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Abstract

:

One of the most striking features occurring in the root-knot nematode Meloidogyne incognita induced galls is the reorganization of the vascular tissues. During the interaction of the model tree species Populus and M. incognita, a pronounced xylem proliferation was previously described in mature galls. To better characterise changes in expression of genes possibly involved in the induction and the formation of the de novo developed vascular tissues occurring in poplar galls, a comparative transcript profiling of 21-day-old galls versus uninfected root of poplar was performed. Genes coding for transcription factors associated with procambium maintenance and vascular differentiation were shown to be differentially regulated, together with genes partaking in phytohormones biosynthesis and signalling. Specific signatures of transcripts associated to primary cell wall biosynthesis and remodelling, as well as secondary cell wall formation (cellulose, xylan and lignin) were revealed in the galls. Ultimately, we show that molecules derived from the monolignol and salicylic acid pathways and related to secondary cell wall deposition accumulate in mature galls.






Keywords:


cell wall; gall; metabolomics; Meloidogyne incognita; phloem; Populus; root-knot nematode; transcriptomics; xylem












1. Introduction


Phytoparasitic nematodes cause damage to plants thereby leading to substantial yield losses to annual and perennial plants worldwide [1]. Root-knot nematodes (RKN) (Meloidogyne spp.) are obligate sedentary parasites that enter the root of the plant host at the second juvenile stage. The larvae penetrate the root elongation zone, migrating intercellularly to the root tip and entering the vascular cylinder where they induce the trans-differentiation of parenchyma cells into multinucleate feeding cells (giant cells; GCs). Alongside, neighbouring cells divide contributing to the development of root swellings, named galls. An extensive network of xylem cells enfolding GCs is a typical anatomical feature in galls induced by RKN [2,3]. Recently, a drastic development of xylem was evidenced in poplar (Populus tremula × P. alba) galls 21 days after infection (dai) [4]. This profuse vascular system development most likely ensures food for the nematode development and reproduction. Upon completion of the life cycle, the adult nematode female extrudes an egg mass out of the root and once eggs hatch stage 2 juvenile nematodes, subsequent infection cycles will most likely occur in the same root [5].



A preliminary RT-qPCR analysis made at different time points during gall development in poplar root indicated that the expression of several genes coding for enzymes of the monolignol biosynthesis pathway was repressed, suggesting modification of the phenolic compounds profile in infected roots [4]. These genes were HYDROXYCINNAMOYL-CoA SHIKIMATE/QUINATE HYDROXYCINNAMOYL TRANSFERASE 1 (HCT1) (at 7 and 14 dai), CAFFEIC ACID 3-O-METHYLTRANSFERASE 2 (COMT2) (at 14 dai) and FERULATE 5-HYDROXYLASE 1 and 2 (F5H1 and 2) (at 7, 14 and 21 dai). Monolignol pathway spans the general phenylpropanoid pathway from Phe AMMONIA LYASE (PAL) to 4-COUMARATE: CoA LIGASE (4CL) and the specific monolignol pathway from HCT to CINNAMYL ALCOHOL DEHYDROGENASE (CAD), resulting in the biosynthesis of p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol, which are finally polymerised into H, G and S lignin units, respectively [6].



Transcriptomic changes following M. incognita infection have been investigated in several species including Arabidopsis [7,8,9,10], tomato [11,12], soybean [13], Medicago truncatula [14], eggplant [15], banana [16] and bean [17]. These studies showed changes in expression of genes involved in several developmental and metabolic processes including stress response, signal transduction, phytohormones and cell wall formation, as well as phenylpropanoid biosynthesis.



Several genes associated with procambium proliferation and vascular differentiation were differentially regulated on 5 and 7 dai RKN-induced galls in Arabidopsis [10]. Herein, in order to better document at the molecular level this intense vascular development in RKN-induced galls in a woody species, a transcriptomic analysis of 21 dai galls compared to uninfected root was performed. We focused on the induction of the transcriptional programme related to vascular system differentiation and maturation as well as to regulation of phytohormones biosynthesis and signalling. We further describe the expression pattern of genes involved in primary and secondary cell walls formation and modification. As well, a targeted metabolomic analysis was performed to highlight the changes occurring in the pool of soluble phenolics related to monolignol metabolism in galls.




2. Results and Discussion


2.1. Transcriptome Overview of Galls at Late Stage


A RNA-Seq analysis was performed on 21 dai galls and corresponding uninfected poplar roots. A total of 70.4–80.8% of the reads were successfully mapped to the substituted genome sequence of P. tremula × P. alba 717-1B4 (Table S1). A total of 8043 genes present a differential transcript abundance (taking into account transcripts with a fold change >2, minimum 20 reads and adjusted p-value < 0.05; Table S2). Among these genes, 4549 were up- and 3494 down-regulated in galls compared to uninfected roots.



All the differentially expressed genes were represented in ClueGO and CluePEDIA [18,19] within Cytoscape using their Arabidopsis thaliana homologs ID (Table S3 and Figure 1). As shown in Figure 1, gene ontologies (GO) such as “xylan metabolic process”, “lignin biosynthetic process”, “male meiotic nuclear division” and “gene silencing by RNAi” were prevalent in galls. On the other hand, “protein targeting”, “intracellular protein transport”, “inorganic anion transport” and “cellular response to gibberellin stimulus” were associated with genes downregulated in galls compared to roots. In the light of these GO, the next paragraphs are devoted to the study of genes involved in vascular tissue development, primary and secondary cell wall formation and modification, and phytohormones biosynthesis and signalling.




2.2. Gall Transcriptome Reveals Changes in Gene Expression Associated to Primary Cell Wall Formation and Modification


The establishment of a nematode feeding site steers the development of 4–10 GCs that have a peculiar cell wall pattern, such as accumulation of cellulose and mixed-linked glucans (MLG) [4]. The nematode nutrient acquisition through GC relies on the formation of de novo formed vascular tissue. Primary and secondary cell walls (PCW and SCW) are deposited in both GC and vascular tissues [20]. Our transcriptomic dataset highlighted major changes in the expression of genes from the CesA and CesA-like (CSL) families (Table 1). For instance, the homologs of Arabidopsis CesA3, CesA6 and CesA9 were upregulated in the galls, together with several CSL of multiple families (A, C, D, E, G). In Arabidopsis roots infected with M. incognita, CesA expression peaked 5 days post-inoculation, with PCW CesA being preferentially localized to cells neighbouring GC [20], i.e., young vascular cells. Our data may therefore indicate that cell formation and/or elongation, which both require cellulose biosynthesis for PCW formation, were ongoing in 21 dai galls.



CSL are part of the cellular machinery producing several cell wall matrix polysaccharides, including xyloglucan (CSLC), mannan (CSLA), β-1,4-glucan and MLG [21]. Genes coding for enzymes involved in cell wall modification were also differentially regulated in the galls. Among these, two homologs of Arabidopsis XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) 9 and one homolog of AtXTH16 (Potri.002G236200) were strongly upregulated in galls (log2 FC of 2.34, 3.03 and 3.78, respectively). XTHs cleave and ligate xyloglucan chains [22]. AtXTH9 is expressed in shoot apices and elongating cell tissues [23], thus their poplar homologs may contribute to the cell wall rearrangement occurring in extending xylem cells. The poplar ARBORKNOX1 (ARK1) regulates biological processes related to cambial activity and xylem differentiation during secondary growth and its overexpression results in the upregulation of Potri.002G236200 [24]. The extensibility of PCW is controlled in specific regions of the extracellular matrix, the so-called “biomechanical hotspots”, where expansins, which are essentially upregulated in the galls (Table S2), loosen the cellulose-xyloglucan interaction [25].




2.3. Structural Genes of Lignification and SCW Formation are Induced in Galls


Among SCW structural genes upregulated in galls (Table S2), we found genes involved in monolignol biosynthesis such as PAL (Potri.016G091100, Potri.006G126800), CINNAMATE 4-HYDROXYLASE (C4H) (Potri.018G146100), CINNAMOYL-CoA REDUCTASE (CCR) (Potri.001G045500), CAFFEOYL-CoA O-METHYLTRANSFERASE (CCoAOMT) (Potri.008G136600, Potri.009G099800) and CAD (Potri.016G078300) (Table 2). Fifteen laccases-encoding genes homologous to either AtLAC4, AtLAC11, AtLAC12, or AtLAC17 (involved in lignin polymerisation; [26]) were upregulated in galls (Table S2), together with 3 genes (Potri.016G132700, Potri.013G083600 and Potri.014G143200) homologous to AtPRX52, coding for a class III peroxidase involved in lignin polymerisation [27]. A gene annotated as ALCOHOL DEHYDROGENASE 1 (Potri.002G072100) was among the most highly expressed in our dataset, with average normalised counts of 2369 in galls vs. 309 in roots. The corresponding protein of this gene accumulates during stem development [28] with a maximum observed in internode with lignified wood and phloem tissues, and may therefore be involved in monolignol biosynthesis. Other genes involved in monolignol biosynthesis were downregulated in galls such as several 4CL, CAD and HCT members as well as F5H1 and F5H2, required for the biosynthesis of sinapaldehyde and sinapyl alcohol [6] (Table 2). Lignans biosynthesis may also be differentially regulated in the galls. Three genes annotated as PHENYLCOUMARAN BENZYLIC ETHER REDUCTASE (PtrPCBER1/Potri.002G034400, PtrPCBERp5/Potri.001G133200 and PtrPCBERp8/Potri.003G100200), based on their homology with AtPCBER [29], were more expressed, while one was downregulated in galls (PtrPCBERp4/Potri.001G133300). These genes are also similar to PINORESINOL-LARICIRESINOL REDUCTASE, another gene of the lignan biosynthetic pathway [30]. More expressed in the galls were two genes of C1 metabolism linked to monolignol methylation, homologs of Arabidopsis S-ADENOSYLMETHIONINE SYNTHETASE 3 (Potri.013G004100) and METHYLENETETRAHYDROFOLATE REDUCTASE 2 (Potri.007G147300) [31].



