Molecular Changes Concomitant with Vascular System Development in Mature Galls Induced by Root-Knot Nematodes in the Model Tree Host Populus tremula × P. alba
Abstract
:1. Introduction
2. Results and Discussion
2.1. Transcriptome Overview of Galls at Late Stage
2.2. Gall Transcriptome Reveals Changes in Gene Expression Associated to Primary Cell Wall Formation and Modification
2.3. Structural Genes of Lignification and SCW Formation are Induced in Galls
2.4. Galls are Associated with Major Expression Changes of Transcription Factors Regulating Xylem and Phloem Development and Cell Wall Formation
2.5. Expression of Genes Related to Phytohormones is Modified in Galls
2.6. Comparative Metabolic Profiling of Mature Gall and Root in Poplar
3. Materials and Methods
3.1. Plant and RKN Material, Growth Conditions and Nematode Infection
3.2. RNA-Seq
3.3. Validation of the RNA-Seq Results
3.4. Metabolomics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nicol, J.M.; Turner, S.J.; Coyne, D.L.; Nijs, L.D.; Hockland, S.; Maafi, Z.T. Current Nematode Threats to World Agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Springer: Dordrecht, The Netherlands, 2011; pp. 21–43. [Google Scholar]
- Bartlem, D.G.; Jones, M.G.K.; Hammes, U.Z. Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots. J. Exp. Bot. 2014, 65, 1789–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.G.K.; Goto, D.B. Root-knot Nematodes and Giant Cells. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Springer: Dordrecht, The Netherlands, 2011; pp. 83–100. [Google Scholar]
- Baldacci-Cresp, F.; Sacré, P.-Y.; Twyffels, L.; Mol, A.; Vermeersch, M.; Ziemons, E.; Hubert, P.; Pérez-Morga, D.; El Jaziri, M.; De Almeida-Engler, J.; et al. Poplar–Root Knot Nematode Interaction: A Model for Perennial Woody Species. Mol. Plant-Microbe Interact. 2016, 29, 560–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar, C.; Barcala, M.; Cabrera, J.; Fenoll, C. Overview of Root-Knot Nematodes and Giant Cells. Adv. Bot. Res. 2015, 73, 1–32. [Google Scholar]
- Vanholme, R.; De Meester, B.; Ralph, J.; Boerjan, W. Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 2019, 56, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Jammes, F.; Lecomte, P.; De Almeida Engler, J.; Bitton, F.; Martin-Magniette, M.L.; Renou, J.P.; Abad, P.; Favery, B. Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. Plant J. 2005, 44, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Fuller, V.L.; Lilley, C.J.; Atkinson, H.J.; Urwin, P.E. Differential gene expression in Arabidopsis following infection by plant-parasitic nematodes Meloidogyne incognita and Heterodera schachtii. Mol. Plant Pathol. 2007, 8, 595–609. [Google Scholar] [CrossRef]
- Barcala, M.; García, A.; Cabrera, J.; Casson, S.; Lindsey, K.; Favery, B.; García-Casado, G.; Solano, R.; Fenoll, C.; Escobar, C. Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant J. 2010, 61, 698–712. [Google Scholar] [CrossRef]
- Yamaguchi, Y.L.; Suzuki, R.; Cabrera, J.; Nakagami, S.; Sagara, T.; Ejima, C.; Sano, R.; Aoki, Y.; Olmo, R.; Kurata, T.; et al. Root-Knot and Cyst Nematodes Activate Procambium-Associated Genes in Arabidopsis Roots. Front. Plant Sci. 2017, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Portillo, M.; Topping, J.; Emiliozzi, M.; Solano, R.; Resnick, N.; García-Casado, G.; Cabrera, J.; Lindsey, K.; Andrés, M.F.; Oliveros, J.C.; et al. Distinct and conserved transcriptomic changes during nematode-induced giant cell development in tomato compared with Arabidopsis: a functional role for gene repression. New Phytol. 2013, 197, 1276–1290. [Google Scholar] [CrossRef] [Green Version]
- Shukla, N.; Yadav, R.; Kaur, P.; Rasmussen, S.; Goel, S.; Agarwal, M.; Jagannath, A.; Gupta, R.; Kumar, A. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance res. Mol. Plant Pathol. 2018, 19, 615–633. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, H.M.; Hosseini, P.; Alkharouf, N.W.; Hussein, E.H.; Gamal El-Din, A.E.K.Y.; Aly, M.A.; Matthews, B.F. Analysis of gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways. BMC Genom. 2011, 12, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damiani, I.; Hopkins, J.; Andrio, E.; Balzergue, S.; Hérouart, D.; Baldacci-Cresp, F.; LeComte, P.; Puppo, A.; Abad, P.; Favery, B. Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes. New Phytol. 2012, 194, 511–522. [Google Scholar] [CrossRef]
