Pilot Study on the Effect of Biophysical Therapy on Salivary Alpha-Amylase as a Surrogate Measure of Anxiety/Stress: In Search of a Novel Noninvasive Molecular Approach for the Management of Stress
Abstract
:1. Introduction
2. Results
2.1. Baseline Clinical and Demographic Characteristics
2.2. Effect of Biophysical Treatment on Salivary Amylase Levels
2.3. Effect of Biophysical Treatment DASS-21 Subscales
3. Discussion
4. Materials and Methods
4.1. Patient Recruitment and Study Design
4.2. Biophysical Therapy
4.3. Salivary Alpha Amylase Sampling and Measurement
4.4. DASS-21 Questionnaire
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DASS-21 | Depression Anxiety Stress Scale-21 |
GAD-7 | Generalized Anxiety Disorder 7-item scale |
SAA | Salivary alpha-amylase |
References
- Korte, S.M.; Koolhaas, J.M.; Wingfield, J.C.; McEwen, B.S. The Darwinian concept of stress: Benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci. Biobehav. Rev. 2005, 29, 3–38. [Google Scholar] [CrossRef]
- McEwen, B.S.; Seeman, T. Protective and damaging effects of mediators of stress. Elaborating and testing the concepts of allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1999, 896, 30–47. [Google Scholar] [CrossRef]
- McEwen, B.S. Stress, adaptation, and disease: Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1998, 840, 33–44. [Google Scholar] [CrossRef]
- Seeman, T.E.; McEwen, B.S.; Rowe, J.W.; Singer, B.H. Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc. Natl. Acad. Sci. USA 2001, 98, 4770–4775. [Google Scholar] [CrossRef] [Green Version]
- Karlamangla, A.S.; Singer, B.H.; McEwen, B.S.; Rowe, J.W.; Seeman, T.E. Allostatic load as a predictor of functional decline. MacArthur studies of successful aging. J. Clin. Epidemiol. 2002, 55, 696–710. [Google Scholar] [CrossRef]
- Glei, D.A.; Goldman, N.; Chuang, Y.-L.; Weinstein, M. Do chronic stressors lead to physiological dysregulation? Testing the theory of allostatic load. Psychosom. Med. 2007, 69, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Karlamangla, A.S.; Singer, B.H.; Seeman, T.E. Reduction in allostatic load in older adults is associated with lower all-cause mortality risk: MacArthur studies of successful aging. Psychosom. Med. 2006, 68, 500–507. [Google Scholar] [CrossRef]
- Levin, M. The wisdom of the body: Future techniques and approaches to morphogenetic fields in regenerative medicine, developmental biology and cancer. Regen. Med. 2011, 6, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Pokorný, J.; Pokorný, J.; Kobilková, J. Postulates on electromagnetic activity in biological systems and cancer. Integr. Biol. 2013, 5, 1439–1446. [Google Scholar] [CrossRef] [Green Version]
- Brizhik, L.S.; Eremko, A.A. Nonlinear Model of the Origin of Endogenous Alternating Electromagnetic Fields and Selfregulation of Metabolic Processes in Biosystems. Electromagn. Biol. Med. 2003, 22, 31–39. [Google Scholar] [CrossRef]
- Fröhlich, F.; McCormick, D.A. Endogenous Electric Fields May Guide Neocortical Network Activity. Neuron 2010, 67, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Brizhik, L.S.; Del Giudice, E.; Popp, F.-A.; Maric-Oehler, W.; Schlebusch, K.-P. On the dynamics of self-organization in living organisms. Electromagn. Biol. Med. 2009, 28, 28–40. [Google Scholar] [CrossRef]
- De Ninno, A.; Pregnolato, M. Electromagnetic homeostasis and the role of low-amplitude electromagnetic fields on life organization. Electromagn. Biol. Med. 2017, 36, 115–122. [Google Scholar] [CrossRef]
- Muehsam, D.; Ventura, C. Life Rhythm as a Symphony of Oscillatory Patterns: Electromagnetic Energy and Sound Vibration Modulates Gene Expression for Biological Signaling and Healing. Glob. Adv. Health Med. 2014, 3, 40–55. [Google Scholar] [CrossRef] [Green Version]
- Foletti, A.; Grimaldi, S.; Lisi, A.; Ledda, M.; Liboff, A.R. Bioelectromagnetic medicine: The role of resonance signaling. Electromagn. Biol. Med. 2013, 32, 484–499. [Google Scholar] [CrossRef]
- Funk, R.H.W.; Monsees, T.; Ozkucur, N. Electromagnetic effects—From cell biology to medicine. Prog. Histochem. Cytochem. 2009, 43, 177–264. [Google Scholar] [CrossRef]