Homologs to genes involved in xylan reducing-end sequence formation (PARVUS), backbone elongation (IRX9/PtrGT43A, IRX10) and backbone substitution (ESK1, GXMT1, GXM3, GUX1, RWA2, RWA3 and TBL35) were upregulated in the gall together with three homologs of IRX15-L (Table S2), which is required for xylan biosynthesis [32]. More expressed in galls were genes coding for PtCesA8-A (Potri.011G069600), a cellulose synthase partaking in cellulose deposition in SCW [33] and poplar homologs of AtTED6 (Potri.002G072000) and AtTED7 (Potri.007G108100, Potri.005G060700). TED6 and TED7 are candidates to take part of the SCW CesA complex during xylem formation [34]. The same trend was observed for the expression of XCP1 and XCP2, which are VND6-VND7-regulated during programmed cell death in xylem tissue [35,36]. We may also suppose that PtCesA8-A may contribute to cellulose deposition in GCs to cope with the cellular turgor pressure [20]. Also upregulated in galls were several extensins (Potri.002G070100 and Potri.005G190100) which can covalently crosslink along the cell wall. As these proteins cause recalcitrance biomass in poplar [37], it is plausible that they are present in, and interact with, SCW of GCs and xylem and their building blocks xylan and lignin in xylem [38,39].



Altogether, our data strongly suggest that galls induced by RKN undergo a SCW programme within the xylem tissue resulting from the infection. So far, most of the articles studying RKN interaction highlighted the differential regulation of genes of the phenylpropanoid pathway [7,12,13,40] but generally with a focus on GC development in herbaceous species (Arabidopsis, tomato, soybean). Our data indicate that this transcriptional regulation of monolignol biosynthesis is part of the gene network involved in the xylem development adjacent to GCs, together with xylan biosynthesis and cellulose deposition.




2.4. Galls are Associated with Major Expression Changes of Transcription Factors Regulating Xylem and Phloem Development and Cell Wall Formation


Galls are characterised by the development of de novo formed xylem cells, which are considered to be similar to wound-type xylem elements, and by the formation of phloem sieve elements [2]. As shown in Table 3, transcription factors (TFs) and other genes involved in vasculature patterning and xylem differentiation were found to be upregulated in the 21-day-old galls as compared to uninfected roots. This included the homolog of Arabidopsis HD-ZIP III AtHB8 (Potri.006G237500), which promotes vascular cell differentiation to xylem [41,42]. As well, LBD1 (Potri.010G217700), which is involved in secondary phloem and ray cell formation [43], ALTERED PHLOEM DEVELOPMENT (APL), a phloem precursor [44], and KANADI 1 and KANADI 2, coding for positive regulators of phloem formation through regulation of auxin flow [42,44], were upregulated. Two genes homologous to ACAULIS 5 (ACL5), a direct target of AtHB8 with a role during xylem vessels and fibres specification, were upregulated in the galls. More specifically, ACL5 prevents premature xylem cell death to allow their complete elongation and secondary cell wall deposition [35,45]. Two genes closely related to AtPIN1, involved in auxin efflux during early stages of procambial cell differentiation under the control of AtHB8 [35], as well as Potri.001G049700 and Potri.012G019400, coding respectively for PtCLE2 and PtCLE38 (homologous to Arabidopsis CLE41-CLE44/TDIF) peptides, displayed an expression pattern similar to ACL5 homologues. The overexpression of PtCLE38 and its cognate receptor kinase PXY, driven by phloem-specific and cambium-specific promoter, respectively, dramatically increases xylem cell density in hybrid aspen [46]. Overall, this transcriptional landscape indicates an ongoing formation of phloem and xylem tissues in the galls. These results are complementary of those gained from a transcriptomic time-course analysis of galls induced by RKN in Arabidopsis [10]. The authors report at 5 and 7 dai an upregulation of genes associated with procambium, such as AtHB8 and PXY, while xylem-associated genes such as XCPs and TEDs were slightly downregulated. In addition, phloem markers (APL, SUC2) were less upregulated than procambium genes. It is therefore consistent that genes associated with xylem and phloem differentiation are upregulated at later stages of gall development, i.e., 21 dai, to drive the maturation of the vascular system required for nematode feeding. For instance, 16 genes homologous to SIEVE-ELEMENT-OCCLUSION-RELATED 1 (AT3G01680), which is a marker of phloem development [10], were strongly upregulated in the galls (Table S2). Our data indicate that the gall maintain a pool of procambial cells late during its development, possibly through PtCLE2 or the secretion of a CLE-like peptide by the nematode [2], to support the formation of vascular tissue required for the completion of nematode life cycle.



Xylem cells undergo a SCW deposition program, including the biosynthesis of the main polysaccharide xylan and lignin. This SCW network is transcriptionally regulated by NACs and MYBs at three hierarchical levels [47,48,49,50]. The master regulator PtrSND1-B1 (Potri.014G104800) and several downstream TFs, such as the second level PtrMYB074 (Potri.015G082700), PtrSND2/3-A1 (Potri.011G058400), PtrSND2/3-B1 (Potri.007G135300), as well as PtrVND7-1 (Potri.019G083600) and PtrVND7-2 (Potri.013G113100) were more expressed in galls, thereby confirming the expression pattern of genes involved in SCW formation. Also upregulated were 2 genes homologous to WEE1 KINASE HOMOLOG (Potri.T034700 and Potri.014G132400, Table S2), which arrests cell cycle at the G1/S step in response to DNA damage [51], providing a checkpoint mechanism before cellular division. WEE1 prevents premature tracheary element differentiation upon DNA damage to maintain meristem identity through a VND7-regulated mechanism [52]. WEE1 is also a crucial element during gall development, as an Arabidopsis wee1 knockout line shows repressed infection and reproduction of RKN [53], suggesting that plant DNA integrity is an important element of the life cycle of the nematode. The hyperactivation of cell division occurring in galls is likely to provoke DNA damage [53]. We may speculate that WEE1 is involved in the maintenance of the pool of procambial cells, by preventing vascular differentiation through detection of DNA damages induced by nematodes.



However, some of the TFs controlling SCW formation were downregulated in galls, such as PtrMYB088 (Potri.018G095900) and PtrMYB175 (Potri.017G017600) which are regulated by PtrMYB021, PtrMYB074, or both [47]. PtrSND1-B1 directly regulate the expression of PtrMYB021 and PtrMYB074, which are transcriptional activators of fibres and vessels in poplar [47]. KNOX homologous to Arabidopsis BLH4 (PtrWBLH2/Potri.005G129500), BLH6 (PtrWBHLH3/Potri.004G159300, Potri.009G120800), BLH7 (PtrWBLH1/Potri.002G031000) and KNAT3 (Potri.018G114100 and Potri.006G259400) were also repressed in galls (Table 3). Heterodimers between BLH and KNAT are able to repress the expression of monolignol biosynthetic genes [54], while BLH6 is able to repress SCW formation [55]. Another TF from the KNOX family, KNAT2/6b, inhibits the differentiation of xylem cells through repression of several NAC and MYB TFs [56]. The development of the gall vascular system may therefore be associated with a repression of genes preventing the differentiation of these specialised cells, possibly guaranteeing sugar and water sources throughout the nematode life cycle. Since these genes are, during normal development, co-expressed with the positive regulators of this biological process [50,55,56], we may hypothesise that their down-regulation in the galls is tuned by an exogenous factor, as for example a compound secreted by the nematode [57]. Finally, one can hypothesise that the down-regulation of these repressors leads to drastic xylem development to support the completion of the nematode life cycle. Alternatively, expression of these genes may be higher in GCs (to prevent further differentiation) than in xylem cells; assuming that gene transcription is significantly enhanced in GCs as compared to xylem, the resulting overall balance shows gene repression in galls.



The expression of the Arabidopsis homologs of XND1 and VNI2, which inhibit xylem differentiation and lignocellulose biosynthesis [58,59] and xylem vessel formation [60], respectively, were downregulated in galls. Potri.013G109300, homologous to the MYB R2-R3 subgroup AtMYB3, as well as Potri.017G017600, Potri.002G073500 and Potri.005G186400 (homologous to AtMYB52) were also downregulated in galls. AtMYB3 and AtMYB52 negatively regulate the lignification process [61,62]. These data therefore suggest that the de-repression of the SCW/lignin transcriptional network and of xylem differentiation is part of the nematode-induced gall development program.




2.5. Expression of Genes Related to Phytohormones is Modified in Galls


Nematodes alter the metabolism of the host to favour cell division, leading to gall formation. The GO analysis highlighted the up-regulation of genes involved in nuclear division and cytokinesis (Figure 1). These genes included FUSED (FU) and MINICHROMOSOME MAINTENANCE 3, 4, 5, 6, 7, 8 and 10 (MCM3, 4, 5, 6, 7, 8, 10), which are important actors of cell division [63,64] (Table 4), and genes encoding cyclins (Table S2), which activate the cell cycle in infected roots, as similarly observed in RKN-induced galls in Arabidopsis [65]. The increased cell division in galls is (partially) activated through cytokinin signalling [57]. Accordingly, several homologs of the ARABIDOPSIS RESPONSE REGULATOR (ARR) genes, which are the final acceptors of the cytokinin signalling pathway, were upregulated in the galls (ARR2, 9), while expression of ARR12 was repressed. ARR2 and ARR12 are type-B regulators (mediating cytokinin-dependant transcriptional activation) while ARR9 is a type-A regulator (negative regulator of cytokinin signalling; [66]). The expression of ARR9 in galls is much higher than the 2 type-B, suggesting that cytokinin signalling is repressed. Cytokinins in association with auxins are determinant factors of phloem formation in galls [2]. Previous works noted the upregulation of another type-A, ARR5, in the cells surrounding the GC, i.e., phloem [67], while no response related to type-B ARR was observed in Arabidopsis galls [68]. Our data also indicate that positive cytokinin-dependant gene expression is repressed in 21 dai galls. It has been suggested that this gene expression pattern may prevent the differentiation of protophloem, which is devoid of companion cells as observed in RKN-induced galls, into metaphloem [68].