- Bagnaresi, P.; Sala, T.; Irdani, T.; Scotto, C.; Lamontanara, A.; Beretta, M.; Rotino, G.L.; Sestili, S.; Cattivelli, L.; Sabatini, E. Solanum torvum responses to the root-knot nematode Meloidogyne incognita. BMC Genom. 2013, 14, 540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castañeda, N.E.N.; Alves, G.S.C.; Almeida, R.M.; Amorim, E.P.; Ferreira, C.F.; Togawa, R.C.; Costa, M.M.D.C.; Grynberg, P.; Santos, J.R.P.; Cares, J.E.; et al. Gene expression analysis in Musa acuminata during compatible interactions with Meloidogyne incognita. Ann. Bot. 2017, 119, 915–930. [Google Scholar] [PubMed] [Green Version]
- Santini, L.; De Freitas Munhoz, C.; Bonfim, M.F.; Brandão, M.M.; Inomoto, M.M.; Vieira, M.L.C. Host transcriptional profiling at early and later stages of the compatible interaction between Phaseolus vulgaris and Meloidogyne incognita. Phytopathology 2016, 106, 282–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.-H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef] [Green Version]
- Bindea, G.; Galon, J.; Mlecnik, B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 2013, 29, 661–663. [Google Scholar] [CrossRef]
- Kyndt, T.; Vieira, P.; Gheysen, G.; De Almeida-Engler, J. Nematode feeding sites: unique organs in plant roots. Planta 2013, 238, 807–818. [Google Scholar] [CrossRef]
- Held, M.A.; Jiang, N.; Basu, D.; Showalter, A.M.; Faik, A. Plant Cell Wall Polysaccharides: Structure and Biosynthesis. In Polysaccharides; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–54. [Google Scholar]
- Eklöf, J.M.; Brumer, H. The XTH Gene Family: An Update on Enzyme Structure, Function, and Phylogeny in Xyloglucan Remodeling. Plant Physiol. 2010, 153, 456–466. [Google Scholar] [CrossRef] [Green Version]
- Hyodo, H.; Yamakawa, S.; Takeda, Y.; Tsuduki, M.; Yokota, A.; Nishitani, K.; Kohchi, T. Active gene expression of a xyloglucan endotransglucosylase/hydrolase gene, XTH9, in inflorescence apices is related to cell elongation in Arabidopsis thaliana. Plant Mol. Biol. 2003, 52, 473–482. [Google Scholar] [CrossRef]
- Groover, A.T.; Mansfield, S.D.; DiFazio, S.P.; Dupper, G.; Fontana, J.R.; Millar, R.; Wang, Y. The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium. Plant Mol. Biol. 2006, 61, 917–932. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.B.; Cosgrove, D.J. Xyloglucan and its Interactions with Other Components of the Growing Cell Wall. Plant Cell Physiol. 2015, 56, 180–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthet, S.; Thevenin, J.; Baratiny, D.; Mont-Caulet, N.; Debeaujon, I.; Bidzinski, P.; Leple, J.C.; Huis, R.; Hawkins, S.; Gomez, L.D.; et al. Chapter 5—Role of Plant Laccases in Lignin Polymerization. In Advances in Botanical Research. Lignins Biosynthesis, Biodegradation and Bioengineering; Lapierre, L.J., Lapierre, C., Eds.; Academic Press: Cambridge, MA, USA, 2012; pp. 145–172. ISBN 0065-2296. [Google Scholar]
- Fernández-Pérez, F.; Pomar, F.; Pedreño, M.A.; Novo-Uzal, E. The suppression of AtPrx52 affects fibers but not xylem lignification in Arabidopsis by altering the proportion of syringyl units. Physiol. Plant. 2014, 154, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hai, G.; Wang, C.; Cao, S.; Xu, W.; Jia, Z.; Yang, C.; Wang, J.P.; Dai, S.; Cheng, Y. Comparative proteomic analysis of Populus trichocarpa early stem from primary to secondary growth. J. Proteom. 2015, 126, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Bruegmann, T.; Wetzel, H.; Hettrich, K.; Smeds, A.; Willför, S.; Kersten, B.; Fladung, M. Knockdown of PCBER1, a gene of neolignan biosynthesis, resulted in increased poplar growth. Planta 2019, 249, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Nakatsubo, T.; Mizutani, M.; Suzuki, S.; Hattori, T.; Umezawa, T. Characterization of Arabidopsis thaliana Pinoresinol Reductase, a New Type of Enzyme Involved in Lignan Biosynthesis. J. Biol. Chem. 2008, 283, 15550–15557. [Google Scholar] [CrossRef] [Green Version]
- Bygdell, J.; Srivastava, V.; Obudulu, O.; Srivastava, M.K.; Nilsson, R.; Sundberg, B.; Trygg, J.; Mellerowicz, E.J.; Wingsle, G. Protein expression in tension wood formation monitored at high tissue resolution in Populus. J. Exp. Bot. 2017, 68, 3405–3417. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.K.; Kim, H.; Cocuron, J.-C.; Orler, R.; Ralph, J.; Wilkerson, C.G. The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. Plant J. 2011, 66, 387–400. [Google Scholar] [CrossRef]
