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Abstract

:

Immune checkpoint inhibitor (ICI) therapies have become the most important medical therapies in many malignancies, such as melanoma, non-small-cell lung cancer, and urogenital cancers. However, due to generally low response rates of PD-(L)1 monotherapy, both PD-(L)1 combination therapies and novel therapeutics are under large-scale clinical evaluation. Thus far, clinical trials have rather suboptimally defined the patient population most likely to benefit from ICI therapy, and there is an unmet need for negative predictive markers aiming to reduce the number of non-responding patients in clinical practice. Furthermore, there is a strong need for basic tumor immunology research and innovative clinical trials to fully unleash the potential of ICI combinations for the benefit of patients.
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1. Introduction


The basis for cancer immunotherapy was obtained in the 1940s when the observation that mainly CD8+ cytotoxic T cells, a subtype of lymphocytes, were responsible for mediating the rejection and led to the identification of the mechanistic basis of antigen-recognition by human tumor-reactive T cells. In the past 10 years, there has been a huge development in cancer immunotherapies with the introduction of immune checkpoint inhibitor therapies towards programmed cell death protein 1 (PD-1), programmed death ligand-1 (PD-L1), and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) [1]. Immune checkpoint inhibitor (ICI) therapies have become the most important medical therapies in many malignancies such as melanoma, non-small-cell lung cancer, and urogenital cancers [2,3,4,5,6,7,8,9,10,11]. The mechanism of action of ICIs is in the inhibition of T-cell blocking, which can result in increased T-cell mediated cancer cell death [1].



Anti-PD-(L)1 antibodies have been approved for numerous metastatic cancers and recently in adjuvant settings after operation of stage III melanoma or chemoirradation of stage III non-small-cell lung cancer (NSCLC) [2,5,6,7,8,9,10,11,12,13,14,15,16]. Despite the continuously evolving indications of ICIs, clinical knowledge about their efficacy and tolerability in real-world settings is inadequate [17,18,19]. Typically, responses are seen in 20–40% of the metastatic cancer patients treated with PD-(L)1 monotherapy, yet most fail to respond [20,21,22,23]. Reproducible predictive biomarkers for anti-PD-(L)1 response are lacking. Due to generally low response rates of PD-(L)1 monotherapy, both PD-(L)1 combination therapies and novel therapeutics are under large-scale clinical evaluation. Novel immunotherapeutic drugs combined to PD-(L)1 antibodies including agents targeting T-cell receptors (e.g., LAG-3 [24], OX40 antibodies; NCT03971409), macrophages (e.g., CSF1R, CD47 antibodies [25]), and cytokines (e.g., IL-β1; NCT03631199) are under wide investigation. In this review, we focus on the current clinical concepts and future perspectives of anti-PD-(L)1 therapies in cancer care.




2. Cancer Immunotherapy


2.1. The Rationale of T Cell Focused Therapies


T cells are able to home into the antigen-expressing tumor bed, proliferate in response to tumor antigens, eradicate tumor cells by direct cytotoxicity, and generate immunological memory that allows a response to reoccurring tumors [26]. These features make T-cell focused therapies mechanistically preferable compared to other forms of cancer immunotherapy. In addition to cytotoxic CD8+ T-cells, the tumor microenvironment (TME) also contains other immunological cells that can support or inhibit cytotoxic T-cell functions. Specific CD4+ T helper (Th) cell phenotypes are essential for the efficient effector function of CD8+ T cells. Th1 CD4+ T cells secrete type I cytokines including IFNγ, leading to the activation of antigen-presenting cells (APCs) and enhanced CD8+ effector T cell response [27], whereas Th2 CD4+ T cells can dampen the activity of APCs [28]. Regulatory T cells (Tregs), characterized by the CD4+FOXP3+ phenotype, counteract the effector T cell mechanisms via secretion of immunosuppressive cytokines like IL10 as well as by direct inhibition of APCs [29]. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) are key regulators of cancer-related inflammation and resistance to immunotherapy. The M1/M2 polarization of macrophages is differentiated by the TME, where the M2 phenotype is referred to as tumorigenic promoting tumor progression [30,31].



Immune checkpoints like CTLA-4, PD-1, and LAG-3 are responsible for the balance between co-stimulatory and inhibitory signals influencing T cell-mediated immune responses [32,33] and the maintenance of self-tolerance under normal physiological conditions. Chronic antigen exposure within TME can lead to T cell exhaustion, which is characterized by unresponsive T cells expressing multiple co-inhibitory receptors [34,35] e.g., PD-1 [36,37,38,39,40] on tumor-infiltrating lymphocytes (TILs). In addition, the enhanced PD-1 expression of TILs reflects the large proportion of intratumoral CD4+ regulatory T cells, as well as the anergic state of CD8+ T cells [34,36,41]. The finding that the blockade of PD-1, as well as CTLA-4, can restore the effector function of exhausted T cells, defined immune checkpoints as potential drug therapy targets.