Auxin is another key hormone for gall development, with roles ranging from cell cycle activation to cell wall remodelling [2,69]. Our data do not point to a prominent role of auxin in 21 dai galls. First, the expression of YUCCA genes, which encode the rate-limiting step enzyme in auxin biosynthesis, were downregulated in galls. Second, the large majority of the AUXIN RESPONSE FACTORS (such as homologs of ARF2, ARF10 and ARF13) and of the SMALL AUXIN-UP RNA genes (SAUR) were consistently repressed in galls (Table S2). The expression of several genes homologous to PIN, which pump the auxin out of the cell, was significantly upregulated in galls (Table 4), where they may contribute to auxin delivery in GCs [69]. We may speculate that the sampled material (21 dai) has developed to a stage where auxin signalling is decreased. Indeed, an auxin response has been detected before the differentiation of phloem cells [68], at earlier stages of gall development (between 1 and 2 weeks after infection). The upregulation of several phloem marker genes in our galls suggest that weak auxin signalling is a consistent trait of vascular differentiation in RKN-induced galls.



Several genes involved in ethylene biosynthesis and signalling showed altered expression patterns in galls (Table S2). Indeed, two out of three genes homologous to the ETHYLENE-FORMING ENZYME ACO4 were upregulated in galls, together with several TFs activating downstream ethylene response, the ETHYLENE RESPONSIVE ELEMENT BINDING FACTORS (EREBF, including ERF1; [70]). Ethylene signalling pathway enhances lignin biosynthesis, which contribute to the strengthening of xylem SCWs [71]. Ethylene may thus be an important player of xylem gall development.



Our data did not show a clear trend regarding the potential involvement of gibberellic acid (GA) in galls (Table 4), probably because of the gall developmental stage (21 dai) analysed here. Indeed, the expression of two genes encoding enzymes catalysing, respectively, the GA biosynthesis rate limiting step, GA20OX2 (GIBBERELLIN 20 OXIDASE 2), and the last reaction of this pathway, GA3OX1, were strongly downregulated in galls (log2 FC of −1.80 and −4.20 for GA20OX2; −2.28 and −2.82 for GA3OX1). In addition, GA2OX4, a gene responsible for GA inactivation [72] was also downregulated in galls. However, three GA-induced genes (2 homologs of GASA14 and one homolog of GASA6) were upregulated in galls and genes coding for the transcriptional regulators repressing GA response, the DELLA proteins GAI and RGA [73], were strongly downregulated (Table 4). Despite the down-regulation of the biosynthetic genes, it seems therefore that galls are characterised by an increased response to GA. It is plausible that GA are synthetized in the roots [74] and activate the signalling pathway in the galls. This phytohormone is required for pectin biosynthesis and homogalacturonan esterification and is involved in the modification of the cellulose-xyloglucan network [75]. GA also upregulate the expression of the three SCW CesAs in Arabidopsis [76]. This gene expression pattern suggests that GA are an important factor in the RKN-plant interaction both in young cells remodelling their PCW and in cells undergoing a SCW formation.



Finally, salicylic acid (SA) is a phytohormone of critical importance during plant response to various biotic stresses. The SA biosynthesis gene ICS1, encoding ISOCHORISMATE SYNTHASE 1, was found to be slightly (log2 FC 1.16) upregulated in galls as compared to uninfected roots. A higher expression of four genes homologous to PATHOGENESIS-RELATED 1 (PR1), a marker of SA-related plant defence was also observed. Furthermore, high expression of a gene homologous to WRKY53, a SA-inducible TF [77] was observed in galls (Table 4). SA strongly antagonizes the jasmonic acid (JA) signalling pathway [78] and down-regulates the expression of several genes of the JA biosynthetic pathway [79]. Accordingly, the gene coding for JASMONATE RESISTANT 1 (JAR1) was repressed in galls and those encoding JASMONATE-ZIM-DOMAIN PROTEIN (JAZ) 5, 6 and 10 (Table S2) were upregulated. JAR1 catalyses the formation of the bioactive jasmonyl-isoleucine (JA-Ile) conjugate, while JAZ proteins repress the JA signalling pathway [80]. JA favours secondary growth and more specifically the formation of phloem fibres in herbaceous species [81,82]. Since phloem developing in galls retains a protophloem identity [68], we may hypothesise that phloem fibre formation, a strong differentiation process, is repressed in galls. The expression pattern of genes related to JA biosynthesis and signalling may be linked to the absence of phloem fibres in galls. Consequently, our data suggest that JA is not a key phytohormone partaking in vascular patterning of galls.



Overall, as already reported for other plant-RKN interactions [83], many genes coding for hormone metabolism and signalling are differentially expressed in 21 day-old poplar galls. Although the role of these different hormones in the plant-RKN interaction is not clearly elucidated, these are obviously involved in gall formation, development and metabolism. It is therefore likely that gall development is closely associated with moving transcriptional signatures of phytohormones biosynthesis and signalling, as already shown in galls from 2 to 14 dai [20].




2.6. Comparative Metabolic Profiling of Mature Gall and Root in Poplar


To strengthen the results obtained by RNA-Seq with potential alterations in the soluble phenolic pool, a phenylpropanoid-targeted metabolomic analysis of methanolic extracts from uninfected roots and 21 dai galls was performed. A total of 21045 mass-to-charge ratio (m/z) features, including ones associated with compounds from both plant and nematode origin, were identified. To gain insight into the metabolites that differ between the organs, a one-way ANOVA was performed here (p-value ≤ 0.05). Following this analysis, 12921 features differed in abundance between uninfected roots and galls (Table S4). As shown in Table 5, among the principal identified m/z features more abundant in galls, phenylpropanoids derived from hydroxycinnamic acids such as ferulic and caffeic acids were prevalent. Four guaiacyl/syringil trilignols were slightly more abundant in galls, suggesting a higher production of monolignols and lignin/lignans.



Tryptophan and SA-derived molecules including tremulacin, salicyloyl salicin, salicortin and salireposide, also showed an increased abundance in galls. Tryptophan accumulation may result from, (i) the increased activity of the shikimate pathway that supplies phenylalanine for phenylpropanoids biosynthesis [84], and (ii) the biosynthesis of indole-conjugates as defence metabolites, requiring tryptophan as substrate [85]. Salicortin, salireposide and tremulacin are detected in higher amount in the phenolic fraction of a transgenic poplar stem with altered LACCASE 3 expression, as compared to the wild type [86]. This transgenic line has no lignin phenotype but show defects in the structure of cell wall of the xylem fibres and it has been suggested that such phenolic compounds may cross-link with cell wall components, especially in PCW and middle lamella. Overexpression of EgMYB88 induces salicortin, salireposide and tremulacin accumulation in the stem of poplar [87]. EgMYB88 may control the biosynthesis of phenylpropanoids (monolignols, flavonoids and phenolic glycosides) in the cambium and in young differentiating xylem cells of woody species [87]. It is also relevant that Potri.013G074500, encoding a benzoyl-CoA:salicylalcohol O-benzoyltransferase involved in salicinoids biosynthesis [87], was upregulated in galls (Table S2). The accumulation of phenolic glycosides in the altered LACCASE 3 and EgMYB88 backgrounds, likely indicate that they play a role in SCW formation in galls. From a plant-nematode interaction perspective, tremulacin, salicyloyl salicin, salicortin and salireposide show anti-herbivore properties [88]. Moreover, SA has a strong nematicidal activity [89], supporting the hypothesis that these four molecules are part of the plant response to nematode infection. For instance, salireposide consists in the conjugation of salicin with 1-hydroxy-6-oxo-2-cyclohexene-1-carboxylic acid (HCC), the precursor of 6-hydroxy-2-cyclohexen-on-oyl (HCH), which is toxic to herbivores [90].



The six most down-accumulated identified compounds (<0.1× in galls are a ferulic acid derivate, chlorogenic acid (CGA), as well as 3 p-coumaric acid and 1 caffeic acid derivates. CGA is involved in root hair formation [91], lignin biosynthesis [92], and in plant defence [85,93]. CGA competes with SA for the pool of p-coumarate, a molecule required for the biosynthesis of both compounds [94,95]. The pool of CGA may therefore decrease because the biosynthesis of SA derivates and monolignols are favoured in galls.





3. Materials and Methods


3.1. Plant and RKN Material, Growth Conditions and Nematode Infection


Poplar (P. tremula × P. alba clone INRA 717-1B4) was grown aseptically as described in [96]. RKN infections were as described in [4].




3.2. RNA-Seq


Total RNA was extracted from 21 dai galls and corresponding uninfected poplar roots (n = 3) using the Plant RNA Isolation Kit (Agilent, Santa Clara, CA, USA) with a 15 min incubation step and a 5 min centrifugation step (20,000× g) added before prefilter column application. RNA quality controls were performed using a BioAnalyzer RNA Nano (Agilent, Santa Clara, CA, USA). All samples presented a RIN comprised between 9 and 10. TruSeq mRNA Stranded libraries were performed following Illumina guidelines.



Library control quality and library quantifications were performed using the QIAxcel DNA (QIAgen, Hilden, Germany) and the Kapa Library Quantification (Kapa Biosystems, Amsterdam, Netherlands) kits, respectively. After pooling and normalization of libraries, sequencing was done on a NextSeq500 Sequencing System (Illumina, San Diego, CA, USA). RNA quality test and sequencing were completed by the GIGA genomic platform (Liege University, Liege, Belgium).



Raw reads were trimmed for quality and mapped to the substituted genome sequence of P. tremula × P. alba 717-1B4 (http://aspendb.uga.edu/index.php/databases/spta-717-genome; [97,98]) using CLC Genomics Workbench v9.5.2 and the primary transcripts only. For mapping, the minimum length fraction was 0.9, the minimum similarity fraction 0.8, the maximum number of hits for a read was set to 1, mapping was not strand specific and only intact paired reads were counted (Table S1). To identify differentially regulated Populus transcripts, the Linear Models for Microarray and RNA-Seq Data (limma) package [99] in R (R Development Core Team, 2013, Vienna, Austria) and the raw counts from the CLC mapping were used as described in [100]. The complete RNA-Seq data was submitted to GEO (GSE112673).




3.3. Validation of the RNA-Seq Results


The same RNA was used for RNA-Seq and RT-qPCR analyses. RT using ProtoScript® II First Strand cDNA Synthesis Kit (NEB, Ipswich, MA, USA) was made to perform validation on gall vs. root (500 ng RNA per RT) and diluted 20×. Next, qPCR (n = 2) was achieved using PT1 (Potri.002G127700.1), CYC063 (Potri.005G240200.1) and UBP22 (Potri.018G017000.1) as reference genes [4]. The RNA-Seq results were validated for 7 genes using RT-qPCR. The observed fold changes were consistent between the two methods (Table S5).