- Takata, N.; Taniguchi, T. Expression divergence of cellulose synthase (CesA) genes after a recent whole genome duplication event in Populus. Planta 2015, 241, 29–42. [Google Scholar] [CrossRef]
- Endo, S.; Pesquet, E.; Yamaguchi, M.; Tashiro, G.; Sato, M.; Toyooka, K.; Nishikubo, N.; Udagawa-Motose, M.; Kubo, M.; Fukuda, H.; et al. Identifying New Components Participating in the Secondary Cell Wall Formation of Vessel Elements in Zinnia and Arabidopsis. Plant Cell 2009, 21, 1155–1165. [Google Scholar] [CrossRef] [Green Version]
- Růžička, K.; Ursache, R.; Hejátko, J.; Helariutta, Y. Xylem development—From the cradle to the grave. New Phytol. 2015, 207, 519–535. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Goué, N.; Igarashi, H.; Ohtani, M.; Nakano, Y.; Mortimer, J.C.; Nishikubo, N.; Kubo, M.; Katayama, Y.; Kakegawa, K.; et al. VASCULAR-RELATED NAC-DOMAIN6 (VND6) and VND7 Effectively Induce Transdifferentiation into Xylem Vessel Elements under Control of an Induction System. Plant Physiol. 2010, 153, 906–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, M.B.; Decker, S.R.; Bedinger, P.A. Investigating the Role of Extensin Proteins in Poplar Biomass Recalcitrance. BioResources 2016, 11, 4727–4744. [Google Scholar] [CrossRef] [Green Version]
- Draeger, C.; Fabrice, T.N.; Gineau, E.; Mouille, G.; Kuhn, B.M.; Moller, I.; Abdou, M.-T.; Frey, B.; Pauly, M.; Bacic, A.; et al. Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC Plant Biol. 2015, 15, 155. [Google Scholar] [CrossRef] [PubMed]
- Ke, S.; Luan, X.; Liang, J.; Hung, Y.-H.; Hsieh, T.-F.; Zhang, X.-Q. Rice OsPEX1, an extensin-like protein, affects lignin biosynthesis and plant growth. Plant Mol. Biol. 2019, 100, 151–161. [Google Scholar] [CrossRef]
- Veronico, P.; Paciolla, C.; Pomar, F.; De Leonardis, S.; García-Ulloa, A.; Melillo, M.T. Changes in lignin biosynthesis and monomer composition in response to benzothiadiazole and root-knot nematode Meloidogyne incognita infection in tomato. J. Plant Physiol. 2018, 230, 40–50. [Google Scholar] [CrossRef]
- Baima, S. The Arabidopsis ATHB-8 HD-Zip Protein Acts as a Differentiation-Promoting Transcription Factor of the Vascular Meristems. Plant Physiol. 2001, 126, 643–655. [Google Scholar] [CrossRef] [Green Version]
- Demura, T.; Fukuda, H. Transcriptional regulation in wood formation. Trends Plant Sci. 2007, 12, 64–70. [Google Scholar] [CrossRef]
- Yordanov, Y.S.; Regan, S.; Busov, V. Members of the LATERAL ORGAN BOUNDARIES DOMAIN Transcription Factor Family Are Involved in the Regulation of Secondary Growth in Populus. Plant Cell 2010, 22, 3662–3677. [Google Scholar] [CrossRef] [Green Version]
- Ilegems, M.; Douet, V.; Meylan-Bettex, M.; Uyttewaal, M.; Brand, L.; Bowman, J.L.; Stieger, P.A. Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation. Development 2010, 137, 975–984. [Google Scholar] [CrossRef] [Green Version]
- Muñiz, L.; Minguet, E.G.; Singh, S.K.; Pesquet, E.; Vera-Sirera, F.; Moreau-Courtois, C.L.; Carbonell, J.; Blazquez, M.A.; Tuominen, H. ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development 2008, 135, 2573–2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etchells, J.P.; Mishra, L.S.; Kumar, M.; Campbell, L.; Turner, S.R. Wood Formation in Trees Is Increased by Manipulating PXY-Regulated Cell Division. Curr. Biol. 2015, 25, 1050–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Wang, J.P.; Liu, H.; Li, H.; Lin, Y.-C.J.; Shi, R.; Yang, C.; Gao, J.; Zhou, C.; Li, Q.; et al. Hierarchical Transcription Factor and Chromatin Binding Network for Wood Formation in Populus trichocarpa. Plant Cell 2019, 31, 602–626. [Google Scholar] [CrossRef] [Green Version]
- Shi, R.; Lin, Y.-C.; Li, Q.; Sun, Y.-H.; Wang, J.P.; Chen, H.; Sederoff, R.R.; Chiang, V.L. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa. Planta 2017, 245, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Dudareva, N.; A Morgan, J.; Chapple, C. Genetic manipulation of lignocellulosic biomass for bioenergy. Curr. Opin. Chem. Biol. 2015, 29, 32–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, E.; Bhargava, A.; Qiang, W.; Friedmann, M.C.; Forneris, N.; Savidge, R.A.; Johnson, L.A.; Mansfield, S.D.; Ellis, B.E.; Douglas, C.J. The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus. New Phytol. 2012, 194, 102–115. [Google Scholar] [CrossRef] [PubMed]
