Calmodulin Binding Proteins and Alzheimer’s Disease: Biomarkers, Regulatory Enzymes and Receptors That Are Regulated by Calmodulin
Abstract
:1. Introduction
2. Biomarker Neurogranin and Synaptic Degeneration
3. Neurogranin, LTP and LTD
4. CaMKII and Calcineurin Regulate LTP and LTD
5. Amyloid β Oligomers, mGluR and NMDARs
6. NMDARs Bind Calmodulin
7. LTP and LTD Regulation by Calmodulin
8. CaM and Amyloid Beta Regulate PMCA
9. Ryanodine Receptors, CaM and AD
10. Orai and STIM2: A Calcium Sensor and Calmodulin Binding Protein
11. Adenosine A2A Receptor
12. Targeting Calmodulin in Dementia
13. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
A2AR | Adenosine A2A receptor |
Aβ | Amyloid beta |
AβPP | Amyloid-β precursor protein |
AD | Alzheimer’s disease |
AMPAR | α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor |
BACE1 | Beta-secretase 1 |
CaM | Calmodulin |
CaMBD | CaM-binding domain |
CaMBPs | CaM binding proteins |
CaMKII | Calcium/CaM-dependent kinase II |
CaN | Calcineurin |
CRAC | Calcium release-activated calcium channels |
CSF | Cerebrospinal fluid |
EF hand | Calcium ion-binding helix-loop-helix motif |
LTP | Long-term potentiation |
LTD | Long-term depression |
MARCKs | Myristoylated, alanine-rich, C-kinase substrate |
mGluR5 | Metabotropic glutamate receptor 5 |
NFTs | Neurofibrillary tangles |
Ng | Neurogranin |
NMDAR | N-methyl-d-aspartate receptor |
Orai1 | Calcium Release-Activated Calcium Modulator 1 |
PMCA | Plasma membrane calcium ATPase |
pTau | Phosphorylated Tau |
ROS | Reactive oxygen species |
RyRs | Ryanodine receptors |
STIM1, 2 | Stromal interaction molecule 1, 2 |
TRPC1 | Transient receptor potential canonical 1 |
References
- Alzheimer’s Association Report: 2020 Alzheimer’s disease facts and figures. Alzheimers Dement. 2020, 16, 391–460. [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Tanaka, M.; Toldi, J.; Vécsei, L. Exploring the Etiological Links behind Neurodegenerative Diseases: Inflammatory Cytokines and Bioactive Kynurenines. J. Mol. Sci. 2020, 21, 2431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Day, D.H.; Myre, M.A. Calmodulin-binding domains in Alzheimer’s disease proteins: Extending the calcium hypothesis. Biochem. Biophys. Res. Commun. 2004, 230, 1051–1054. [Google Scholar] [CrossRef]
- Khachaturian, Z.S. Calcium hypothesis of Alzheimer’s disease and brain aging. Ann. N. Y. Acad. Sci. 1994, 747, 1–11. [Google Scholar] [CrossRef]
- Marx, J. Fresh evidence points to an old suspect: Calcium. Science 2007, 318, 384–385. [Google Scholar] [CrossRef]
- O’Day, D.H. Alzheimer’s Disease: A short introduction to the calmodulin hypothesis. AIMS Neurosci. 2019, 6, 231–239. [Google Scholar] [CrossRef]
- O’Day, D.H.; Eshak, K.; Myre, M.A. Calmodulin Binding Proteins and Alzheimer’s Disease: A Review. J. Alzheimers Dis. 2015, 46, 553–569. [Google Scholar] [CrossRef] [Green Version]
- Chavez, S.E.; O’Day, D.H. Calmodulin binds to and regulates the activity of beta-secretase (BACE1). In Current Research on Alzheimers Disease; Nova Science Publishers, Inc.: Hauppage, NY, USA, 2007; pp. 37–47. [Google Scholar]
- Myre, M.A.; Tesco, G.; Tanzi, R.E.; Wasco, W. Calmodulin binding to APP and the APLPs. In Molecular Mechanisms of Neurodegeneration. In Proceedings of the A Joint Biochemical Society/Neuroscience Ireland Focused Meeting, Dublin, Ireland, 13–16 March 2005. [Google Scholar]
- Canobbio, I.; Catricalà, S.; Balduini, C.; Torti, M. Calmodulin regulates the non-amyloidogenic metabolism of amyloid precursor protein in platelets. Biochim. Biophys. Acta. 2011, 1813, 500–506. [Google Scholar] [CrossRef] [Green Version]