3.4. Metabolomics


Uninfected roots and 21 dai galls (n = 4) were frozen in liquid N2 and grinded. A total of 100 mg of gall and 200 mg of root samples were extracted with 2 volumes of methanol. After agitation of 30 min at room temperature and centrifugation, supernatants were dried for 2 h in a speedvac and dissolved in 100 µl of cyclohexane and 100 µl of milliQ water. After centrifugation, 3 µl water phases were analysed by reversed phase Ultrahigh Performance Liquid Chromatography (Acquity UPLC I-Class system; Waters, Milford, MA, USA) coupled to a Quadrupole-Time-of-Flight Mass Spectrometer (Vion IMS QTOF; Waters) via an Electrospray Ionization source operated in the negative ionization mode. Chromatographic and MS conditions were as previously described [101], chromatogram processing was done with Progenesis QI v2.3 (Waters). Using an in-house database, identifications (built with Instant Jchem for Excel, ChemAxon, Budapest, Hungary) were based on the retention time, precursor m/z value and MS spectra recorded in data-independent acquisition mode (low energy was set at 6 eV, high energy was ramped from 10 to 40 eV). LC-MS data were normalised for the sample dry weight and further statistically analysed using R v. 3.4.3. Missing data were replaced by a random number drawn from a uniform distribution between 1 and 5 [sample() function].



The homogeneity of variance between galls and uninfected roots was checked using the bartlett.test() function and a Box-Cox transformation was applied whenever necessary. A one-way Analysis of Variance (ANOVA) model was computed with the lm() function in which weighing was necessary due to the loss of one root sample.





4. Conclusions


Galls in poplar result from the proliferation of xylem and phloem tissues to support the feeding of the nematode through the GCs. These biological processes rely on the preferential expression of several TFs and downstream biosynthetic genes, notably those involved in SCW formation. Nematode is therefore able to manipulate plant transcriptional regulation to mimic a developmental differentiation process favouring its own life cycle, at the expense of plant metabolism. However, the identification of the nematode molecular signals steering this programme will require further investigations. It seems that phytohormones such as cytokinins, GA and SA shape the development of galls. The targeted analysis of metabolites related to monolignols and salicylated products confirmed the reaction of the plant after nematode infection, which consists in the biosynthesis of monolignol intermediates and phenolic glycosides as lignin building blocks for xylem SCW.
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Supplementary materials can be found at https://www.mdpi.com/1422-0067/21/2/406/s1. Table S1. Mapping statistics of RNA-Seq experiment; Table S2. Complete list of differentially expressed genes in 21 dai galls versus poplar uninfected root (p-value <0.05, log2 ratio>1); Table S3. Complete list of GO families of differentially expressed genes (21 dai galls and uninfected root) as determined with ClueGO and CluePEDIA in Cytoscape; Table S4. Complete metabolomic analysis of 21 dai galls versus uninfected poplar roots; Table S5. Validation of the RNA-seq results by RT-qPCR. Up- and down-regulation are shown in yellow and blue, respectively. FC, fold change.





Author Contributions


Conceptualization, F.B.-C., M.B. (Marie Baucher), and M.E.J.; validation, F.B.-C.; formal analysis, F.B.-C., A.K., N.B., G.G., M.B. (Marc Behr); investigation, A.M., G.G., F.B.-C.; resources, J.d.A.E., W.B.; data curation, A.K.; writing—original draft preparation, M.B. (Marc Behr); writing—review and editing, M.B. (Marie Baucher), M.E.J., J.d.A.E., W.B.; visualization, M.B. (Marc Behr), A.K., F.B.-C., K.M.; supervision, F.B.-C., W.B., M.B. (Marie Baucher), M.E.J.; project administration, M.B. (Marie Baucher); funding acquisition, A.K., M.B. (Marie Baucher). All authors have read and agreed to the published version of the manuscript.




Funding


Marie Baucher and F.B.-C. were supported by the Fonds de la Recherche Scientifique (FRS-FNRS) research project T.0004.14 and by David and Alice Van Buuren Foundation. Marie Baucher is Senior Research Associate of the FRS-FNRS. A.K. was supported by grants from the French National Agency of Research (ANR) as part of the “Investissement d’Avenir program” (ANR-11_LABX-0002-01) of Labex ARBRE (CFP15) and the U.S. Department of Energy through the Oak Ridge National Laboratory Scientific Focus Area for Genomics Foundational Sciences (Plant Microbe Interfaces Project).




Acknowledgments


We thank N. Marteu and M. Magliano for nematode production.




Conflicts of Interest


The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.




References


	



Nicol, J.M.; Turner, S.J.; Coyne, D.L.; Nijs, L.D.; Hockland, S.; Maafi, Z.T. Current Nematode Threats to World Agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Springer: Dordrecht, The Netherlands, 2011; pp. 21–43. [Google Scholar]

	



Bartlem, D.G.; Jones, M.G.K.; Hammes, U.Z. Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots. J. Exp. Bot. 2014, 65, 1789–1798. [Google Scholar] [CrossRef] [PubMed]

	



Jones, M.G.K.; Goto, D.B. Root-knot Nematodes and Giant Cells. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Springer: Dordrecht, The Netherlands, 2011; pp. 83–100. [Google Scholar]

	



Baldacci-Cresp, F.; Sacré, P.-Y.; Twyffels, L.; Mol, A.; Vermeersch, M.; Ziemons, E.; Hubert, P.; Pérez-Morga, D.; El Jaziri, M.; De Almeida-Engler, J.; et al. Poplar–Root Knot Nematode Interaction: A Model for Perennial Woody Species. Mol. Plant-Microbe Interact. 2016, 29, 560–572. [Google Scholar] [CrossRef] [PubMed]

	



Escobar, C.; Barcala, M.; Cabrera, J.; Fenoll, C. Overview of Root-Knot Nematodes and Giant Cells. Adv. Bot. Res. 2015, 73, 1–32. [Google Scholar]

	



Vanholme, R.; De Meester, B.; Ralph, J.; Boerjan, W. Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 2019, 56, 230–239. [Google Scholar] [CrossRef] [PubMed]

	



Jammes, F.; Lecomte, P.; De Almeida Engler, J.; Bitton, F.; Martin-Magniette, M.L.; Renou, J.P.; Abad, P.; Favery, B. Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. Plant J. 2005, 44, 447–458. [Google Scholar] [CrossRef] [PubMed]

	



Fuller, V.L.; Lilley, C.J.; Atkinson, H.J.; Urwin, P.E. Differential gene expression in Arabidopsis following infection by plant-parasitic nematodes Meloidogyne incognita and Heterodera schachtii. Mol. Plant Pathol. 2007, 8, 595–609. [Google Scholar] [CrossRef]

	



Barcala, M.; García, A.; Cabrera, J.; Casson, S.; Lindsey, K.; Favery, B.; García-Casado, G.; Solano, R.; Fenoll, C.; Escobar, C. Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant J. 2010, 61, 698–712. [Google Scholar] [CrossRef]

	



Yamaguchi, Y.L.; Suzuki, R.; Cabrera, J.; Nakagami, S.; Sagara, T.; Ejima, C.; Sano, R.; Aoki, Y.; Olmo, R.; Kurata, T.; et al. Root-Knot and Cyst Nematodes Activate Procambium-Associated Genes in Arabidopsis Roots. Front. Plant Sci. 2017, 8, 8. [Google Scholar] [CrossRef]

	



Portillo, M.; Topping, J.; Emiliozzi, M.; Solano, R.; Resnick, N.; García-Casado, G.; Cabrera, J.; Lindsey, K.; Andrés, M.F.; Oliveros, J.C.; et al. Distinct and conserved transcriptomic changes during nematode-induced giant cell development in tomato compared with Arabidopsis: a functional role for gene repression. New Phytol. 2013, 197, 1276–1290. [Google Scholar] [CrossRef]

	



Shukla, N.; Yadav, R.; Kaur, P.; Rasmussen, S.; Goel, S.; Agarwal, M.; Jagannath, A.; Gupta, R.; Kumar, A. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance res. Mol. Plant Pathol. 2018, 19, 615–633. [Google Scholar] [CrossRef]

	



Ibrahim, H.M.; Hosseini, P.; Alkharouf, N.W.; Hussein, E.H.; Gamal El-Din, A.E.K.Y.; Aly, M.A.; Matthews, B.F. Analysis of gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways. BMC Genom. 2011, 12, 220. [Google Scholar] [CrossRef] [PubMed]

	



Damiani, I.; Hopkins, J.; Andrio, E.; Balzergue, S.; Hérouart, D.; Baldacci-Cresp, F.; LeComte, P.; Puppo, A.; Abad, P.; Favery, B. Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes. New Phytol. 2012, 194, 511–522. [Google Scholar] [CrossRef]

	



Bagnaresi, P.; Sala, T.; Irdani, T.; Scotto, C.; Lamontanara, A.; Beretta, M.; Rotino, G.L.; Sestili, S.; Cattivelli, L.; Sabatini, E. Solanum torvum responses to the root-knot nematode Meloidogyne incognita. BMC Genom. 2013, 14, 540. [Google Scholar] [CrossRef] [PubMed]

	



Castañeda, N.E.N.; Alves, G.S.C.; Almeida, R.M.; Amorim, E.P.; Ferreira, C.F.; Togawa, R.C.; Costa, M.M.D.C.; Grynberg, P.; Santos, J.R.P.; Cares, J.E.; et al. Gene expression analysis in Musa acuminata during compatible interactions with Meloidogyne incognita. Ann. Bot. 2017, 119, 915–930. [Google Scholar] [PubMed]

	



Santini, L.; De Freitas Munhoz, C.; Bonfim, M.F.; Brandão, M.M.; Inomoto, M.M.; Vieira, M.L.C. Host transcriptional profiling at early and later stages of the compatible interaction between Phaseolus vulgaris and Meloidogyne incognita. Phytopathology 2016, 106, 282–294. [Google Scholar] [CrossRef] [PubMed]

	



Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.-H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef]

	



Bindea, G.; Galon, J.; Mlecnik, B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 2013, 29, 661–663. [Google Scholar] [CrossRef]