- Funk, R.H. Coupling of pulsed electromagnetic fields (PEMF) therapy to molecular grounds of the cell. Am. J. Transl. Res. 2018, 10, 1260–1272. [Google Scholar]
- Liboff, A.R. Local and Holistic Electromagnetic Therapies. Electromagn. Biol. Med. 2007, 26, 315–325. [Google Scholar] [CrossRef]
- Foletti, A.; Baron, P.; Sclauzero, E.; Bucci, G.; Rinaudo, A.; Rocco, R. Assessment of biophysical therapy in the management of pain in current medical practice compared with ibuprofen and placebo: A pilot study. J. Biol. Regul. Homeost. Agents 2014, 28, 471–479. [Google Scholar]
- Foletti, A.; Egan, C.G.; Baron, P. Effect of biophysical therapy on articular pain in a primary care setting compared to ibuprofen and placebo: A randomized controlled trial. J. Biol. Regul. Homeost. Agents 2018, 32, 407–413. [Google Scholar] [PubMed]
- Foletti, A.; Baron, P. Biophysical Approach to Knee Osteoarthritis Pain and Disability. World J. Res. Rev. 2018, 5, 48–50. [Google Scholar] [CrossRef]
- Foletti, A.; Pokorný, J. Biophysical approach to low back pain: A pilot report. Electromagn. Biol. Med. 2015, 34, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Foletti, A.; Baron, P. Towards a biophysical approach to different levels of low back pain. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; pp. 592–595. [Google Scholar]
- Foletti, A.; Baron, P. Towards a biophysical management of neck pain and disability. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Spring (PIERS), Saint Petersburg, Russia, 22–25 May 2017; pp. 1707–1709. [Google Scholar]
- Del Giudice, E.; De Filippis, A.; Del Giudice, N.; Del Giudice, M.; d’Elia, I.; Iride, L.; Menghi, E.; Tedeschi, A.; Cozza, V.; Adone, B.; et al. Evaluation of a method based on coherence in aqueous systems and resonance-based isotherapeutic remedy in the treatment of chronic psoriasis vulgaris. Curr. Top. Med. Chem. 2015, 15, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Foletti, A.; Baron, P.; Cozzolino, M. Biophysical integrated approach for the management of early stages of CKD in elderly patients: A 12-month controlled study. Int. Urol. Nephrol. 2019, 51, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
- Foletti, A.; Baron, P. Biophysical approach to minor anxiety and Depressive Disorders. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; pp. 1400–1403. [Google Scholar]
- Strahler, J.; Skoluda, N.; Kappert, M.B.; Nater, U.M. Simultaneous measurement of salivary cortisol and alpha-amylase: Application and recommendations. Neurosci. Biobehav. Rev. 2017, 83, 657–677. [Google Scholar] [CrossRef] [PubMed]
- Skoluda, N.; La Marca, R.; Gollwitzer, M.; Müller, A.; Limm, H.; Marten-Mittag, B.; Gündel, H.; Angerer, P.; Nater, U.M. Long-term stability of diurnal salivary cortisol and alpha-amylase secretion patterns. Physiol. Behav. 2017, 175, 1–8. [Google Scholar] [CrossRef]
- Bendezú, J.J.; Wadsworth, M.E. Person-centered examination of salivary cortisol and alpha-amylase responses to psychosocial stress: Links to preadolescent behavioral functioning and coping. Biol. Psychol. 2018, 132, 143–153. [Google Scholar] [CrossRef]
- Eddy, P.; Wertheim, E.H.; Hale, M.W.; Wright, B.J. The salivary alpha amylase awakening response is related to over-commitment. Stress 2018, 21, 194–202. [Google Scholar] [CrossRef]
- Bauduin, S.E.E.C.; van Noorden, M.S.; van der Werff, S.J.A.; de Leeuw, M.; van Hemert, A.M.; van der Wee, N.J.A.; Giltay, E.J. Elevated salivary alpha-amylase levels at awakening in patients with depression. Psychoneuroendocrinology 2018, 97, 69–77. [Google Scholar] [CrossRef]
- Lépine, J.P. Epidemiology, burden, and disability in depression and anxiety. J. Clin. Psychiatry 2001, 62 (Suppl. S13), 4–10, Discussion 11-2. [Google Scholar]
- Hoffman, D.L.; Dukes, E.M.; Wittchen, H.-U. Human and economic burden of generalized anxiety disorder. Depress. Anxiety 2008, 25, 72–90. [Google Scholar] [CrossRef]
