.0 database (http://eggnog5.embl.de/#/app/home).

	Orthologous sequences		
Arabidopsis	Prunus persica	1 seqs	3760.EMJ02379,
thaliana (1 seqs)	Oruza gluminatula	2 seas	40148.OGLUM01G17300.3
3702 AT2G15620 1	- · y	1-	40148 OGLUM02G34190 1
0702.1112010020.17	Ostrossossus tauri	1	70448 001012
	Ostreococcus tuuri	1 seqs	70440.Q01012 ,
	Nicotiana sylvestris	3 seqs	4096.XP_009776470.1,
			4096.XP_009783559.1,
			4096.XP_009790010.1 ,
	Linum usitatissimum	2 seqs	4006.Lus10014059, 4006.Lus10019856,
	Prunus mume	1 seqs	102107.XP_008236500.1,
	Oryza glaberrima	1 seqs	4538.ORGLA01G0123800.1,
	Arabidovsis lurata	1 seas	59689.scaffold 303747.1,
	Triticum aestivum	1 seas	4565 Traes 6DL 5C536D7201
	Omiza nunctata	1 6096	4537 OPUNC02C31130 1
	Dume x	1 5095	225117 XP_0093462461
	Deview view to	1 seqs	223117.XI _009340240.1 ;
	Panicum virgatum	5 seqs	38727.Pavir.Aa00599.1.p,
			38727.Pavir.Gb01294.1.p ,
			38727.Pavir.J03218.1.p ,
	Aquilegia coerulea	1 seqs	218851.Aquca_015_00061.1 ,
	Arabis alpina	1 seqs	50452.A0A087HD24 ,
	Cucumis melo	1 seqs	3656.XP_008456121.1 ,
	Theobroma cacao	1 seqs	3641.EOX98261 ,
	Tarenava hassleriana	2 seas	28532.XP 010530781.1
			28532 XP_010548020 1
	Tog mans	2 60.06	4577 CRMZM2C079381_P01
	Lea mays	2 3043	4577 CRMZM2C102959 P01
	Omuz a catiza	2	4577.GRWZWZG102939_101,
	Oryza sattoa	2 seqs	4550.050110557100-02,
			4530.050210765900-00 ,
	Citrus clementina	1 seqs	85681.XP_006423019.1,
	Nelumbo nucifera	1 seqs	4432.XP_010263547.1 ,
	Ricinus communis	1 seqs	3988.XP_002518763.1 ,
	Carica papaya	1 seqs	3649.evm.model.supercontig_62.8 ,
	Nicotiana tomentosiformis	3 seqs	4098.XP_009625017.1 ,
			4098.XP_009628462.1 ,
			4098.XP_009628648.1,
	Micromonas sp.	1 seqs	296587.XP 002507511.1,
	Morus notabilis	1 seas	981085.XP 010107937.1
	Boechera stricta	1 seas	72658 Bostr 18351s0035 1 p
	Ostrococcus 'lucimarinus'	1 5095	2/2159 ABO98213
	Caldioria sulnhuraria	1 sogs	130081 XP 005704382 1
		1 seqs	4522 OP02C40(E0.1
	Oryza brachyanina	1 seqs	4555.0002G40650.1,
	Giycine max	2 seqs	3847.GLYMA02G14910.1,
			3847.GLYMA07G33570.1 ,
	Erythranthe guttata	1 seqs	4155.Migut.B00351.1.p ,
	Brachypodium distachyon	1 seqs	15368.BRADI3G57990.1 ,
	Brassica oleracea	2 seqs	3712.Bo7g021400.1 , 3712.Bo9g023870.1 ,
	Beta vulgaris	1 seqs	161934.XP_010675576.1,
	Cicer arietinum	1 seqs	3827.XP_004505220.1,
	Oryza barthii	2 seqs	65489.OBART01G15110.1,
	0	-	65489.OBART02G33730.2,
	Musa acuminata	1 seas	4641.GSMUA Achr9P15320 001
	Bigelozniella natans	1 seas	227086 IGL V11 50588
	Salanum lucanersicum	2 5005	4081 Solve01g108630 2 1
	Solunum lycopersicum	2 3043	4081 Solve10g050890 1 1
	C - 1	0	4001.501yc10g050050.1.1 ,
	solunum tuberosum	2 seqs	4113.FG5C0003DW1400021310,
	77 141		4113.PGSC0003DM11400066399,
	Triticum urartu	1 seqs	4572.TRIUR3_06445-P1 ,
	Coccomyxa subellipsoidea	1 seqs	248742.XP_005646410.1,
	Medicago truncatula	1 seqs	3880.AES90166,
	Malus domestica	1 seqs	3750.XP_008373138.1,
	Chlorella variabilis	1 seqs	554065.XP_005844715.1,