	



Kyndt, T.; Vieira, P.; Gheysen, G.; De Almeida-Engler, J. Nematode feeding sites: unique organs in plant roots. Planta 2013, 238, 807–818. [Google Scholar] [CrossRef]

	



Held, M.A.; Jiang, N.; Basu, D.; Showalter, A.M.; Faik, A. Plant Cell Wall Polysaccharides: Structure and Biosynthesis. In Polysaccharides; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–54. [Google Scholar]

	



Eklöf, J.M.; Brumer, H. The XTH Gene Family: An Update on Enzyme Structure, Function, and Phylogeny in Xyloglucan Remodeling. Plant Physiol. 2010, 153, 456–466. [Google Scholar] [CrossRef]

	



Hyodo, H.; Yamakawa, S.; Takeda, Y.; Tsuduki, M.; Yokota, A.; Nishitani, K.; Kohchi, T. Active gene expression of a xyloglucan endotransglucosylase/hydrolase gene, XTH9, in inflorescence apices is related to cell elongation in Arabidopsis thaliana. Plant Mol. Biol. 2003, 52, 473–482. [Google Scholar] [CrossRef]

	



Groover, A.T.; Mansfield, S.D.; DiFazio, S.P.; Dupper, G.; Fontana, J.R.; Millar, R.; Wang, Y. The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium. Plant Mol. Biol. 2006, 61, 917–932. [Google Scholar] [CrossRef] [PubMed]

	



Park, Y.B.; Cosgrove, D.J. Xyloglucan and its Interactions with Other Components of the Growing Cell Wall. Plant Cell Physiol. 2015, 56, 180–194. [Google Scholar] [CrossRef] [PubMed]

	



Berthet, S.; Thevenin, J.; Baratiny, D.; Mont-Caulet, N.; Debeaujon, I.; Bidzinski, P.; Leple, J.C.; Huis, R.; Hawkins, S.; Gomez, L.D.; et al. Chapter 5—Role of Plant Laccases in Lignin Polymerization. In Advances in Botanical Research. Lignins Biosynthesis, Biodegradation and Bioengineering; Lapierre, L.J., Lapierre, C., Eds.; Academic Press: Cambridge, MA, USA, 2012; pp. 145–172. ISBN 0065-2296. [Google Scholar]

	



Fernández-Pérez, F.; Pomar, F.; Pedreño, M.A.; Novo-Uzal, E. The suppression of AtPrx52 affects fibers but not xylem lignification in Arabidopsis by altering the proportion of syringyl units. Physiol. Plant. 2014, 154, 395–406. [Google Scholar] [CrossRef] [PubMed]

	



Liu, J.; Hai, G.; Wang, C.; Cao, S.; Xu, W.; Jia, Z.; Yang, C.; Wang, J.P.; Dai, S.; Cheng, Y. Comparative proteomic analysis of Populus trichocarpa early stem from primary to secondary growth. J. Proteom. 2015, 126, 94–108. [Google Scholar] [CrossRef] [PubMed]

	



Bruegmann, T.; Wetzel, H.; Hettrich, K.; Smeds, A.; Willför, S.; Kersten, B.; Fladung, M. Knockdown of PCBER1, a gene of neolignan biosynthesis, resulted in increased poplar growth. Planta 2019, 249, 515–525. [Google Scholar] [CrossRef] [PubMed]

	



Nakatsubo, T.; Mizutani, M.; Suzuki, S.; Hattori, T.; Umezawa, T. Characterization of Arabidopsis thaliana Pinoresinol Reductase, a New Type of Enzyme Involved in Lignan Biosynthesis. J. Biol. Chem. 2008, 283, 15550–15557. [Google Scholar] [CrossRef]

	



Bygdell, J.; Srivastava, V.; Obudulu, O.; Srivastava, M.K.; Nilsson, R.; Sundberg, B.; Trygg, J.; Mellerowicz, E.J.; Wingsle, G. Protein expression in tension wood formation monitored at high tissue resolution in Populus. J. Exp. Bot. 2017, 68, 3405–3417. [Google Scholar] [CrossRef]

	



Jensen, J.K.; Kim, H.; Cocuron, J.-C.; Orler, R.; Ralph, J.; Wilkerson, C.G. The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. Plant J. 2011, 66, 387–400. [Google Scholar] [CrossRef]

	



Takata, N.; Taniguchi, T. Expression divergence of cellulose synthase (CesA) genes after a recent whole genome duplication event in Populus. Planta 2015, 241, 29–42. [Google Scholar] [CrossRef]

	



Endo, S.; Pesquet, E.; Yamaguchi, M.; Tashiro, G.; Sato, M.; Toyooka, K.; Nishikubo, N.; Udagawa-Motose, M.; Kubo, M.; Fukuda, H.; et al. Identifying New Components Participating in the Secondary Cell Wall Formation of Vessel Elements in Zinnia and Arabidopsis. Plant Cell 2009, 21, 1155–1165. [Google Scholar] [CrossRef]

	



Růžička, K.; Ursache, R.; Hejátko, J.; Helariutta, Y. Xylem development—From the cradle to the grave. New Phytol. 2015, 207, 519–535. [Google Scholar] [CrossRef] [PubMed]

	



Yamaguchi, M.; Goué, N.; Igarashi, H.; Ohtani, M.; Nakano, Y.; Mortimer, J.C.; Nishikubo, N.; Kubo, M.; Katayama, Y.; Kakegawa, K.; et al. VASCULAR-RELATED NAC-DOMAIN6 (VND6) and VND7 Effectively Induce Transdifferentiation into Xylem Vessel Elements under Control of an Induction System. Plant Physiol. 2010, 153, 906–914. [Google Scholar] [CrossRef] [PubMed]

	



Fleming, M.B.; Decker, S.R.; Bedinger, P.A. Investigating the Role of Extensin Proteins in Poplar Biomass Recalcitrance. BioResources 2016, 11, 4727–4744. [Google Scholar] [CrossRef]

	



Draeger, C.; Fabrice, T.N.; Gineau, E.; Mouille, G.; Kuhn, B.M.; Moller, I.; Abdou, M.-T.; Frey, B.; Pauly, M.; Bacic, A.; et al. Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC Plant Biol. 2015, 15, 155. [Google Scholar] [CrossRef] [PubMed]

	



Ke, S.; Luan, X.; Liang, J.; Hung, Y.-H.; Hsieh, T.-F.; Zhang, X.-Q. Rice OsPEX1, an extensin-like protein, affects lignin biosynthesis and plant growth. Plant Mol. Biol. 2019, 100, 151–161. [Google Scholar] [CrossRef]

	



Veronico, P.; Paciolla, C.; Pomar, F.; De Leonardis, S.; García-Ulloa, A.; Melillo, M.T. Changes in lignin biosynthesis and monomer composition in response to benzothiadiazole and root-knot nematode Meloidogyne incognita infection in tomato. J. Plant Physiol. 2018, 230, 40–50. [Google Scholar] [CrossRef]

	



Baima, S. The Arabidopsis ATHB-8 HD-Zip Protein Acts as a Differentiation-Promoting Transcription Factor of the Vascular Meristems. Plant Physiol. 2001, 126, 643–655. [Google Scholar] [CrossRef]

	



Demura, T.; Fukuda, H. Transcriptional regulation in wood formation. Trends Plant Sci. 2007, 12, 64–70. [Google Scholar] [CrossRef]

	



Yordanov, Y.S.; Regan, S.; Busov, V. Members of the LATERAL ORGAN BOUNDARIES DOMAIN Transcription Factor Family Are Involved in the Regulation of Secondary Growth in Populus. Plant Cell 2010, 22, 3662–3677. [Google Scholar] [CrossRef]

	



Ilegems, M.; Douet, V.; Meylan-Bettex, M.; Uyttewaal, M.; Brand, L.; Bowman, J.L.; Stieger, P.A. Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation. Development 2010, 137, 975–984. [Google Scholar] [CrossRef]

	



Muñiz, L.; Minguet, E.G.; Singh, S.K.; Pesquet, E.; Vera-Sirera, F.; Moreau-Courtois, C.L.; Carbonell, J.; Blazquez, M.A.; Tuominen, H. ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development 2008, 135, 2573–2582. [Google Scholar] [CrossRef] [PubMed]

	



Etchells, J.P.; Mishra, L.S.; Kumar, M.; Campbell, L.; Turner, S.R. Wood Formation in Trees Is Increased by Manipulating PXY-Regulated Cell Division. Curr. Biol. 2015, 25, 1050–1055. [Google Scholar] [CrossRef] [PubMed]

	



Chen, H.; Wang, J.P.; Liu, H.; Li, H.; Lin, Y.-C.J.; Shi, R.; Yang, C.; Gao, J.; Zhou, C.; Li, Q.; et al. Hierarchical Transcription Factor and Chromatin Binding Network for Wood Formation in Populus trichocarpa. Plant Cell 2019, 31, 602–626. [Google Scholar] [CrossRef]

	



Shi, R.; Lin, Y.-C.; Li, Q.; Sun, Y.-H.; Wang, J.P.; Chen, H.; Sederoff, R.R.; Chiang, V.L. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa. Planta 2017, 245, 927–938. [Google Scholar] [CrossRef] [PubMed]

	



Wang, P.; Dudareva, N.; A Morgan, J.; Chapple, C. Genetic manipulation of lignocellulosic biomass for bioenergy. Curr. Opin. Chem. Biol. 2015, 29, 32–39. [Google Scholar] [CrossRef] [PubMed]

	



Li, E.; Bhargava, A.; Qiang, W.; Friedmann, M.C.; Forneris, N.; Savidge, R.A.; Johnson, L.A.; Mansfield, S.D.; Ellis, B.E.; Douglas, C.J. The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus. New Phytol. 2012, 194, 102–115. [Google Scholar] [CrossRef] [PubMed]

	



De Schutter, K.; Joubès, J.; Cools, T.; Verkest, A.; Corellou, F.; Babiychuk, E.; Van Der Schueren, E.; Beeckman, T.; Kushnir, S.; Inzé, D.; et al. Arabidopsis WEE1 Kinase Controls Cell Cycle Arrest in Response to Activation of the DNA Integrity Checkpoint. Plant Cell 2007, 19, 211–225. [Google Scholar] [CrossRef]