- De Schutter, K.; Joubès, J.; Cools, T.; Verkest, A.; Corellou, F.; Babiychuk, E.; Van Der Schueren, E.; Beeckman, T.; Kushnir, S.; Inzé, D.; et al. Arabidopsis WEE1 Kinase Controls Cell Cycle Arrest in Response to Activation of the DNA Integrity Checkpoint. Plant Cell 2007, 19, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Cools, T.; Iantcheva, A.; Weimer, A.K.; Boens, S.; Takahashi, N.; Maes, S.; Van den Daele, H.; Van Isterdael, G.; Schnittger, A.; De Veylder, L. The Arabidopsis thaliana Checkpoint Kinase WEE1 Protects against Premature Vascular Differentiation during Replication Stress. Plant Cell 2011, 23, 1435–1448. [Google Scholar] [CrossRef] [Green Version]
- Cabral, D.; Banora, M.Y.; Antonino, J.D.; Rodiuc, N.; Vieira, P.; Coelho, R.R.; Chevalier, C.; Eekhout, T.; Engler, G.; De Veylder, L.; et al. The plant WEE1 kinase is involved in checkpoint control activation in nematode-induced galls. New Phytol. 2019, 225, 430–447. [Google Scholar] [CrossRef]
- Hay, A.; Tsiantis, M. KNOX genes: versatile regulators of plant development and diversity. Development 2010, 137, 3153–3165. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; You, S.; Taylor-Teeples, M.; Li, W.L.; Schuetz, M.; Brady, S.M.; Douglas, C.J. BEL1-LIKE HOMEODOMAIN6 and KNOTTED ARABIDOPSIS THALIANA7 Interact and Regulate Secondary Cell Wall Formation via Repression of REVOLUTA. Plant Cell 2014, 26, 4843–4861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Song, X.; Zhou, H.; Wei, K.; Jiang, C.; Wang, J.; Cao, Y.; Tang, F.; Zhao, S.; Lu, M.-Z.; et al. KNAT2/6b, a class I KNOX gene, impedes xylem differentiation by regulating NAC domain transcription factors in poplar. New Phytol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Siddique, S.; Grundler, F.M. Parasitic nematodes manipulate plant development to establish feeding sites. Curr. Opin. Microbiol. 2018, 46, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Avci, U.; Grant, E.H.; Haigler, C.H.; Beers, E.P. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant J. 2008, 53, 425–436. [Google Scholar] [CrossRef]
- Zhao, C.; Lasses, T.; Bako, L.; Kong, D.; Zhao, B.; Chanda, B.; Bombarely, A.; Cruz-Ramírez, A.; Scheres, B.; Brunner, A.M.; et al. XYLEM NAC DOMAIN1, an angiosperm NAC transcription factor, inhibits xylem differentiation through conserved motifs that interact with RETINOBLASTOMA-RELATED. New Phytol. 2017, 216, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M.; Ohtani, M.; Mitsuda, N.; Kubo, M.; Ohme-Takagi, M.; Fukuda, H.; Demura, T. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 2010, 22, 1249–1263. [Google Scholar] [CrossRef] [Green Version]
- Cassan-Wang, H.; Goué, N.; Saidi, M.N.; Legay, S.; Sivadon, P.; Goffner, D.; Grima-Pettenati, J. Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis. Front. Plant Sci. 2013, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Zhang, K.; Sun, Z.; Yan, M.; Chen, C.; Zhang, X.; Tang, Y.; Wu, Y. LNK1 and LNK2 Corepressors Interact with the MYB3 Transcription Factor in Phenylpropanoid Biosynthesis. Plant Physiol. 2017, 174, 1348–1358. [Google Scholar] [CrossRef]
- Oh, S.A.; Johnson, A.; Smertenko, A.; Rahman, D.; Park, S.K.; Hussey, P.J.; Twell, D. A Divergent Cellular Role for the FUSED Kinase Family in the Plant-Specific Cytokinetic Phragmoplast. Curr. Biol. 2005, 15, 2107–2111. [Google Scholar] [CrossRef] [Green Version]
- Shultz, R.W.; Tatineni, V.M.; Hanley-Bowdoin, L.; Thompson, W.F. Genome-Wide Analysis of the Core DNA Replication Machinery in the Higher Plants Arabidopsis and Rice. Plant Physiol. 2007, 144, 1697–1714. [Google Scholar] [CrossRef] [Green Version]
- Dowd, C.D.; Chronis, D.; Radakovic, Z.S.; Siddique, S.; Schmülling, T.; Werner, T.; Kakimoto, T.; Grundler, F.M.W.; Mitchum, M.G. Divergent expression of cytokinin biosynthesis, signaling and catabolism genes underlying differences in feeding sites induced by cyst and root-knot nematodes. Plant J. 2017, 92, 211–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, I.; Sheen, J.; Muller, B. Cytokinin Signaling Networks. Annu. Rev. Plant Biol. 2012, 63, 353–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohar, D.P.; Schaff, J.E.; Laskey, J.G.; Kieber, J.J.; Bilyeu, K.D.; Bird, D.M. Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J. 2004, 38, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Absmanner, B.; Stadler, R.; Hammes, U.Z. Phloem development in nematode-induced feeding sites: The implications of auxin and cytokinin. Front. Plant Sci. 2013, 4, 241. [Google Scholar] [CrossRef] [Green Version]