- Nagano, O.; Murakami, D.; Hartmann, D.; De Strooper, B.; Saftig, P.; Iwatsubo, T.; Nakajima, M.; Shinohara, M.; Saya, H. Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca2+ influx and PKC activation. J. Cell Biol. 2004, 165, 893–902. [Google Scholar] [CrossRef]
- Kuhn, P.H.; Wang, H.; Dislich, B.; Colombo, A.; Zeitschel, U.; Ellwart, J.W.; Kremmer, E.; Rossner, S.; Lichtenthaler, S.F. ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J. 2010, 29, 3020–3032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schindler, S.E.; Li, Y.; Todd, K.W.; Herries, E.M.; Henson, R.L.; Gray, J.D.; Wang, G.; Graham, D.L.; Shaw, L.M.; Trojanowski, J.Q.; et al. Emerging cerebrospinal fluid biomarkers in autosomal dominant Alzheimer’s disease. Alzheimers Dement. 2019, 15, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Sutphen, C.L.; McCue, L.; Herries, E.M.; Xiong, C.; Ladenson, J.H.; Holtzman, D.M.; Fagan, A.M. On behalf of ADNI, 2018. Longitudinal decreases in multiple cerebrospinal fluid biomarkers of neuronal injury in symptomatic late onset Alzheimer’s disease. Alzheimers Dement. 2018, 14, 869–879. [Google Scholar] [CrossRef]
- Liu, W.; Lin, H.; He, X.; Chen, L.; Dai, Y.; Jai, W.; Xue, X.; Tao, J.; Chen, L. Neurogranin as a cognitive biomarker in cerebrospinal fluid and blood exosomes for Alzheimer’s disease and mild cognitive impairment. Translat. Psych. 2020, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- DeKosky, S.T.; Scheff, S.W. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: Correlation with cognitive severity. Ann. Neurol. 1990, 27, 457–464. [Google Scholar] [CrossRef]
- Scheff, S.W.; Price, D.A.; Schmitt, F.A.; DeKosky, S.T.; Mufson, E.J. Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 2007, 68, 1501–1508. [Google Scholar] [CrossRef]
- Morrison, J.H.; Baxter, M.G. The ageing cortical synapse: Hallmarks and implications for cognitive decline. Nature Rev. Neurosci. 2012, 13, 240–250. [Google Scholar] [CrossRef]
- Zhong, L.; Cherry, T.; Bies, C.E.; Florence, M.A.; Gerges, N.Z. Neurogranin enhances synaptic strength through its interaction with calmodulin. EMBO J. 2009, 28, 3027–3039. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Massimo, L.; Cole, S.; Novere, N.L.; Edelstein, S.J. Neurogranin stimulates Ca2+/calmodulin-dependent kinase II by suppressing calcineurin activity at specific calcium spike frequencies. PLoS Comput. Biol. 2020, 16, e1006991. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, L.; Chandrasekar, A.; Wand, X.; Putkey, J.A.; Waxham, M.N. Neurogranin alters the structure and calmodulin binding properties of calmodulin. J. Biol. Chem. 2014, 3, 14644–14655. [Google Scholar] [CrossRef] [Green Version]
- Bogdanovic, N.; Davidsson, P.; Gottfries, J.; Volkna, I.; Winblad, B.; Blennow, K. Regional and cellular distribution of synaptic proteins in the normal human brain. Brain Aging 2002, 2, 18–30. [Google Scholar]
- Huang, K.P.; Huang, F.L. Calcium-sensitive translocation of calmodulin and neurogranin between Soma and dendrites of mouse hippocampal CA1 neurons. ACS Chem. Neurosci. 2011, 2, 223–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, A.; Gerges, N.Z. Neurogranin regulates CaM dynamics at dendritic spines. Sci. Rep. 2015, 5, 11135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidsson, P.; Blennow, K. Neurochemical dissection of synaptic pathology in Alzheimer’s disease. Int. Psychogeriatr. 1998, 10, 11–23. [Google Scholar] [CrossRef]
- Thorsell, A.; Bjerke, M.; Gobom, J.; Brunhage, E.; Vanmechelen, E.; Andreasen, N.; Hansson, O.; Minthon, L.; Zetterberg, H.; Blennow, K. Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer’s disease. Brain Res. 2010, 1362, 13–22. [Google Scholar] [CrossRef]