	



Cools, T.; Iantcheva, A.; Weimer, A.K.; Boens, S.; Takahashi, N.; Maes, S.; Van den Daele, H.; Van Isterdael, G.; Schnittger, A.; De Veylder, L. The Arabidopsis thaliana Checkpoint Kinase WEE1 Protects against Premature Vascular Differentiation during Replication Stress. Plant Cell 2011, 23, 1435–1448. [Google Scholar] [CrossRef]

	



Cabral, D.; Banora, M.Y.; Antonino, J.D.; Rodiuc, N.; Vieira, P.; Coelho, R.R.; Chevalier, C.; Eekhout, T.; Engler, G.; De Veylder, L.; et al. The plant WEE1 kinase is involved in checkpoint control activation in nematode-induced galls. New Phytol. 2019, 225, 430–447. [Google Scholar] [CrossRef]

	



Hay, A.; Tsiantis, M. KNOX genes: versatile regulators of plant development and diversity. Development 2010, 137, 3153–3165. [Google Scholar] [CrossRef]

	



Liu, Y.; You, S.; Taylor-Teeples, M.; Li, W.L.; Schuetz, M.; Brady, S.M.; Douglas, C.J. BEL1-LIKE HOMEODOMAIN6 and KNOTTED ARABIDOPSIS THALIANA7 Interact and Regulate Secondary Cell Wall Formation via Repression of REVOLUTA. Plant Cell 2014, 26, 4843–4861. [Google Scholar] [CrossRef] [PubMed]

	



Zhao, Y.; Song, X.; Zhou, H.; Wei, K.; Jiang, C.; Wang, J.; Cao, Y.; Tang, F.; Zhao, S.; Lu, M.-Z.; et al. KNAT2/6b, a class I KNOX gene, impedes xylem differentiation by regulating NAC domain transcription factors in poplar. New Phytol. 2019. [Google Scholar] [CrossRef] [PubMed]

	



Siddique, S.; Grundler, F.M. Parasitic nematodes manipulate plant development to establish feeding sites. Curr. Opin. Microbiol. 2018, 46, 102–108. [Google Scholar] [CrossRef] [PubMed]

	



Zhao, C.; Avci, U.; Grant, E.H.; Haigler, C.H.; Beers, E.P. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant J. 2008, 53, 425–436. [Google Scholar] [CrossRef]

	



Zhao, C.; Lasses, T.; Bako, L.; Kong, D.; Zhao, B.; Chanda, B.; Bombarely, A.; Cruz-Ramírez, A.; Scheres, B.; Brunner, A.M.; et al. XYLEM NAC DOMAIN1, an angiosperm NAC transcription factor, inhibits xylem differentiation through conserved motifs that interact with RETINOBLASTOMA-RELATED. New Phytol. 2017, 216, 76–89. [Google Scholar] [CrossRef]

	



Yamaguchi, M.; Ohtani, M.; Mitsuda, N.; Kubo, M.; Ohme-Takagi, M.; Fukuda, H.; Demura, T. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 2010, 22, 1249–1263. [Google Scholar] [CrossRef]

	



Cassan-Wang, H.; Goué, N.; Saidi, M.N.; Legay, S.; Sivadon, P.; Goffner, D.; Grima-Pettenati, J. Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis. Front. Plant Sci. 2013, 4, 4. [Google Scholar] [CrossRef]

	



Zhou, M.; Zhang, K.; Sun, Z.; Yan, M.; Chen, C.; Zhang, X.; Tang, Y.; Wu, Y. LNK1 and LNK2 Corepressors Interact with the MYB3 Transcription Factor in Phenylpropanoid Biosynthesis. Plant Physiol. 2017, 174, 1348–1358. [Google Scholar] [CrossRef]

	



Oh, S.A.; Johnson, A.; Smertenko, A.; Rahman, D.; Park, S.K.; Hussey, P.J.; Twell, D. A Divergent Cellular Role for the FUSED Kinase Family in the Plant-Specific Cytokinetic Phragmoplast. Curr. Biol. 2005, 15, 2107–2111. [Google Scholar] [CrossRef]

	



Shultz, R.W.; Tatineni, V.M.; Hanley-Bowdoin, L.; Thompson, W.F. Genome-Wide Analysis of the Core DNA Replication Machinery in the Higher Plants Arabidopsis and Rice. Plant Physiol. 2007, 144, 1697–1714. [Google Scholar] [CrossRef]

	



Dowd, C.D.; Chronis, D.; Radakovic, Z.S.; Siddique, S.; Schmülling, T.; Werner, T.; Kakimoto, T.; Grundler, F.M.W.; Mitchum, M.G. Divergent expression of cytokinin biosynthesis, signaling and catabolism genes underlying differences in feeding sites induced by cyst and root-knot nematodes. Plant J. 2017, 92, 211–228. [Google Scholar] [CrossRef] [PubMed]

	



Hwang, I.; Sheen, J.; Muller, B. Cytokinin Signaling Networks. Annu. Rev. Plant Biol. 2012, 63, 353–380. [Google Scholar] [CrossRef] [PubMed]

	



Lohar, D.P.; Schaff, J.E.; Laskey, J.G.; Kieber, J.J.; Bilyeu, K.D.; Bird, D.M. Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J. 2004, 38, 203–214. [Google Scholar] [CrossRef] [PubMed]

	



Absmanner, B.; Stadler, R.; Hammes, U.Z. Phloem development in nematode-induced feeding sites: The implications of auxin and cytokinin. Front. Plant Sci. 2013, 4, 241. [Google Scholar] [CrossRef]

	



Gheysen, G.; Mitchum, M.G. Phytoparasitic nematode control of plant hormone pathways. Plant Physiol. 2019, 179, 1212–1226. [Google Scholar] [CrossRef]

	



Wang, K.L.-C.; Li, H.; Ecker, J.R. Ethylene Biosynthesis and Signaling Networks. Plant Cell 2002, 14, s131–s151. [Google Scholar] [CrossRef]

	



Fujimoto, T.; Mizukubo, T.; Abe, H.; Seo, S. Sclareol Induces Plant Resistance to Root-Knot Nematode Partially Through Ethylene-Dependent Enhancement of Lignin Accumulation. Mol. Plant-Microbe Interact. 2015, 28, 398–407. [Google Scholar] [CrossRef]

	



Rieu, I.; Eriksson, S.; Powers, S.J.; Gong, F.; Griffiths, J.; Woolley, L.; Benlloch, R.; Nilsson, O.; Thomas, S.G.; Hedden, P.; et al. Genetic Analysis Reveals That C19-GA 2-Oxidation Is a Major Gibberellin Inactivation Pathway in Arabidopsis[W]. Plant Cell 2008, 20, 2420–2436. [Google Scholar] [CrossRef]

	



Sun, S.; Wang, H.; Yu, H.; Zhong, C.; Zhang, X.; Peng, J. GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. J. Exp. Bot. 2013, 64, 1637–1647. [Google Scholar] [CrossRef]

	



Hedden, P.; Sponsel, V. A Century of Gibberellin Research. J. Plant Growth Regul. 2015, 34, 740–760. [Google Scholar] [CrossRef]

	



Sánchez-Rodríguez, C.; Somoza, I.R.; Sibout, R.; Persson, S. Phytohormones and the cell wall in Arabidopsis during seedling growth. Trends Plant Sci. 2010, 15, 291–301. [Google Scholar] [CrossRef] [PubMed]

	



Huang, D.; Wang, S.; Zhang, B.; Shang-Guan, K.; Shi, Y.; Zhang, N.; Liu, X.; Wu, K.; Xu, Z.; Fu, X.; et al. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice. Plant Cell 2015, 27, 1681–1696. [Google Scholar] [CrossRef]

	



Yu, D.; Chen, C.; Chen, Z. Evidence for an Important Role of WRKY DNA Binding Proteins in the Regulation of NPR1 Gene Expression. Plant Cell 2013, 13, 1527–1540. [Google Scholar] [CrossRef] [PubMed]

	



Caarls, L.; Pieterse, C.M.J.; Van Wees, S.C.M. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front. Plant Sci. 2015, 6, 170. [Google Scholar] [CrossRef] [PubMed]

	



Leon-Reyes, A.; Van Der Does, D.; De Lange, E.S.; Delker, C.; Wasternack, C.; Van Wees, S.C.M.; Ritsema, T.; Pieterse, C.M.J. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 2010, 232, 1423–1432. [Google Scholar] [CrossRef] [PubMed]

	



Pauwels, L.; Goossens, A. The JAZ Proteins: A Crucial Interface in the Jasmonate Signaling Cascade. Plant Cell 2011, 23, 3089–3100. [Google Scholar] [CrossRef]

	



Sehr, E.M.; Agusti, J.; Lehner, R.; Farmer, E.E.; Schwarz, M.; Greb, T. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J. 2010, 63, 811–822. [Google Scholar] [CrossRef]

	



Behr, M.; Lutts, S.; Hausman, J.-F.; Guerriero, G. Jasmonic acid to boost secondary growth in hemp hypocotyl. Planta 2018, 248, 1029–1036. [Google Scholar] [CrossRef]

	



Goverse, A.; Bird, D. The Role of Plant Hormones in Nematode Feeding Cell Formation. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Springer: Dordrecht, The Netherlands, 2011; pp. 325–347. [Google Scholar]

	



Marti, G.; Erb, M.; Boccard, J.; Glauser, G.; Doyen, G.; Villard, N.; Robert, C.A.M.; Turlings, T.C.J.; Rudaz, S.; Wolfender, J.-L. Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots. Plant Cell Environ. 2013, 36, 621–639. [Google Scholar] [CrossRef]

	



Tschaplinski, T.J.; Plett, J.M.; Engle, N.L.; Deveau, A.; Cushman, K.C.; Martin, M.Z.; Doktycz, M.J.; Tuskan, G.A.; Brun, A.; Kohler, A.; et al. Populus trichocarpa and Populus deltoides Exhibit Different Metabolomic Responses to Colonization by the Symbiotic Fungus Laccaria bicolor. Mol. Plant-Microbe Interact. 2014, 27, 546–556. [Google Scholar] [CrossRef]

	