- Gheysen, G.; Mitchum, M.G. Phytoparasitic nematode control of plant hormone pathways. Plant Physiol. 2019, 179, 1212–1226. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.L.-C.; Li, H.; Ecker, J.R. Ethylene Biosynthesis and Signaling Networks. Plant Cell 2002, 14, s131–s151. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, T.; Mizukubo, T.; Abe, H.; Seo, S. Sclareol Induces Plant Resistance to Root-Knot Nematode Partially Through Ethylene-Dependent Enhancement of Lignin Accumulation. Mol. Plant-Microbe Interact. 2015, 28, 398–407. [Google Scholar] [CrossRef]
- Rieu, I.; Eriksson, S.; Powers, S.J.; Gong, F.; Griffiths, J.; Woolley, L.; Benlloch, R.; Nilsson, O.; Thomas, S.G.; Hedden, P.; et al. Genetic Analysis Reveals That C19-GA 2-Oxidation Is a Major Gibberellin Inactivation Pathway in Arabidopsis[W]. Plant Cell 2008, 20, 2420–2436. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Wang, H.; Yu, H.; Zhong, C.; Zhang, X.; Peng, J. GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. J. Exp. Bot. 2013, 64, 1637–1647. [Google Scholar] [CrossRef] [Green Version]
- Hedden, P.; Sponsel, V. A Century of Gibberellin Research. J. Plant Growth Regul. 2015, 34, 740–760. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Rodríguez, C.; Somoza, I.R.; Sibout, R.; Persson, S. Phytohormones and the cell wall in Arabidopsis during seedling growth. Trends Plant Sci. 2010, 15, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Wang, S.; Zhang, B.; Shang-Guan, K.; Shi, Y.; Zhang, N.; Liu, X.; Wu, K.; Xu, Z.; Fu, X.; et al. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice. Plant Cell 2015, 27, 1681–1696. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Chen, C.; Chen, Z. Evidence for an Important Role of WRKY DNA Binding Proteins in the Regulation of NPR1 Gene Expression. Plant Cell 2013, 13, 1527–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caarls, L.; Pieterse, C.M.J.; Van Wees, S.C.M. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front. Plant Sci. 2015, 6, 170. [Google Scholar] [CrossRef] [PubMed]
- Leon-Reyes, A.; Van Der Does, D.; De Lange, E.S.; Delker, C.; Wasternack, C.; Van Wees, S.C.M.; Ritsema, T.; Pieterse, C.M.J. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 2010, 232, 1423–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauwels, L.; Goossens, A. The JAZ Proteins: A Crucial Interface in the Jasmonate Signaling Cascade. Plant Cell 2011, 23, 3089–3100. [Google Scholar] [CrossRef] [Green Version]
- Sehr, E.M.; Agusti, J.; Lehner, R.; Farmer, E.E.; Schwarz, M.; Greb, T. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J. 2010, 63, 811–822. [Google Scholar] [CrossRef]
- Behr, M.; Lutts, S.; Hausman, J.-F.; Guerriero, G. Jasmonic acid to boost secondary growth in hemp hypocotyl. Planta 2018, 248, 1029–1036. [Google Scholar] [CrossRef] [Green Version]
- Goverse, A.; Bird, D. The Role of Plant Hormones in Nematode Feeding Cell Formation. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Springer: Dordrecht, The Netherlands, 2011; pp. 325–347. [Google Scholar]
- Marti, G.; Erb, M.; Boccard, J.; Glauser, G.; Doyen, G.; Villard, N.; Robert, C.A.M.; Turlings, T.C.J.; Rudaz, S.; Wolfender, J.-L. Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots. Plant Cell Environ. 2013, 36, 621–639. [Google Scholar] [CrossRef]
- Tschaplinski, T.J.; Plett, J.M.; Engle, N.L.; Deveau, A.; Cushman, K.C.; Martin, M.Z.; Doktycz, M.J.; Tuskan, G.A.; Brun, A.; Kohler, A.; et al. Populus trichocarpa and Populus deltoides Exhibit Different Metabolomic Responses to Colonization by the Symbiotic Fungus Laccaria bicolor. Mol. Plant-Microbe Interact. 2014, 27, 546–556. [Google Scholar] [CrossRef] [Green Version]
- Ranocha, P.; Chabannes, M.; Chamayou, S.; Danoun, S.; Jauneau, A.; Boudet, A.-M.; Goffner, D. Laccase Down-Regulation Causes Alterations in Phenolic Metabolism and Cell Wall Structure in Poplar. Plant Physiol. 2002, 129, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Soler, M.; Plasencia, A.; Lepikson-Neto, J.; Camargo, E.L.O.; Dupas, A.; Ladouce, N.; Pesquet, E.; Mounet, F.; Larbat, R.; Grima-Pettenati, J. The Woody-Preferential Gene EgMYB88 Regulates the Biosynthesis of Phenylpropanoid-Derived Compounds in Wood. Front. Plant Sci. 2016, 7, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeckler, G.A.; Gershenzon, J.; Unsicker, S.B. Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 2011, 72, 1497–1509. [Google Scholar] [CrossRef] [PubMed]