- Kvartsberg, H.; Duits, F.H.; Ingelsson, M.; Andreasen, N.; Öhrfelt, A.; Andersson, K.; Brinkmalm, G.; Lannfelt, L.; Minthon, L.; Hansson, O. Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer’s disease. Alzheimers Dement. 2015, 11, 1180–1190. [Google Scholar] [CrossRef]
- Kester, M.I.; Teunissen, C.E.; Crimmins, D.L.; Herries, E.M.; Ladenson, J.H.; Scheltens, P.; Van Der Flier, W.M.; Morris, J.C.; Holtzman, D.M.; Fagan, A.M. Neurogranin as a cerebrospinal fluid biomarker for synaptic loss in symptomatic Alzheimer disease. JAMA Neurol. 2015, 72, 1275–1280. [Google Scholar] [CrossRef] [Green Version]
- Portelius, E.; Zetterberg, H.; Skillbäck, T.; Törnqvist, U.; Andreasson, U.; Trojanowski, J.Q.; Weiner, M.W.; Shaw, L.M.; Mattsson, N.; Blennow, K. Cerebrospinal fluid neurogranin: Relation to cognition and neurodegeneration in Alzheimer’s disease. Brain 2015, 138, 3373–3385. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, N.; Insel, P.S.; Palmqvist, S.; Portelius, E.; Zetterberg, H.; Weiner, M.; Blennow, K.; Hansson, O. Cerebrospinal fluid tau, neurogranin, and neurofilament light in Alzheimer’s disease. EMBO Mol. Med. 2016, 8, 1184–1196. [Google Scholar] [CrossRef]
- Chang, J.W.; Schumacher, E.; Coulter, P.M.; Vinters, H.V.; Watson, J.B. Dendritic translocation of RC3/neurogranin mRNA in normal aging, Alzheimer disease and fronto-temporal dementia. J. Neuropathol. Exp. Neurol. 1997, 56, 1105–1118. [Google Scholar] [CrossRef]
- George, A.J.; Gordon, L.; Beissbarth, T.; Koukoulas, I.; Holsinger, R.M.; Perreau, V.; Cappai, R.; Tan, S.-S.; Masters, C.L.; Scott, H.S.; et al. A serial analysis of gene expression profile of the Alzheimer’s disease Tg2576 mouse model. Neurotox. Res. 2010, 17, 360–379. [Google Scholar] [CrossRef]
- D’Alcantara, P.; Schiffmann, S.N.; Swillens, S. Bidirectional synaptic plasticity as a consequence of interdependent Ca2+-controlled phosphorylation and dephosphorylation pathways. Eur. J. Neurosci. 2003, 17, 2521–2528. [Google Scholar] [CrossRef]
- Stefan, M.I.; Edelstein, S.J.; Le Novere, N. An allosteric model of calmodulin explains differential activation of PP2B and CaMKII. Proc. Natl. Acad. Sci. USA 2008, 105, 10768–10773. [Google Scholar] [CrossRef] [Green Version]
- Martzen, M.R.; Slemmon, J.R. The dendritic peptide neurogranin can regulate a calmodulin-dependent target. J. Neurochem. 1995, 64, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Penny, C.J.; Gold, M.G. Mechanisms for localising calcineurin and CaMKII in dendritic spines. Cell Signal. 2018, 49, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Takemoto-Kimura, S.; Suzuki, K.; Horigane, S.-I.; Kamijo, S.; Inoue, M.; Sakamoto, M.; Fujii, H.; Bito, H. Calmodulin kinases: Essential regulators in health and disease. J. Neurochem. 2017, 141, 808–818. [Google Scholar] [CrossRef] [Green Version]
- Popugaeva, E.; Pchitskaya, E.; Bezprozvanny, I. Dysregulation of neuronal calcium homeostasis in Alzheimer’s disease—A therapeutic opportunity? Biochem. Biophys. Res. Commun. 2017, 483, 998–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reese, L.C.; Laezza, F.; Woltjer, R.; Taglialatela, G. Dysregulated phosphorylation of (Ca2+)/calmodulin-dependent protein kinase II-alpha in the hippocampus of subjects with mild cognitive impairment and Alzheimer’s disease. J. Neurochem. 2001, 119, 791–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, A.; Geise, K.P. Calcium/calmodulin-dependent kinase II and Alzheimer’s disease. Mol. Brain 2015, 8, 78. [Google Scholar] [CrossRef] [Green Version]