2.2. Immune Checkpoint Inhibitors: The Mechanism of Action


CTLA-4 antibody ipilimumab was the first ICI therapy to be accepted for the treatment of cancer. Due to a more favorable toxicity profile and better response rates, anti-PD-(L)1 therapies have become the major ICI treatments. The mechanistic basis of responses to PD-1 or PD-L1 antibodies is in inhibiting interferon-induced adaptive immune resistance. Interferon production is increased when antigen presentation activates the T cell receptor (TCR), leading to activation of effector cells alongside the upregulation of PD-L1 and indoleamine-pyrrole 2,3-dioxygenase (IDO) on intratumoral cells [42]. In addition to the interferon-inducible expression of PD-L1, which is common in most cancer types, PD-L1 can be constitutively expressed through gene amplification and activation of oncogenic pathways related to the signal transducer and activator of transcription (STAT) proteins or other interferon-receptor downstream modulators, reflecting innate immune resistance [43,44,45,46].



After the PD-L1-PD-1-interaction (Figure 1), PD-1 can bind to SH2-domain-containing tyrosine phosphatase 1 (SHP-1) and 2, thus leading to dephosphorylation of key signaling intermediates, including kinases like Akt and PI3K, which might terminate early TCR signaling [47,48], and influence the duration of T cell-target cell contact [49]. The disruption of PD-L1-PD-1 interaction leads to diminished T cell movement, thus, providing the possibility for extended antigen-specific T cell and antigen-bearing APC interaction, which is critical for full T cell activation [50,51]. In contrast to CTLA4, which contributes to T cell activation centrally, PD-1 regulates effector T cell activity in peripheral tissues and tumors (Figure 1). Furthermore, PD-1 is more broadly expressed than CTLA-4 on other non-T lymphocyte subsets of immune cells [52,53].





3. Current Predictive Biomarkers for Immune Checkpoint Inhibitor Therapies


3.1. Tumor-Infiltrating Immune Cells


Cancer immunology is a very complex entity and, therefore, the characterized markers thus far have suboptimal predictive values. PD-L1 expression of tumor cells was the first predictive biomarker evaluated in clinical trials investigating the PD-(L)1 agents. It has been shown that the magnitude of pretreatment PD-L1 expression on tumor cells [12,54] and on immune cells [55] predicts clinical outcome on multiple tumor types. Though baseline PD-L1 expression is widely used as a biomarker in clinical practice, it is valid only in limited cancers such as NSCLC, urothelial, and head and neck (H&N) squamous cell cancers, and also, patients with PD-L1 negative tumors can benefit from PD-(L)1 inhibitor therapy. Furthermore, PD-L1 expression is dynamic and may change over the course of clinical treatment [56], raising questions over the rationale of the sole use of baseline expression. Not only the expression of PD-L1 but also the location and number of immune cells in the TME predicts treatment efficiency of ICIs. Pre-existing CD8+ TILs localized in the invasive tumor margin were predictive of melanoma response to PD-1 or CTLA-4 inhibitor therapy [57,58,59], whereas PD-L1+ melanocytes located next to TILs was shown to lead to the secretion of interferon-gamma as a form of adaptive immune resistance [60]. Two predictive classification schemas on the interactions between tumor and host immunity in the TME have been proposed. The first one is based on four different types of TME reflecting the PD-L1 status and the presence or absence of TILs [61], where the type I with TIL+/PD-L1+ is the most likely to respond to PD-(L)1 immune checkpoint blockade. The second framework classifies cancers into T cell-inflamed (also called “hot”) tumors versus non-inflamed (or “cold”) tumors [62], where the T cell-inflamed tumor-type contributes to a higher probability of response to ICIs.




3.2. Tumor Genetics


A clinically relevant, although rarely applicable biomarker used to predict outcome and guide patient selection for ICI therapy, is microsatellite instability (MSI), which is a condition of genetic hypermutability that results from impaired DNA mismatch repair (MMR). Approximately 5% of solid tumors are characterized by either the presence of MSI or by the absence of one or more MMR proteins, implying deficient (d)MMR status. MSI/dMMR status has been shown to poses positive predictive values for treatment benefit from the PD-1 blockade [63,64]. MSI is the first biomarker used to select patients for PD-1 inhibitor therapy irrelevant of tissue/tumor type with FDA approval of pembrolizumab after the first-line therapy for metastatic, MSI-high tumors.



Tumor mutation burden (TMB) and neoantigen load are biomarkers similar in concept to MSI, though, they have not been validated independently to predict response. TMB is a measurement of mutations carried by tumor cells [65]. There are data demonstrating the association of higher TMB to improved survival in patients receiving ICIs [66]. A recent study investigating TMB in NSCLC has shown that TMB can predict better outcomes of single-agent PD-1 treated patients but not for chemotherapy and PD-1 combination [67]. In clinical practice, the usability of TMB as a predictive biomarker has been scarce due to the somewhat variable definitions of high TMB, the price, and technical requirements of its’ determination. There is evolving data showing that both TMB and MSI status could be assessed from liquid biopsies, which probably will increase their diagnostic value in clinical practice [68].