- Aoudia, H.; Ntalli, N.; Aissani, N.; Yahiaoui-Zaidi, R.; Caboni, P. Nematotoxic Phenolic Compounds from Melia azedarach Against Meloidogyne incognita. J. Agric. Food Chem. 2012, 60, 11675–11680. [Google Scholar] [CrossRef] [PubMed]
- Babst, B.A.; Harding, S.A.; Tsai, C.-J. Biosynthesis of Phenolic Glycosides from Phenylpropanoid and Benzenoid Precursors in Populus. J. Chem. Ecol. 2010, 36, 286–297. [Google Scholar] [CrossRef]
- Narukawa, M.; Kanbara, K.; Tominaga, Y.; Aitani, Y.; Fukuda, K.; Kodama, T.; Murayama, N.; Nara, Y.; Arai, T.; Konno, M.; et al. Chlorogenic Acid Facilitates Root Hair Formation in Lettuce Seedlings. Plant Cell Physiol. 2009, 50, 504–514. [Google Scholar] [CrossRef] [Green Version]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin Biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef]
- Tsai, C.-J.; Harding, S.A.; Tschaplinski, T.J.; Lindroth, R.L.; Yuan, Y. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytol. 2006, 172, 47–62. [Google Scholar] [CrossRef]
- Petersen, M.; Abdullah, Y.; Benner, J.; Eberle, D.; Gehlen, K.; Hücherig, S.; Janiak, V.; Kim, K.H.; Sander, M.; Weitzel, C.; et al. Evolution of rosmarinic acid biosynthesis. Phytochemistry 2009, 70, 1663–1679. [Google Scholar] [CrossRef]
- Dempsey, D.A.; Vlot, A.C.; Wildermuth, M.C.; Klessig, D.F. Salicylic Acid Biosynthesis and Metabolism. Arab. Book 2011, 9, e0156. [Google Scholar] [CrossRef] [Green Version]
- Baldacci-Cresp, F.; Moussawi, J.; Leplé, J.-C.; Van Acker, R.; Kohler, A.; Candiracci, J.; Twyffels, L.; Spokevicius, A.V.; Bossinger, G.; Laurans, F.; et al. PtaRHE1, a Populus tremula × Populus alba RING-H2 protein of the ATL family, has a regulatory role in secondary phloem fibre development. Plant J. 2015, 82, 978–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Jacobs, T.B.; Xue, L.-J.; Harding, S.A.; Tsai, C.-J. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy. New Phytol. 2015, 208, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.-J.; Alabady, M.S.; Mohebbi, M.; Tsai, C.-J. Exploiting genome variation to improve next-generation sequencing data analysis and genome editing efficiency in Populus tremula × alba 717-1B4. Tree Genet. Genomes 2015, 11, 11. [Google Scholar] [CrossRef]
- Smyth, G.K. limma: Linear Models for Microarray Data. In Statistics for Biology and Health; Springer Science and Business Media LLC: Berlin, Germany, 2005; pp. 397–420. [Google Scholar]
- Wilkins, O.; Waldron, L.; Nahal, H.; Provart, N.J.; Campbell, M.M. Genotype and time of day shape the Populus drought response. Plant J. 2009, 60, 703–715. [Google Scholar] [CrossRef] [PubMed]
- De Meester, B.; De Vries, L.; Özparpucu, M.; Gierlinger, N.; Corneillie, S.; Pallidis, A.; Goeminne, G.; Morreel, K.; De Bruyne, M.; De Rycke, R.; et al. Vessel-specific reintroduction of CINNAMOYL-COA REDUCTASE1 (CCR1) in Dwarfed ccr1 mutants restores vessel and Xylary fiber integrity and increases biomass. Plant Physiol. 2018, 176, 611–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Poplar ID | log2 FC | Arabidopsis ID | Arabidopsis Gene Name |
---|---|---|---|
Potri.005G087500 | 1.33 | AT5G64740.1 | CESA6, E112, IXR2, PRC1 |
Potri.005G194200 | 1.06 | AT2G21770.1 | CESA09, CESA9 |
Potri.016G054900 | 1.49 | AT5G05170.1 | ATCESA3, ATH-B, CESA3, CEV1, IXR1 |
Potri.006G052600 | 1.64 | AT5G05170.1 | ATCESA3, ATH-B, CESA3, CEV1, IXR1 |
Potri.006G004200 | 2.45 | AT1G55850.1 | ATCSLE1, CSLE1 |
Potri.001G369100 | −1.12 | AT1G55850.1 | ATCSLE1, CSLE1 |
Potri.003G142400 | 2.04 | AT4G23990.1 | ATCSLG3, CSLG3 |
Potri.003G142300 | 3.43 | AT4G23990.1 | ATCSLG3, CSLG3 |
Potri.003G142500 | 2.29 | AT4G23990.1 | ATCSLG3, CSLG3 |
Potri.009G149700 | 1.46 | AT5G22740.1 | ATCSLA02, ATCSLA2, CSLA02, CSLA2 |
Potri.004G189000 | 2.12 | AT5G22740.1 | ATCSLA02, ATCSLA2, CSLA02, CSLA2 |
Potri.013G082200 | 1.12 | AT3G03050.1 | ATCSLD3, CSLD3, KJK |
Potri.014G125100 | 1.72 | AT1G02730.1 | ATCSLD5, CSLD5, SOS6 |
Potri.002G200300 | 1.86 | AT1G02730.1 | ATCSLD5, CSLD5, SOS6 |
Potri.005G146900 | 1.31 | AT4G07960.1 | ATCSLC12, CSLC12 |
Potri.002G114200 | 1.45 | AT4G07960.1 | ATCSLC12, CSLC12 |
Potri.018G009300 | 1.17 | AT4G31590.1 | ATCSLC05, ATCSLC5, CSLC05, CSLC5 |
Potri.006G270900 | 1.43 | AT4G31590.1 | ATCSLC05, ATCSLC5, CSLC05, CSLC5 |
Potri.002G236200 | 3.78 | AT3G23730.1 | XTH16 |