Ranocha, P.; Chabannes, M.; Chamayou, S.; Danoun, S.; Jauneau, A.; Boudet, A.-M.; Goffner, D. Laccase Down-Regulation Causes Alterations in Phenolic Metabolism and Cell Wall Structure in Poplar. Plant Physiol. 2002, 129, 145–155. [Google Scholar] [CrossRef]

	



Soler, M.; Plasencia, A.; Lepikson-Neto, J.; Camargo, E.L.O.; Dupas, A.; Ladouce, N.; Pesquet, E.; Mounet, F.; Larbat, R.; Grima-Pettenati, J. The Woody-Preferential Gene EgMYB88 Regulates the Biosynthesis of Phenylpropanoid-Derived Compounds in Wood. Front. Plant Sci. 2016, 7, 319. [Google Scholar] [CrossRef] [PubMed]

	



Boeckler, G.A.; Gershenzon, J.; Unsicker, S.B. Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 2011, 72, 1497–1509. [Google Scholar] [CrossRef] [PubMed]

	



Aoudia, H.; Ntalli, N.; Aissani, N.; Yahiaoui-Zaidi, R.; Caboni, P. Nematotoxic Phenolic Compounds from Melia azedarach Against Meloidogyne incognita. J. Agric. Food Chem. 2012, 60, 11675–11680. [Google Scholar] [CrossRef] [PubMed]

	



Babst, B.A.; Harding, S.A.; Tsai, C.-J. Biosynthesis of Phenolic Glycosides from Phenylpropanoid and Benzenoid Precursors in Populus. J. Chem. Ecol. 2010, 36, 286–297. [Google Scholar] [CrossRef]

	



Narukawa, M.; Kanbara, K.; Tominaga, Y.; Aitani, Y.; Fukuda, K.; Kodama, T.; Murayama, N.; Nara, Y.; Arai, T.; Konno, M.; et al. Chlorogenic Acid Facilitates Root Hair Formation in Lettuce Seedlings. Plant Cell Physiol. 2009, 50, 504–514. [Google Scholar] [CrossRef]

	



Boerjan, W.; Ralph, J.; Baucher, M. Lignin Biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef]

	



Tsai, C.-J.; Harding, S.A.; Tschaplinski, T.J.; Lindroth, R.L.; Yuan, Y. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytol. 2006, 172, 47–62. [Google Scholar] [CrossRef]

	



Petersen, M.; Abdullah, Y.; Benner, J.; Eberle, D.; Gehlen, K.; Hücherig, S.; Janiak, V.; Kim, K.H.; Sander, M.; Weitzel, C.; et al. Evolution of rosmarinic acid biosynthesis. Phytochemistry 2009, 70, 1663–1679. [Google Scholar] [CrossRef]

	



Dempsey, D.A.; Vlot, A.C.; Wildermuth, M.C.; Klessig, D.F. Salicylic Acid Biosynthesis and Metabolism. Arab. Book 2011, 9, e0156. [Google Scholar] [CrossRef]

	



Baldacci-Cresp, F.; Moussawi, J.; Leplé, J.-C.; Van Acker, R.; Kohler, A.; Candiracci, J.; Twyffels, L.; Spokevicius, A.V.; Bossinger, G.; Laurans, F.; et al. PtaRHE1, a Populus tremula × Populus alba RING-H2 protein of the ATL family, has a regulatory role in secondary phloem fibre development. Plant J. 2015, 82, 978–990. [Google Scholar] [CrossRef] [PubMed]

	



Zhou, X.; Jacobs, T.B.; Xue, L.-J.; Harding, S.A.; Tsai, C.-J. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy. New Phytol. 2015, 208, 298–301. [Google Scholar] [CrossRef] [PubMed]

	



Xue, L.-J.; Alabady, M.S.; Mohebbi, M.; Tsai, C.-J. Exploiting genome variation to improve next-generation sequencing data analysis and genome editing efficiency in Populus tremula × alba 717-1B4. Tree Genet. Genomes 2015, 11, 11. [Google Scholar] [CrossRef]

	



Smyth, G.K. limma: Linear Models for Microarray Data. In Statistics for Biology and Health; Springer Science and Business Media LLC: Berlin, Germany, 2005; pp. 397–420. [Google Scholar]

	



Wilkins, O.; Waldron, L.; Nahal, H.; Provart, N.J.; Campbell, M.M. Genotype and time of day shape the Populus drought response. Plant J. 2009, 60, 703–715. [Google Scholar] [CrossRef] [PubMed]

	



De Meester, B.; De Vries, L.; Özparpucu, M.; Gierlinger, N.; Corneillie, S.; Pallidis, A.; Goeminne, G.; Morreel, K.; De Bruyne, M.; De Rycke, R.; et al. Vessel-specific reintroduction of CINNAMOYL-COA REDUCTASE1 (CCR1) in Dwarfed ccr1 mutants restores vessel and Xylary fiber integrity and increases biomass. Plant Physiol. 2018, 176, 611–633. [Google Scholar] [CrossRef] [PubMed]








[image: Ijms 21 00406 g001 550] 





Figure 1. Gene ontology (GO) enrichment performed with the subset of genes showing –2 > fold change > 2 in Cytoscape using ClueGO and CluePedia. Biological processes with genes overrepresented in 21 dai galls and uninfected roots are shown in orange and blue, respectively. All GO are listed in Table S3. 
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Table 1. Differentially expressed genes involved in PCW formation and modification in 21 dai galls versus uninfected roots.






Table 1. Differentially expressed genes involved in PCW formation and modification in 21 dai galls versus uninfected roots.





	Poplar ID
	log2 FC
	Arabidopsis ID
	Arabidopsis Gene Name





	Potri.005G087500
	1.33
	AT5G64740.1
	CESA6, E112, IXR2, PRC1



	Potri.005G194200
	1.06
	AT2G21770.1
	CESA09, CESA9



	Potri.016G054900
	1.49
	AT5G05170.1
	ATCESA3, ATH-B, CESA3, CEV1, IXR1



	Potri.006G052600
	1.64
	AT5G05170.1
	ATCESA3, ATH-B, CESA3, CEV1, IXR1



	Potri.006G004200
	2.45
	AT1G55850.1
	ATCSLE1, CSLE1



	Potri.001G369100
	−1.12
	AT1G55850.1
	ATCSLE1, CSLE1



	Potri.003G142400
	2.04
	AT4G23990.1
	ATCSLG3, CSLG3



	Potri.003G142300
	3.43
	AT4G23990.1
	ATCSLG3, CSLG3



	Potri.003G142500
	2.29
	AT4G23990.1
	ATCSLG3, CSLG3



	Potri.009G149700
	1.46
	AT5G22740.1
	ATCSLA02, ATCSLA2, CSLA02, CSLA2



	Potri.004G189000
	2.12
	AT5G22740.1
	ATCSLA02, ATCSLA2, CSLA02, CSLA2



	Potri.013G082200
	1.12
	AT3G03050.1
	ATCSLD3, CSLD3, KJK



	Potri.014G125100
	1.72
	AT1G02730.1
	ATCSLD5, CSLD5, SOS6



	Potri.002G200300
	1.86
	AT1G02730.1
	ATCSLD5, CSLD5, SOS6



	Potri.005G146900
	1.31
	AT4G07960.1
	ATCSLC12, CSLC12



	Potri.002G114200
	1.45
	AT4G07960.1
	ATCSLC12, CSLC12



	Potri.018G009300
	1.17
	AT4G31590.1
	ATCSLC05, ATCSLC5, CSLC05, CSLC5



	Potri.006G270900
	1.43
	AT4G31590.1
	ATCSLC05, ATCSLC5, CSLC05, CSLC5



	Potri.002G236200
	3.78
	AT3G23730.1
	XTH16



	Potri.019G125000
	2.34
	AT4G03210.1
	XTH9



	Potri.013G152400
	3.03
	AT4G03210.1
	XTH9
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Table 2. Differentially expressed genes involved in monolignol and lignan biosynthesis in 21 dai galls versus uninfected roots.
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Poplar ID

	
log2 FC

	
Arabidopsis ID

	
Arabidopsis Gene Name






	
Monolignol Biosynthesis




	
Potri.016G091100

	
1.12

	
AT2G37040.1

	
PAL1




	
Potri.006G126800

	
1.26

	
AT2G37040.1

	
PAL1




	
Potri.018G146100

	
3.47

	
AT2G30490.1

	
ATC4H, C4H, CYP73A5, REF3




	
Potri.018G105500

	
−1.45

	
AT5G48930.1

	
HCT




	
Potri.018G105400

	
−1.22

	
AT5G48930.1

	
HCT




	
Potri.001G045500

	
2.37

	
AT1G15950.1

	
ATCCR1, CCR1, IRX4




	
Potri.008G136600

	
1.06

	
AT1G67980.1

	
CCOAMT




	
Potri.009G099800

	
1.13

	
AT4G34050.1

	
CCoAOMT1




	
Potri.006G169700

	
−1.21

	
AT3G21240.1

	
4CL2, AT4CL2




	
Potri.003G188500

	
−1.21

	
AT3G21240.1

	
4CL2, AT4CL2




	
Potri.009G063400

	
−1.16

	
AT4G37980.1

	
ATCAD7, CAD7, ELI3, ELI3-1




	
Potri.009G095800

	
−1.75

	
AT3G19450.1

	
ATCAD4, CAD, CAD-C, CAD4




	
Potri.016G078300

	
1.08

	
AT4G37970.1

	
ATCAD6, CAD6




	
Potri.002G072100

	
2.93

	
AT1G77120.1

	
ALCOHOL DEHYDROGENASE 1




	
Potri.007G016400

	
−2.15

	
AT4G36220.1

	
CYP84A1, FAH1




	
Potri.005G117500

	
−3.70

	
AT4G36220.1

	
CYP84A1, FAH1




	
Lignan biosynthesis




	
Potri.002G034400

	
1.26

	
AT1G75280.1

	
PCBER1




	
Potri.001G133200

	
1.79

	
AT1G32100.1

	
ATPRR1, PRR1




	
Potri.003G100200

	
1.04

	
AT1G32100.1

	
ATPRR1, PRR1




	
Potri.001G133300

	
−2.33

	
AT1G32100.1

	
ATPRR1, PRR1




	
Methyl donors




	
Potri.013G004100

	
1.56

	
AT3G17390.1

	
MAT4, MTO3, SAMS3




	
Potri.007G147300

	
1.00

	
AT2G44160.1

	
MTHFR2
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Table 3. Differentially expressed genes involved in vascular identity in 21 dai galls versus uninfected roots.
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	Poplar ID
	log2 FC
	Arabidopsis ID
	Arabidopsis Gene Name