- Taglialatella, G.; Rastellini, C.; Cicalese, L. Reduced incidence of dementia in solid organ transplant patients treated with calcineurin inhibitors. J. Alzheimers Dis. 2015, 47, 329–333. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.S.; Hwang, J.Y.; Son, S.M.; Kim, Y.H.; Moon, M.; Inhee, M.J. FK506 reduces amyloid plaque burden and induces MMP-9 in AbPP/PS1 double transgenic mice. J. Alzheimers Dis. 2010, 22, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozkalne, A.; Hyman, B.T.; Spires-Jones, T.L. Calcineurin inhibition with FK506 ameliorates dendritic spine density deficits in plaque-bearing Alzheimer model mice. Neurobiol. Dis. 2011, 41, 650–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yabuki, Y.; Matsuo, K.; Hirano, K.; Shimoda, Y.; Moriguchi, S.; Fukunaga, K. Combined memantine and donepezil treatment improves behavioural and psychological symptoms of dementia-like behaviours in olfactory bulbectomized mice. Pharmacology 2017, 99, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Reddy, P.H. Role of glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimers Dis. 2017, 57, 1041–1048. [Google Scholar] [CrossRef] [Green Version]
- Cline, E.N.; Bicca, M.A.; Viola, K.L.; Klein, W.L. The amyloid-β oligomer hypothesis: Beginning of the third decade. J. Alzheimers Dis. 2018, 64, S567–S610. [Google Scholar] [CrossRef] [Green Version]
- Hu, N.W.; Klyubin, I.; Anwyl, R.; Rowan, M.J. GluN2B subunit-containing NMDA receptor antagonists prevent Abeta-mediated synaptic plasticity disruption in vivo. Proc. Natl. Acad. Sci. USA 2009, 106, 20504–20509. [Google Scholar] [CrossRef] [Green Version]
- Malinow, R. New developments on the role of NMDA receptors in Alzheimer’s disease. Curr. Opin. Neurobiol. 2012, 22, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Hulme, S.R.; Jones, O.D.; Abraham, W.C. Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci. 2013, 36, 353–362. [Google Scholar] [CrossRef]
- Opazo, P.; da Silva, S.V.; Carta, M.; Breillat, C.; Coultrap, S.J.; Grillo-Bosch, D.; Sainlos, M.; Coussen, F.; Bayer, K.U.; Mulle, C.; et al. CaMKII metaplasticity drives Aβ oligomer-mediated synaptotoxicity. Cell Rep. 2018, 23, 3137–3145. [Google Scholar] [CrossRef]
- Gu, Z.; Liu, W.; Yan, Z. Beta-Amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulin-dependent protein kinase II synaptic distribution. J. Biol. Chem. 2009, 284, 10639–10649. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Watson, J.B.; Xie, C.W. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. J. Neurophysiol. 2004, 92, 2853–2858. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, M.D.; Zhang, S.; Bernhardt, J.P.; Huganir, R.L. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 1996, 84, 745–755. [Google Scholar] [CrossRef] [Green Version]
- Ataman, Z.A.; Gakhar, L.; Sorenson, B.R.; Hell, J.W.; Shea, M.A. The NMDA receptor NR1 C1 region bound to calmodulin: Structural insights into functional differences between homologous domains. Structure 2007, 15, 1603–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehlers, M.D.; Tingley, W.G.; Huganir, R.L. Regulated Subcellular Distribution of the NR1 Subunit of the NMDA Receptor. Science 1995, 269, 1734–1737. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ehlers, M.D.; Bernhardt, J.P.; Su, C.T.; Huganir, R.L. Calmodulin mediates calcium-dependent inactivation of N-methylD-aspartate receptors. Neuron 1998, 21, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Iacobucci, G.J.; Popescu, G.K. Resident calmodulin primes NMDA receptors for Ca2+-dependent inactivation. Biophys. J. 2017, 113, 2236–2248. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Lee, J.; Choi, K.Y.; Hepp, R.; Lee, J.-Y.; Lim, M.K.; Chatani-Hinze, M.; Roche, P.A.; Kim, D.G.; Ahn, Y.S.; et al. Calmodulin dynamically regulates the trafficking of the metabotropic glutamate receptor mGluR5. Proc. Nat. Acad. Sci. USA 2008, 105, 12575–12580. [Google Scholar] [CrossRef] [Green Version]