Potri.019G125000 | 2.34 | AT4G03210.1 | XTH9 |
Potri.013G152400 | 3.03 | AT4G03210.1 | XTH9 |
Poplar ID | log2 FC | Arabidopsis ID | Arabidopsis Gene Name |
---|---|---|---|
Monolignol Biosynthesis | |||
Potri.016G091100 | 1.12 | AT2G37040.1 | PAL1 |
Potri.006G126800 | 1.26 | AT2G37040.1 | PAL1 |
Potri.018G146100 | 3.47 | AT2G30490.1 | ATC4H, C4H, CYP73A5, REF3 |
Potri.018G105500 | −1.45 | AT5G48930.1 | HCT |
Potri.018G105400 | −1.22 | AT5G48930.1 | HCT |
Potri.001G045500 | 2.37 | AT1G15950.1 | ATCCR1, CCR1, IRX4 |
Potri.008G136600 | 1.06 | AT1G67980.1 | CCOAMT |
Potri.009G099800 | 1.13 | AT4G34050.1 | CCoAOMT1 |
Potri.006G169700 | −1.21 | AT3G21240.1 | 4CL2, AT4CL2 |
Potri.003G188500 | −1.21 | AT3G21240.1 | 4CL2, AT4CL2 |
Potri.009G063400 | −1.16 | AT4G37980.1 | ATCAD7, CAD7, ELI3, ELI3-1 |
Potri.009G095800 | −1.75 | AT3G19450.1 | ATCAD4, CAD, CAD-C, CAD4 |
Potri.016G078300 | 1.08 | AT4G37970.1 | ATCAD6, CAD6 |
Potri.002G072100 | 2.93 | AT1G77120.1 | ALCOHOL DEHYDROGENASE 1 |
Potri.007G016400 | −2.15 | AT4G36220.1 | CYP84A1, FAH1 |
Potri.005G117500 | −3.70 | AT4G36220.1 | CYP84A1, FAH1 |
Lignan biosynthesis | |||
Potri.002G034400 | 1.26 | AT1G75280.1 | PCBER1 |
Potri.001G133200 | 1.79 | AT1G32100.1 | ATPRR1, PRR1 |
Potri.003G100200 | 1.04 | AT1G32100.1 | ATPRR1, PRR1 |
Potri.001G133300 | −2.33 | AT1G32100.1 | ATPRR1, PRR1 |
Methyl donors | |||
Potri.013G004100 | 1.56 | AT3G17390.1 | MAT4, MTO3, SAMS3 |
Potri.007G147300 | 1.00 | AT2G44160.1 | MTHFR2 |
Poplar ID | log2 FC | Arabidopsis ID | Arabidopsis Gene Name |
---|---|---|---|
Potri.006G237500 | 1.01 | AT4G32880.1 | ATHB-8, ATHB8, HB-8 |
Potri.010G089200 | 1.53 | AT5G19530.1 | ACL5 |
Potri.008G151800 | 1.60 | AT5G19530.1 | ACL5 |
Potri.010G217700 | 1.42 | AT1G07900.1 | LBD1 |
Potri.012G042100 | 1.08 | AT5G16560.1 | KAN, KAN1 |
Potri.017G137600 | 1.16 | AT5G16560.1 | KAN, KAN1 |
Potri.003G096300 | 1.78 | AT1G32240.1 | KAN2 |
Potri.006G037000 | 1.31 | AT1G73590.1 | ATPIN1, PIN1 |
Potri.016G035300 | 1.59 | AT1G73590.1 | ATPIN1, PIN1 |
Potri.012G019400 | 1.81 | AT3G24770.1 | CLE41, TDIF |
Potri.001G049700 | 2.24 | AT4G13195.1 | CLE44, TDIF |
Potri.014G104800 | 1.21 | AT2G46770.1 | ANAC043, EMB2301, NST1 |
Potri.011G058400 | 1.49 | AT4G28500.1 | ANAC073, NAC073, SND2 |
Potri.007G135300 | 1.31 | AT4G28500.1 | ANAC073, NAC073, SND2 |
Potri.015G082700 | 1.06 | AT1G57560.1 | AtMYB50, MYB50 |
Potri.013G113100 | 2.43 | AT1G71930.1 | ANAC030, VND7 |
Potri.019G083600 | 2.65 | AT1G71930.1 | ANAC030, VND7 |
Potri.005G129500 | −1.13 | AT2G23760.1 | BLH4, SAW2 |
Potri.004G159300 | −1.24 | AT4G34610.1 | BLH6 |
Potri.009G120800 | −1.17 | AT4G34610.1 | BLH6 |
Potri.002G031000 | −2.39 | AT2G16400.1 | BLH7 |
Potri.018G114100 | −3.30 | AT5G25220.2 | KNAT3 |
Potri.006G259400 | −1.13 | AT5G25220.1 | KNAT3 |
Potri.018G095900 | −1.63 | AT5G57620.1 | AtMYB36, MYB36 |
Potri.017G017600 | −2.63 | AT1G17950.1 | ATMYB52, BW52, MYB52 |
Potri.005G064100 | −1.70 | AT5G64530.1 | ANAC104, XND1 |
Potri.007G105000 | −1.60 | AT5G64530.1 | ANAC104, XND1 |
Potri.001G061200 | −1.76 | AT5G13180.1 | ANAC083, NAC083, VNI2 |
Potri.013G109300 | −1.91 | AT1G22640.1 | ATMYB3, MYB3 |
Potri.017G017600 | −2.63 | AT1G17950.1 | ATMYB52, BW52, MYB52 |
Potri.002G073500 | −2.11 | AT1G17950.1 | ATMYB52, BW52, MYB52 |
Potri.005G186400 | −1.27 | AT1G17950.1 | ATMYB52, BW52, MYB52 |
Poplar ID | log2 FC | Arabidopsis ID | Arabidopsis Gene Name |
---|---|---|---|
Nuclear division and cytokinesis | |||
Potri.T058000 | 1.20 | AT1G50240.2 | FU |
Potri.019G052500 | 1.22 | AT1G50240.2 | FU |
Potri.004G131600 | 2.33 | AT5G46280.1 | MCM3 |
Potri.009G121500 | 2.34 | AT2G16440.1 | MCM4 |
Potri.001G070500 | 2.48 | AT1G44900.1 | ATMCM2, MCM2 |
Potri.018G112800 | 2.52 | AT2G07690.1 | MCM5 |
Potri.014G121000 | 2.23 | AT4G02060.1 | MCM7, PRL |
Potri.001G074000 | 2.47 | AT5G44635.1 | MCM6 |
Potri.006G188700 | 2.48 | AT2G07690.1 | MCM5 |
Potri.009G134500 | 2.55 | AT2G20980.1 | MCM10 |
Potri.006G131900 | 1.69 | AT3G09660.1 | MCM8 |
Cytokinin signalling | |||
Potri.002G152900 | 1.32 | AT4G16110.1 | ARR2, RR2 |
Potri.006G041100 | 1.00 | AT3G57040.1 | ARR9, ATRR4 |
Potri.002G082200 | 1.27 | AT3G57040.1 | ARR9, ATRR4 |
Potri.018G111300 | −1.40 | AT2G25180.1 | ARR12, RR12 |
Auxin biosynthesis and transport | |||
Potri.018G036800 | −1.73 | AT5G25620.1 | YUC6 |
Potri.002G207400 | −1.29 | AT1G48910.1 | YUC10 |
Potri.004G124200 | 1.46 | AT2G01420.2 | ATPIN4, PIN4 |
Potri.005G187500 | 1.57 | AT1G77110.1 | PIN6 |