- Kovacic, P.; Somanathan, R. Electromagnetic fields: Mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. J. Recept. Signal Transduct. Res. 2010, 30, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Pall, M.L. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J. Cell. Mol. Med. 2013, 17, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Cichoń, N.; Bijak, M.; Miller, E.; Saluk, J. Extremely low frequency electromagnetic field (ELF-EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patients. Bioelectromagnetics 2017, 38, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Cichon, N.; Saluk-Bijak, J.; Miller, E.; Sliwinski, T.; Synowiec, E.; Wigner, P.; Bijak, M. Evaluation of the effects of extremely low frequency electromagnetic field on the levels of some inflammatory cytokines in post-stroke patients. J. Rehabil. Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Cichon, N.; Bijak, M.; Synowiec, E.; Miller, E.; Sliwinski, T.; Saluk-Bijak, J. Modulation of antioxidant enzyme gene expression by extremely low frequency electromagnetic field in post-stroke patients. Scand. J. Clin. Lab. Invest. 2018, 78, 626–631. [Google Scholar] [CrossRef]
- Cichoń, N.; Bijak, M.; Czarny, P.; Miller, E.; Synowiec, E.; Sliwinski, T.; Saluk-Bijak, J. Increase in Blood Levels of Growth Factors Involved in the Neuroplasticity Process by Using an Extremely Low Frequency Electromagnetic Field in Post-stroke Patients. Front. Aging Neurosci. 2018, 10, 294. [Google Scholar] [CrossRef] [Green Version]
- Cichoń, N.; Rzeźnicka, P.; Bijak, M.; Miller, E.; Miller, S.; Saluk, J. Extremely low frequency electromagnetic field reduces oxidative stress during the rehabilitation of post-acute stroke patients. Adv. Clin. Exp. Med. 2018, 27, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Cichoń, N.; Czarny, P.; Bijak, M.; Miller, E.; Śliwiński, T.; Szemraj, J.; Saluk-Bijak, J. Benign Effect of Extremely Low-Frequency Electromagnetic Field on Brain Plasticity Assessed by Nitric Oxide Metabolism during Poststroke Rehabilitation. Oxid. Med. Cell. Longev. 2017, 2017, 2181942. [Google Scholar] [CrossRef] [Green Version]
- Pinteaux, E.; Rothwell, N.J.; Boutin, H. Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1ra) are mediated by glia. Glia 2006, 53, 551–556. [Google Scholar] [CrossRef]
- Zheng, C.; Zhang, T. Synaptic plasticity-related neural oscillations on hippocampus-prefrontal cortex pathway in depression. Neuroscience 2015, 292, 170–180. [Google Scholar] [CrossRef]
- Xu, X.; An, L.; Mi, X.; Zhang, T. Impairment of cognitive function and synaptic plasticity associated with alteration of information flow in theta and gamma oscillations in melamine-treated rats. PLoS ONE 2013, 8, e77796. [Google Scholar] [CrossRef] [PubMed]
- Kojima, N.; Yasuda, H.; Hanamura, K.; Ishizuka, Y.; Sekino, Y.; Shirao, T. Drebrin A regulates hippocampal LTP and hippocampus-dependent fear learning in adult mice. Neuroscience 2016, 324, 218–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, S.M.; Buzsáki, G. Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc. Natl. Acad. Sci. USA 2007, 104, 14495–14500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-M.; Chen, F.; Yu, H.-Q.; Zhou, P. Resonance effects on human brain based on magnetic stimulation of extremely low frequency. J. Tianjin Univ. 2011, 44, 823–828. [Google Scholar]
- Yang, J.; Wang, L.; Wang, F.; Tang, X.; Zhou, P.; Liang, R.; Zheng, C.; Ming, D. Low-Frequency Pulsed Magnetic Field Improves Depression-Like Behaviors and Cognitive Impairments in Depressive Rats Mainly via Modulating Synaptic Function. Front. Neurosci. 2019, 13, 820. [Google Scholar] [CrossRef] [Green Version]
- Aston-Jones, G.; Rajkowski, J.; Kubiak, P.; Alexinsky, T. Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J. Neurosci. 1994, 14, 4467–4480. [Google Scholar] [CrossRef]
- Baum, B.J. Principles of saliva secretion. Ann. N. Y. Acad. Sci. 1993, 694, 17–23. [Google Scholar] [CrossRef]
- Gordis, E.B.; Granger, D.A.; Susman, E.J.; Trickett, P.K. Salivary alpha amylase-cortisol asymmetry in maltreated youth. Horm. Behav. 2008, 53, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Nater, U.M.; Rohleder, N.; Schlotz, W.; Ehlert, U.; Kirschbaum, C. Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology 2007, 32, 392–401. [Google Scholar] [CrossRef]