- Jin, D.-Z.; Guo, M.-L.; Xue, B.; Mao, L.-M.; Wang, J.Q. Differential regulation of CaMKIIa interactions with mGluR5 and NMDA receptors by Ca2+ in neurons. J. Neurochem. 2013, 127, 620–631. [Google Scholar] [CrossRef] [Green Version]
- Krucker, T.; Siggins, G.R.; McNamara, R.K.; Lindsley, K.A.; Dao, A.; Allison, D.W.; De Lecea, L.; Lovenberg, T.W.; Sutcliffe, J.G.; Gerendasy, D.D. Targeted disruption of RC3 reveals a calmodulin-based mechanism for regulating metaplasticity in the hippocampus. J. Neurosci. 2002, 22, 5525–5535. [Google Scholar] [CrossRef]
- Zhong, L.; Gerges, N.Z. Neurogranin targets calmodulin and lowers the threshold for the induction of long-term potentiation. PLoS ONE 2012, 7, e41275. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Kaleka, K.S.; Gerges, N.Z. Neurogranin phosphorylation fine-tunes long-term potentiation. Eur. J. Neurosci. 2011, 33, 244–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berrocal, M.; Sepulveda, M.R.; Vazquez-Hernandez, M.; Mata, A.M. Calmodulin antagonizes amyloid-β peptides-mediated inhibition of brain plasma membrane Ca2+-ATPase. Biochim. Biophys. Acta. 2012, 1822, 961–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strehler, E.E. Plasma membrane calcium ATPases as novel candidates for therapeutic agent development. J. Pharm. Pharmaceut. Sci. 2013, 16, 190–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbacho, I.; Berrocal, M.; Torok, K.; Mata, A.M.; Gutierrez-Merino, C. High affinity binding of amyloid β-peptide to calmodulin: Structural and functional implications. Biochem. Biophys. Res. Commun. 2017, 486, 992–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berrocal, M.; Corbacho, I.; Sepulveda, M.R.; Gutierrez-Merino, C.; Mata, A.M. Phospholipids and calmodulin modulate the inhibition of PMCA activity by tau. Biochim. Biophys. Acta. 2017, 1864, 1028–1035. [Google Scholar] [CrossRef]
- Kushnir, A.; Wajsberg, B.; Marks, A.R. Ryanodine receptor dysfunction in human disorders. Biochim. Biophys. Acta 2018, 1865, 1687–1697. [Google Scholar] [CrossRef]
- Chami, M.; Checler, F. Ryanodine receptors: Dual contribution to Alzheimer disease? Channels 2014, 8, 168. [Google Scholar] [CrossRef] [Green Version]
- Oulès, B.; Prete, D.D.; Greco, B.; Zhang, X.; Lauritzen, I.; Sevalle, J.; Moreno, S.; Paterlini-Bréchot, P.; Trebak, M.; Checler, F.; et al. Ryanodine receptors blockade reduces Amyloid-beta load and memory impairments in Tg2576 mouse model of Alzheimer disease. J. Neurosci. 2012, 32, 11820–11834. [Google Scholar] [CrossRef]
- Lanner, J.T.; Georgiou, D.K.; Joshi, A.D.; Hamilton, S.L. Ryanodine receptors: Structure, expression, molecular details, and function in calcium release. Cold Spring Harbor Perspect. Biol. 2010, 2, a003996. [Google Scholar] [CrossRef] [Green Version]
- Rodney, G.G.; Williams, B.Y.; Strasburg, G.M.; Beckingham, K.; Hamilton, S.L. Regulation of RYR1 activity by Ca2+ and calmodulin. Biochemistry 2000, 39, 7807–7812. [Google Scholar] [CrossRef]
- Yuchi, Z.; Kimlicka, L.; Petegem, F.V. Structural insights into disease mutations of the ryanodine receptor. In Genetic Disorders, Chapter 5; Intech Open Science: London, UK, 2012. [Google Scholar]
- Ferreiro, E.; Oliviera, C.R.; Pereira, C. Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide. J. Neurosci. Res. 2004, 76, 872–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Querfurth, H.W.; Jiang, J.; Geiger, J.D.; Selkoe, D.J. Caffeine stimulates amyloid beta peptide release from beta-amyloid precursor protein-tranfected HEK293 cells. J. Neurochem. 1997, 69, 1580–1591. [Google Scholar] [CrossRef] [PubMed]