Potri.008G129400 | 1.70 | AT1G70940.1 | ATPIN3, PIN3 |
Potri.002G072200 | 3.20 | AT1G77110.1 | PIN6 |
Gibberellins biosynthesis and signalling | |||
Potri.012G132400 | −4.20 | AT5G51810.1 | ATGA20OX2, GA20OX2 |
Potri.015G134600 | −1.80 | AT5G51810.1 | ATGA20OX2, GA20OX2 |
Potri.006G247700 | −2.82 | AT1G15550.1 | ATGA3OX1, GA3OX1, GA4 |
Potri.003G057400 | −2.28 | AT1G15550.1 | ATGA3OX1, GA3OX1, GA4 |
Potri.010G149700 | −1.95 | AT1G47990.1 | ATGA2OX4, GA2OX4 |
Potri.017G124200 | 3.35 | AT1G74670.1 | GASA6 |
Potri.012G076700 | 1.45 | AT5G14920.1 | GASA14 |
Potri.015G071500 | 2.70 | AT5G14920.1 | GASA14 |
Potri.017G021400 | −5.17 | AT2G01570.1 | RGA, RGA1 |
Potri.016G027800 | −3.35 | AT1G14920.1 | GAI, RGA2 |
Potri.007G133000 | −2.48 | AT2G01570.1 | RGA, RGA1 |
Potri.017G125200 | −1.17 | AT2G01570.1 | RGA, RGA1 |
Salicylic acid biosynthesis and signalling | |||
Potri.012G070000 | 1.16 | AT1G74710.1 | ATICS1, EDS16, ICS1, SID2 |
Potri.001G288600 | 1.89 | AT2G14610.1 | ATPR1, PR 1, PR1 |
Potri.009G082800 | 3.42 | AT2G14610.1 | ATPR1, PR 1, PR1 |
Potri.009G082900 | 3.87 | AT2G14610.1 | ATPR1, PR 1, PR1 |
Potri.001G288400 | 4.84 | AT2G14610.1 | ATPR1, PR 1, PR1 |
Potri.002G168700 | 1.98 | AT4G23810.1 | ATWRKY53, WRKY53 |
Accepted ID | RT (min) | m/z | P-Value | FC |
---|---|---|---|---|
Compounds with increased abundance in 21 dai gall as compared to root | ||||
ferulic acid + sulfate | 4.87 | 273.0063 | 4.62 × 10−5 | 59.236 |
tremulacin | 20.38 | 527.1556 | 0.018 | 24.870 |
L-tryptophan | 3.33 | 203.082 | 0.013 | 23.719 |
salicyloyl salicin 1 | 19.35 | 405.1186 | 4.40 × 10−5 | 18.610 |
G(8-O-4)G(red8-5)G 1 | 13.33 | 555.2231 | 1.75 × 10−4 | 17.631 |
G(8-O-4)G(red8-5)G 2 | 13.78 | 555.2232 | 1.97 × 10−5 | 10.657 |
G(e8-O-4)S(8-5)G 2 | 16.66 | 583.2178 | 0.014 | 8.882 |
salicortin | 8.61 | 423.1283 | 1.75 × 10−5 | 6.730 |
feruloyl hexose 2 | 5.37 | 355.103 | 2.08 × 10−5 | 4.384 |
G(e8-O-4)S(8-5)G 3 | 15.80 | 583.2173 | 0.003 | 3.523 |
salireposide | 11.34 | 405.1186 | 0.001 | 2.312 |
caffeic acid 3/4-O-hexoside 3 | 4.04 | 341.0875 | 0.025 | 2.158 |
Compounds with decreased abundance in 21 dai gall as compared to root | ||||
G(t8-O-4)S(8-8)G 1 | 8.87 | 583.218 | 0.033 | 0.535 |
quercetin glucoside | 8.80 | 463.0878 | 1.18 × 10−4 | 0.399 |
populoside B1 | 13.03 | 431.1362 | 0.011 | 0.121 |
caffeic acid 3/4-O-hexoside | 2.87 | 341.0925 | 0.015 | 0.074 |
p-coumaroyl quinate 1 | 4.10 | 337.0913 | 0.001 | 0.053 |
p-coumaroyl hexose 1 | 3.58 | 325.0922 | 8.03 × 10−6 | 0.048 |
p-coumaroyl hexose 3 | 4.35 | 325.0909 | 4.20 × 10−4 | 0.022 |
chlorogenic acid 2 | 2.98 | 353.087 | 2.83 × 10−6 | 0.007 |
feruloyl hexose 1 | 3.03 | 355.1063 | 1.36 × 10−4 | 0.004 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldacci-Cresp, F.; Behr, M.; Kohler, A.; Badalato, N.; Morreel, K.; Goeminne, G.; Mol, A.; de Almeida Engler, J.; Boerjan, W.; El Jaziri, M.; et al. Molecular Changes Concomitant with Vascular System Development in Mature Galls Induced by Root-Knot Nematodes in the Model Tree Host Populus tremula × P. alba. Int. J. Mol. Sci. 2020, 21, 406. https://doi.org/10.3390/ijms21020406
Baldacci-Cresp F, Behr M, Kohler A, Badalato N, Morreel K, Goeminne G, Mol A, de Almeida Engler J, Boerjan W, El Jaziri M, et al. Molecular Changes Concomitant with Vascular System Development in Mature Galls Induced by Root-Knot Nematodes in the Model Tree Host Populus tremula × P. alba. International Journal of Molecular Sciences. 2020; 21(2):406. https://doi.org/10.3390/ijms21020406
Chicago/Turabian StyleBaldacci-Cresp, Fabien, Marc Behr, Annegret Kohler, Nelly Badalato, Kris Morreel, Geert Goeminne, Adeline Mol, Janice de Almeida Engler, Wout Boerjan, Mondher El Jaziri, and et al. 2020. "Molecular Changes Concomitant with Vascular System Development in Mature Galls Induced by Root-Knot Nematodes in the Model Tree Host Populus tremula × P. alba" International Journal of Molecular Sciences 21, no. 2: 406. https://doi.org/10.3390/ijms21020406
APA StyleBaldacci-Cresp, F., Behr, M., Kohler, A., Badalato, N., Morreel, K., Goeminne, G., Mol, A., de Almeida Engler, J., Boerjan, W., El Jaziri, M., & Baucher, M. (2020). Molecular Changes Concomitant with Vascular System Development in Mature Galls Induced by Root-Knot Nematodes in the Model Tree Host Populus tremula × P. alba. International Journal of Molecular Sciences, 21(2), 406. https://doi.org/10.3390/ijms21020406