- Dubick, M.A.; Conteas, C.N.; Billy, H.T.; Majumdar, A.P.; Geokas, M.C. Raised serum concentrations of pancreatic enzymes in cigarette smokers. Gut 1987, 28, 330–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onyesom, I.; Osioma, E.; Ifie, E.J.; Oweh, O.T. Activities of Alpha Amylase in Serum and Saliva of Some Nigerian Cigarette Smokers. Adv. Life Sci. 2012, 2, 28–30. [Google Scholar]
- Maier, H.; Jarczyk, L.; Scherer, G.; Born, I.A. Effects of acute nicotine administration on the function of the human parotid gland. Laryngo Rhino Otol. 1991, 70, 24–26. [Google Scholar] [CrossRef]
- Chowdhury, P.; Doi, R.; Tangoku, A.; Rayford, P.L. Structural and functional changes of rat exocrine pancreas exposed to nicotine. Int. J. Pancreatol. 1995, 18, 257–264. [Google Scholar] [PubMed]
- Foletti, A.; Ledda, M.; Lolli, M.G.; Grimaldi, S.; Lisi, A. Electromagnetic information transfer through aqueous system. Electromagn. Biol. Med. 2017, 36, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, I.; Foletti, A. Steps towards a Biophysical Approach to Refractory Gynecological Infections. In Proceedings of the 2015 Progress in Electromagnetic Research Symposium (PIERS), Prague, Czech Republic, 6–9 July 2015; pp. 175–178. [Google Scholar]
- Ferrara, I.; Foletti, A. Electronic transmission of ethynyl-oestradiol in menopausal women. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Spring (PIERS), Saint Petersburg, Russia, 22–25 May 2017; pp. 1704–1706. [Google Scholar]
- Lovibond, S.H.; Lovibond, P.F. Manual for the Depression Anxiety Stress Scales, 2nd ed.; Psychology Foundation of Australia: Sydney, Australia, 1995. [Google Scholar]
- Bottesi, G.; Ghisi, M.; Altoè, G.; Conforti, E.; Melli, G.; Sica, C. The Italian version of the Depression Anxiety Stress Scales-21: Factor structure and psychometric properties on community and clinical samples. Compr. Psychiatry 2015, 60, 170–181. [Google Scholar] [CrossRef]
Characteristic | All (N = 24) | Placebo (N = 12) | Biophysical (N = 12) | p-Value |
---|---|---|---|---|
Age (years) | 39.2 ± 7.2 | 38.3 ± 5.6 | 40.1 ± 8.6 | 0.54 |
Female gender, n (%) | 20 (83.3) | 10 (83.3) | 10 (83.3) | 1.00 |
Cigarette smoker, n (%) | 11 (45.8) | 6 (50) | 5 (41.7) | 0.68 |
Education, n (%) | ||||
High school | 24 (100) | 12 (100) | 12 (100) | 1.00 |
University | 7 (29.2) | 3 (25) | 4 (33.3) | 0.65 |
Salivary amylase (U/mL) | 111.8 ± 94.5 | 105.2 ± 106.8 | 118.4 ± 84.6 | 0.74 |
DASS-21 subscales | ||||
Depression | 9.6 ± 2.1 | 9.5 ± 2.1 | 9.7 ± 2.2 | 0.85 |
Anxiety | 6.8 ± 1.8 | 6.8 ± 1.9 | 6.7 ± 1.9 | 0.83 |
Stress | 11.6 ± 3.4 | 11.7 ± 3.4 | 11.5 ± 3.6 | 0.91 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, I.; Egan, C.G.; Foletti, A. Pilot Study on the Effect of Biophysical Therapy on Salivary Alpha-Amylase as a Surrogate Measure of Anxiety/Stress: In Search of a Novel Noninvasive Molecular Approach for the Management of Stress. Int. J. Mol. Sci. 2020, 21, 415. https://doi.org/10.3390/ijms21020415
Ferrara I, Egan CG, Foletti A. Pilot Study on the Effect of Biophysical Therapy on Salivary Alpha-Amylase as a Surrogate Measure of Anxiety/Stress: In Search of a Novel Noninvasive Molecular Approach for the Management of Stress. International Journal of Molecular Sciences. 2020; 21(2):415. https://doi.org/10.3390/ijms21020415
Chicago/Turabian StyleFerrara, Ida, Colin Gerard Egan, and Alberto Foletti. 2020. "Pilot Study on the Effect of Biophysical Therapy on Salivary Alpha-Amylase as a Surrogate Measure of Anxiety/Stress: In Search of a Novel Noninvasive Molecular Approach for the Management of Stress" International Journal of Molecular Sciences 21, no. 2: 415. https://doi.org/10.3390/ijms21020415
APA StyleFerrara, I., Egan, C. G., & Foletti, A. (2020). Pilot Study on the Effect of Biophysical Therapy on Salivary Alpha-Amylase as a Surrogate Measure of Anxiety/Stress: In Search of a Novel Noninvasive Molecular Approach for the Management of Stress. International Journal of Molecular Sciences, 21(2), 415. https://doi.org/10.3390/ijms21020415