- McCauley, M.D.; Wehrens, X.H.T. Ryanodine receptor phosphorylation, calcium/calmodulin-dependent protein kinase II and life-threatening arrhythmias. Trends Cardiovasc. Med. 2011, 21, 48–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berna-Erro, A.; Jardin, I.; Salido, G.M.; Rosado, J.A. Role of STIM2 in cell function and physiopathology. J. Physiol. 2017, 595, 3111–3128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berridge, M.J. Capacitative calcium entry. Biochem. J. 1995, 312, 1–11. [Google Scholar] [CrossRef]
- Putney, J.W., Jr. A model for receptor-regulated calcium entry. Cell Calcium 1986, 7, 1–12. [Google Scholar] [CrossRef]
- Desai, P.N.; Zhang, X.; Wu, S.; Janoshazi, A.; Bolimuntha, S.; Putney, J.W.; Trebak, M. Multiple types of calcium channels arising from alternative translation initiation of the Orai1 message. Sci. Signal. 2015, 8, ra74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Zhang, H.; Liu, J.; Popugaeva, E.; Xu, N.J.; Feske, S.; White, C.L., 3rd; Bezprozvanny, I. Reduced synaptic STIM2 expression and impaired store-operated calcium entry cause destabilization of mature spines in mutant presenilin mice. Neuron 2014, 82, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wu, G.; Yang, Y.; Fu, S.; Liu, X.; Kang, H.; Yang, X.; Su, X.-C.; Shen, Y. Calmodulin dissociates the SITM1-Orai complex and STIM1 oligomers. Nature commun. 2018, 8, 1042. [Google Scholar] [CrossRef]
- Kwon, Y.; Hofmann, T.; Montell, C. Integration of phosphoinositide- and calmodulin-mediated regulation of TRPC6. Mol. Cell. 2007, 25, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.; He, Q.; Wang, J. TRPC channels and Alzheimer’s disease. Adv. Exp. Med. Biol. 2017, 976, 73–83. [Google Scholar]
- Rahman, A. The role of adenosine in Alzheimer’s disease. Curr. Neuropharm. 2009, 7, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Arendash, G.W.; Schleif, W.; Rezai-Zadeh, K.; Jackson, E.K.; Zacharia, L.C.; Cracchiolo, J.R.; Shippy, D.; Tan, J. Caffeine protects Alzheimer’s mice against cognitive impairment and reduce brain β-amyloid production. Neuroscience 2006, 142, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Laurent, C.; Burnouf, S.; Ferry, B.; Batalha, V.L.; Coelho, J.E.; Baqi, Y.; Malik, E.; Mariciniak, E.; Parrot, S.; Van der Jeugd, A.; et al. A2A adenosine receptor deletion is protective in a mouse model of Tauopathy. Mol. Psych. 2016, 21, 97–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piirainen, H.; Hellman, M.; Tossavainen, H.; Permi, P.; Kursula, P.; Jaakola, V.-P. Human adenosine A2A receptor binds calmodulin with high affinity in a calcium-dependent manner. Biophys. J. 2015, 108, 903–917. [Google Scholar] [CrossRef] [Green Version]
- Woods, A.S.; Marcellino, D.; Jackson, S.N.; Franco, R.; Ferré, S.; Agnati, L.F.; Fuxe, K. How calmodulin interacts with the adenosine A(2A) and dopamine D(2) receptors. J. Proteome Res. 2008, 7, 3428–3434. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, K.; Chapman, P.; Nilsen, S.; Eckman, C.; Harigaya, Y.; Younkin, S.; Yang, F.; Cole, G. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996, 274, 99–102. [Google Scholar] [CrossRef]
- Dudek, N.L.; Dai, Y.; Muma, N.A. Protective effects of interrupting the binding of calmodulin to mutant huntingtin. J. Neuropathol. Exp. Neurol. 2008, 67, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Dudek, N.L.; Dai, Y.; Muma, N.A. Neuroprotective effects of calmodulin peptide 76-121aa: Disruption of calmodulin binding to mutant huntingtin. Brain Pathol. 2010, 20, 176–189. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Yin, Y.-X.; Mahmood, Q.; Wang, X.-J.; Gao, Y.-P.; Gou, G.-J.; Ahmed, M.M.; Kohji, F.; Du, Y.