Fragaria vesca	1 seqs	57918.XP_004294803.1,
Sorghum bicolor	1 seqs	4558.Sb04g034160.1,
Setaria italica	1 seqs	4555.Si016715m ,
Chlamydomonas reinhardtii	1 seqs	3055.EDP00895,
Phoenix dactylifera	1 seqs	42345.XP_008778364.1 ,
Oryza rufipogon	2 seqs	4529.ORUFI01G16740.1,
		4529.ORUFI02G35220.1,
Cucumis sativus	1 seqs	3659.XP_004163915.1 ,
Phaseolus vulgaris	1 seqs	3885.XP_007156512.1,
Populus trichocarpa	1 seqs	3694.POPTR_0004s14810.1,
Selaginella moellendorffii	2 seqs	88036.EFJ11500, 88036.EFJ18805,
Micromonas pusilla	1 seqs	38833.XP_003057941.1,
Camelina sativa	4 seqs	90675.XP_010467309.1,
		90675.XP_010468620.1,
		90675.XP_010488973.1,
		90675.XP_010517336.1 ,
Citrus sinensis	1 seqs	2711.XP_006487107.1,
Guillardia theta	1 seqs	55529.EKX33329,
Hordeum vulgare	1 seqs	4513.MLOC_43860.2 ,
Manihot esculenta	1 seqs	3983.cassava4.1_004233m ,
Gossypium raimondii	1 seqs	29730.Gorai.013G044200.1,
Capsella rubella	1 seqs	81985.XP_006297287.1,
Oryza meridionalis	1 seqs	40149.OMERI02G31280.1,
Physcomitrella patens	3 seqs	3218.PP1S197_146V6.4,
		3218.PP1S214_53V6.2,
		3218.PP1S53_52V6.1,
Vitis vinifera	1 seqs	29760.VIT_03s0063g00370.t01,
Eucalyptus grandis	1 seqs	71139.XP_010028471.1 ,
Oryza nivara	2 seqs	4536.ONIVA01G17600.1,
		4536.ONIVA02G33460.1,
Aegilops tauschii	1 seqs	37682.EMT07001,
Leersia perrieri	1 seqs	77586.LPERR02G27570.1,
Eutrema salsugineum	1 seqs	72664.XP_006409539.1,
Amborella trichopoda	1 seqs	13333.ERM93470,
Brassica rapa	2 seqs	3711.Bra015227.1-P , 3711.Bra039844.1-P ,
Volvox carteri	1 seqs	3067.XP_002955216.1

Table S4. Oligonucleotides used in this work.

Name	Sequence (5'to 3')	AGI	Application
M13-F	GTAAAACGACGGCCAG		Cloning pCR8/GW/TOPO
M13-R	CAGGAAACAGCTATGAC		Cloning pCR8/GW/TOPO
35S-seq	CCTTCGCAAGACCCTTCCTCTA		Cloning pAlligator2
NOS-term-rev	GCAAGACCGGCAACAGGATTCAATC		Cloning pAlligator2
NIR1cds-F	ATGACTTCTTTCTCTCTCACTTTCACATCTCC	AT2G15620	Cloning NIR1
NIR1cds-R	ATCTTCATTCTCTTCTCTTTCTCTAGGCACAG	AT2G15620	Cloning NIR1
seqNIR1_F	GTGGTATGGATAACGTGAG	AT2G15620	Cloning NIR1
SLIM_F	GTTTTAGAGCTAGAAATAGCAAG		Cloning NIR1guide
SLIM_R	CAATCACTACTTCGACTCT		Cloning NIR1guide
SLIM_F_NiR1(1)	GCCGCTCAGACCACAGCTCgttttagagctagaaatagcaag	AT2G15620	Cloning NIR1guide
SLIM_R_NiR1(1)	GAGCTGTGGTCTGAGCGGCcaatcactacttcgactct	AT2G15620	Cloning NIR1guide
pDONR_F	TCGCGTTAACGCTAGCATGGATCTC		Cloning NIR1 guide
pDONR_R	GTAACATCAGAGATTTTGAGACAC		Cloning NIR1guide
P1b-HindIII	TTTTTTAAGCTTGTTTAAACAAGCTTTCGTTGAAC		Cloning NIR1guide
P4b-SpeI	TTTTTTACTAGTGGTTTAAACAAAAAAAGCACCG		Cloning NIR1guide
pU6seqF	AGGCATCGAACCTTCAAGAATTTG		Cloning NIR1guide
pU6seqR	CTTCTCTTCTTCAGATTCC		Cloning NIR1guide
Hyg-F	CGGCGAGTACTTCTACACAGC		Genotyping NIR1 guide
Hyg-R	CTGATCGAAAAGTTCGACAGC		Genotyping NIR1 guide
NIR1cds-F	ATGACTTCTTTCTCTCTCACTTTCACATCTCC	AT2G15620	Genotyping nir1-1
seqnir1-1-R	GATCCCTTTTCGAAACTTC	AT2G15620	Genotyping nir1-1