	Potri.006G237500
	1.01
	AT4G32880.1
	ATHB-8, ATHB8, HB-8



	Potri.010G089200
	1.53
	AT5G19530.1
	ACL5



	Potri.008G151800
	1.60
	AT5G19530.1
	ACL5



	Potri.010G217700
	1.42
	AT1G07900.1
	LBD1



	Potri.012G042100
	1.08
	AT5G16560.1
	KAN, KAN1



	Potri.017G137600
	1.16
	AT5G16560.1
	KAN, KAN1



	Potri.003G096300
	1.78
	AT1G32240.1
	KAN2



	Potri.006G037000
	1.31
	AT1G73590.1
	ATPIN1, PIN1



	Potri.016G035300
	1.59
	AT1G73590.1
	ATPIN1, PIN1



	Potri.012G019400
	1.81
	AT3G24770.1
	CLE41, TDIF



	Potri.001G049700
	2.24
	AT4G13195.1
	CLE44, TDIF



	Potri.014G104800
	1.21
	AT2G46770.1
	ANAC043, EMB2301, NST1



	Potri.011G058400
	1.49
	AT4G28500.1
	ANAC073, NAC073, SND2



	Potri.007G135300
	1.31
	AT4G28500.1
	ANAC073, NAC073, SND2



	Potri.015G082700
	1.06
	AT1G57560.1
	AtMYB50, MYB50



	Potri.013G113100
	2.43
	AT1G71930.1
	ANAC030, VND7



	Potri.019G083600
	2.65
	AT1G71930.1
	ANAC030, VND7



	Potri.005G129500
	−1.13
	AT2G23760.1
	BLH4, SAW2



	Potri.004G159300
	−1.24
	AT4G34610.1
	BLH6



	Potri.009G120800
	−1.17
	AT4G34610.1
	BLH6



	Potri.002G031000
	−2.39
	AT2G16400.1
	BLH7



	Potri.018G114100
	−3.30
	AT5G25220.2
	KNAT3



	Potri.006G259400
	−1.13
	AT5G25220.1
	KNAT3



	Potri.018G095900
	−1.63
	AT5G57620.1
	AtMYB36, MYB36



	Potri.017G017600
	−2.63
	AT1G17950.1
	ATMYB52, BW52, MYB52



	Potri.005G064100
	−1.70
	AT5G64530.1
	ANAC104, XND1



	Potri.007G105000
	−1.60
	AT5G64530.1
	ANAC104, XND1



	Potri.001G061200
	−1.76
	AT5G13180.1
	ANAC083, NAC083, VNI2



	Potri.013G109300
	−1.91
	AT1G22640.1
	ATMYB3, MYB3



	Potri.017G017600
	−2.63
	AT1G17950.1
	ATMYB52, BW52, MYB52



	Potri.002G073500
	−2.11
	AT1G17950.1
	ATMYB52, BW52, MYB52



	Potri.005G186400
	−1.27
	AT1G17950.1
	ATMYB52, BW52, MYB52
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Table 4. Differentially expressed genes involved in phytohormones biosynthesis, signalling and transport in 21 dai galls versus uninfected roots.
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Poplar ID

	
log2 FC

	
Arabidopsis ID

	
Arabidopsis Gene Name






	
Nuclear division and cytokinesis




	
Potri.T058000

	
1.20

	
AT1G50240.2

	
FU




	
Potri.019G052500

	
1.22

	
AT1G50240.2

	
FU




	
Potri.004G131600

	
2.33

	
AT5G46280.1

	
MCM3




	
Potri.009G121500

	
2.34

	
AT2G16440.1

	
MCM4




	
Potri.001G070500

	
2.48

	
AT1G44900.1

	
ATMCM2, MCM2




	
Potri.018G112800

	
2.52

	
AT2G07690.1

	
MCM5




	
Potri.014G121000

	
2.23

	
AT4G02060.1

	
MCM7, PRL




	
Potri.001G074000

	
2.47

	
AT5G44635.1

	
MCM6




	
Potri.006G188700

	
2.48

	
AT2G07690.1

	
MCM5




	
Potri.009G134500

	
2.55

	
AT2G20980.1

	
MCM10




	
Potri.006G131900

	
1.69

	
AT3G09660.1

	
MCM8




	
Cytokinin signalling




	
Potri.002G152900

	
1.32

	
AT4G16110.1

	
ARR2, RR2




	
Potri.006G041100

	
1.00

	
AT3G57040.1

	
ARR9, ATRR4




	
Potri.002G082200

	
1.27

	
AT3G57040.1

	
ARR9, ATRR4




	
Potri.018G111300

	
−1.40

	
AT2G25180.1

	
ARR12, RR12




	
Auxin biosynthesis and transport




	
Potri.018G036800

	
−1.73

	
AT5G25620.1

	
YUC6




	
Potri.002G207400

	
−1.29

	
AT1G48910.1

	
YUC10




	
Potri.004G124200

	
1.46

	
AT2G01420.2

	
ATPIN4, PIN4




	
Potri.005G187500

	
1.57

	
AT1G77110.1

	
PIN6




	
Potri.008G129400

	
1.70

	
AT1G70940.1

	
ATPIN3, PIN3




	
Potri.002G072200

	
3.20

	
AT1G77110.1

	
PIN6




	
Gibberellins biosynthesis and signalling




	
Potri.012G132400

	
−4.20

	
AT5G51810.1

	
ATGA20OX2, GA20OX2




	
Potri.015G134600

	
−1.80

	
AT5G51810.1

	
ATGA20OX2, GA20OX2




	
Potri.006G247700

	
−2.82

	
AT1G15550.1

	
ATGA3OX1, GA3OX1, GA4




	
Potri.003G057400

	
−2.28

	
AT1G15550.1

	
ATGA3OX1, GA3OX1, GA4




	
Potri.010G149700

	
−1.95

	
AT1G47990.1

	
ATGA2OX4, GA2OX4




	
Potri.017G124200

	
3.35

	
AT1G74670.1

	
GASA6




	
Potri.012G076700

	
1.45

	
AT5G14920.1

	
GASA14




	
Potri.015G071500

	
2.70

	
AT5G14920.1

	
GASA14




	
Potri.017G021400

	
−5.17

	
AT2G01570.1

	
RGA, RGA1




	
Potri.016G027800

	
−3.35

	
AT1G14920.1

	
GAI, RGA2




	
Potri.007G133000

	
−2.48

	
AT2G01570.1

	
RGA, RGA1




	
Potri.017G125200

	
−1.17

	
AT2G01570.1

	
RGA, RGA1




	
Salicylic acid biosynthesis and signalling




	
Potri.012G070000

	
1.16

	
AT1G74710.1

	
ATICS1, EDS16, ICS1, SID2




	
Potri.001G288600

	
1.89

	
AT2G14610.1

	
ATPR1, PR 1, PR1




	
Potri.009G082800

	
3.42

	
AT2G14610.1

	
ATPR1, PR 1, PR1




	
Potri.009G082900

	
3.87

	
AT2G14610.1

	
ATPR1, PR 1, PR1




	
Potri.001G288400

	
4.84

	
AT2G14610.1

	
ATPR1, PR 1, PR1




	
Potri.002G168700

	
1.98

	
AT4G23810.1

	
ATWRKY53, WRKY53
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Table 5. List of putatively structurally characterised metabolites with a different abundance in 21 dai galls versus uninfected roots.
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Accepted ID

	
RT (min)

	
m/z

	
P-Value

	
FC






	
Compounds with increased abundance in 21 dai gall as compared to root




	
ferulic acid + sulfate

	
4.87

	
273.0063

	
4.62 × 10−5

	
59.236




	
tremulacin

	
20.38

	
527.1556

	
0.018

	
24.870




	
L-tryptophan

	
3.33

	
203.082

	
0.013

	
23.719




	
salicyloyl salicin 1

	
19.35

	
405.1186

	
4.40 × 10−5

	
18.610




	
G(8-O-4)G(red8-5)G 1

	
13.33

	
555.2231

	
1.75 × 10−4

	
17.631




	
G(8-O-4)G(red8-5)G 2

	
13.78

	
555.2232

	
1.97 × 10−5

	
10.657




	
G(e8-O-4)S(8-5)G 2

	
16.66

	
583.2178

	
0.014

	
8.882




	
salicortin

	
8.61

	
423.1283

	
1.75 × 10−5

	
6.730




	
feruloyl hexose 2

	
5.37

	
355.103

	
2.08 × 10−5

	
4.384




	
G(e8-O-4)S(8-5)G 3

	
15.80

	
583.2173

	
0.003

	
3.523




	
salireposide

	
11.34

	
405.1186

	
0.001

	
2.312




	
caffeic acid 3/4-O-hexoside 3

	
4.04

	
341.0875

	
0.025

	
2.158




	
Compounds with decreased abundance in 21 dai gall as compared to root




	
G(t8-O-4)S(8-8)G 1

	
8.87

	
583.218

	
0.033

	
0.535




	
quercetin glucoside

	
8.80

	
463.0878

	
1.18 × 10−4

	
0.399




	
populoside B1

	
13.03

	
431.1362

	
0.011

	
0.121




	
caffeic acid 3/4-O-hexoside

	
2.87

	
341.0925

	
0.015

	
0.074




	
p-coumaroyl quinate 1

	
4.10

	
337.0913

	
0.001

	
0.053




	
p-coumaroyl hexose 1

	
3.58

	
325.0922

	
8.03 × 10−6

	
0.048




	
p-coumaroyl hexose 3

	
4.35

	
325.0909

	
4.20 × 10−4

	
0.022




	
chlorogenic acid 2

	
2.98

	
353.087

	
2.83 × 10−6

	
0.007




	
feruloyl hexose 1

	
3.03

	
355.1063

	
1.36 × 10−4

	
0.004








RT, retention time; FC, fold change.
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