-Z.; Han, F. Calmodulin inhibitor ameliorates cognitive dysfunction via inhibiting nitrosative stress and NLRP3 signaling in mice with bilateral carotid artery stenosis. CNS Neurosci. Therap. 2017, 23, 818–826. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-J.; Gao, Y.-P.; Lu, N.-N.; Li, W.-S.; Xu, J.-F.; Ying, X.-Y.; Wu, G.; Liao, M.-H.; Tan, C.; Shao, L.-X.; et al. Endogenous polysialic acid based micelles for calmodulin antagonist delivery against vascular dementia. ACS Appl. Mater. Interfaces 2016, 8, 35045–35058. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.H.; Kim, J.H.; Shim, J.S.; Kwon, H.J. A novel Ca2+/calmodulin antagonist HBC inhibits angiogenesis and down-regulated hypoxia-inducible factor. J. Biol. Chem. 2010, 285, 25867–25874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, K.; Yong, S.; Xu, F.; Zhou, T.; McDonald, J.M.; Chen, Y. Calmodulin antagonists promote TRA-8 therapy resistant pancreatic cancer. Oncotarget 2015, 6, 25308–25319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beuverger, P.; Ozoux, M.-L.; Gegis, G.; Glenat, V.; Briand, V.; Philippo, M.-C.; Daveu, C.; Tavares, G.; Roy, S.; Corbier, A.; et al. Reversion of cardiac dysfunction by a novel orally available calcium/calmodulin-dependent protein kinase II inhibitor, RA306, in a genetic model of dilated cardiomyopathy. Cardiovasc. Res. 2020, 126, 329–338. [Google Scholar] [CrossRef] [Green Version]
Protein | Function in AD |
---|---|
Amyloid Pathway | |
Amyloid β (Aβ) 1,2 | Main component of amyloid plaques |
Amyloid β precursor protein 1 (AβPP1) 1,2 | Source of Aβ |
β-Secretase 1 (BACE1) 1 | 1st enzyme in amyloid pathway |
Presenilin-1 (PSEN-1) 1,2 | Component of γ-secretase |
Neurofibrillary Tangle Formation | |
Tau (MAPT) 1 | Microtubule binding, neurofibrillary tangles |
Calcium/calmodulin dependent protein kinase II (CaMKII) 1,2 | Tau phosphorylation; memory, etc. |
Calcineurin (Protein phosphatase 2b) 1,2 | Tau phosphorylation; memory, etc. |
Critical Receptors and Ion Channels | |
Adenosine receptor A2 (AdoA2) 2 | Inhibition improves cognitive function |
Metabotropic muscarinic receptors (mAchR) 1 | Cholinergic hypothesis; neurocommunication |
N-methyl-D-aspartate receptor (NMDAR) 1 | Synaptic plasticity; memory |
plasma membrane Ca2+-ATPase (PMCA) 1,2 | Calcium homeostasis |
Ryanodine receptors (RyR1-3) 2 | Calcium homeostasis |
Store Operated Calcium Entry (Orai/STIM2) 2 | Calcium homeostasis |
Risk Factors and Microglia | |
ATP-binding cassette transporter A7 (ABCA7) 1 | Transport of Aβ across BBB to blood |
Bridging integrator 1 (BIN1) 1 | AßPP1 endocytosis; susceptibility gene |
Synapse and Neuron Loss | |
Neurogranin 2 | LTP, memory, cognition |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Day, D.H. Calmodulin Binding Proteins and Alzheimer’s Disease: Biomarkers, Regulatory Enzymes and Receptors That Are Regulated by Calmodulin. Int. J. Mol. Sci. 2020, 21, 7344. https://doi.org/10.3390/ijms21197344
O’Day DH. Calmodulin Binding Proteins and Alzheimer’s Disease: Biomarkers, Regulatory Enzymes and Receptors That Are Regulated by Calmodulin. International Journal of Molecular Sciences. 2020; 21(19):7344. https://doi.org/10.3390/ijms21197344
Chicago/Turabian StyleO’Day, Danton H. 2020. "Calmodulin Binding Proteins and Alzheimer’s Disease: Biomarkers, Regulatory Enzymes and Receptors That Are Regulated by Calmodulin" International Journal of Molecular Sciences 21, no. 19: 7344. https://doi.org/10.3390/ijms21197344
APA StyleO’Day, D. H. (2020). Calmodulin Binding Proteins and Alzheimer’s Disease: Biomarkers, Regulatory Enzymes and Receptors That Are Regulated by Calmodulin. International Journal of Molecular Sciences, 21(19), 7344. https://doi.org/10.3390/ijms21197344