Of the tumor single-gene alterations, the most prominent evidence of the predictive role exists in NSCLC with genes such as STK11, KEAP1, K-Ras, EGFR, and ALK. STK11 is a tumor suppressor gene that is inactivated e.g., in NSCLC and melanoma [69,70], and in NSCLC, mutations in STK11 have been shown to relate to a lack of response to immunotherapy. Studies have hypothesized that this might connect to a distinct immune environment linked to STK11 tumors such as specific T cell excluded phenotypes [71,72,73]. Studies have shown the negative predictive value of STK11 mutations in NSCLC for ICIs either in monotherapy or in combination with chemotherapy [74]. Based on recent data, KEAP1 mutations among NSCLC patients are associated with inferior treatment responses to ICIs, despite other favorable molecular features such as high TMB [75]. KRAS mutation is the most common oncogenic aberration in NSCLC with up to 30% incidence in patients with adenocarcinoma in Western countries [76], and is associated with increased benefit from ICIs when it does not co-occur with STK11 or KEAP1 mutations. In general, the presence of EGFR mutations or ALK translocations in NSCLC is related to poor response to ICIs.




3.3. Circulating Markers


Systemic inflammation investigated using commonly characterized blood-based biomarkers has been shown to be related to the treatment response to ICIs. Elevated C-reactive protein (CRP) levels have been associated with poor responses to ICIs [77,78,79,80]. Other widely acknowledged prognostic markers for deleterious systemic inflammation include an elevated neutrophil-to-lymphocyte ratio (NLR) and lactate dehydrogenase (LDH). NLR is a marker for the general immune response to various stress stimuli, and it is shown to predict outcome among NSCLC and melanoma patients treated with PD-1 inhibitors [78,81,82,83,84], and CTLA-4 antibodies [78,83,85,86]. Raised LDH level is a classic inflammatory marker in patients with cancer. High baseline levels of LDH are linked to poor survival and inferior response to ICIs on melanoma and NSCLC patients [87,88].



Other potential soluble biomarkers include TCR diversity and clonality [89,90], as well as circulating immune cell subsets such as the number MDSCs or different T cell phenotypes [91,92,93]. The is evolving data on the negative prognostic meaning of PD-L1+ circulating tumor cells (CTCs) in NSCLC [94,95], however, the clinical benefit of immune checkpoint blockade in NSCLC based on PD-L1 status of circulating tumor cells remains uncertain. The prognostic role of soluble forms of PD-1 and PD-L1 (sPD-1, sPD-L1) on peripheral blood is unclear. There is data on the negative prognostic role of elevated serum sPD-L1 on stage IV melanoma [96], and NSCLC patients [97]. Still, findings from patients with pancreatic cancer suggest that sPD-1 and sPD-L1 are more indicators of systemic inflammation than a reflection of tumoral expression of PD-L1 [98], which could explain the dichotomy compared to the positive predictive role of high tissue PD-L1 expression.




3.4. The Prognostic Role of Gut Microbiota and Microbiome


The physiological importance of bacteria within the intestine, the microbiota, has been recognized through their effects on immune regulation, and pathogen niche exclusion [99,100]. There is evolving evidence that the gut microbiome has both prognostic and predictive value to treatment benefit from PD-(L)1 blockade [101,102,103,104], and in melanoma patients treated with ipilimumab [105]. According to the studies, significant differences were observed in the diversity and composition of the patient gut microbiome of responders versus non-responders. The imbalance in gut flora composition correlated with impaired immune cell activity in non-responders [104]. In addition, immune profiling suggested enhanced systemic and antitumor immunity in responding patients with a favorable gut microbiome [103]. The existing data creates a rationale for further studies in order to find ways to modulate the human microbiota therapeutically [106].





4. The Expanding Field of Cancer Immune Checkpoint Inhibitors


There is a constantly growing number of indications for ICIs in advanced cancers. Due to hundreds of studies already published of ICI monotherapies in an advanced disease setting, it is likely that the indications with the highest activity have already been discovered. ICI monotherapies are currently widely investigated in localized and locally advanced disease setting in adjuvant or neo-adjuvant schemes in multiple cancer types such as melanoma (NCT02977052; NCT04007588), NSCLC (NCT03425643; NCT02998528), and H&N SCC (NCT02296684; NCT03247712). Of the earlier disease settings, ICI monotherapies have been approved based on phase III disease-free survival (DFS) and/or overall survival (OS) evidence in the adjuvant treatment of high-risk melanoma, and as consolidation therapy after stage III NSCLC chemoirradiation [14,15,16]. Currently, published neo-adjuvant studies are generally small in sample size and pathological responses are often used as a primary endpoint [107,108,109]. It is unclear how good of a surrogate marker pathological response is for DFS or OS in the context of ICIs, even though a recent neoadjuvant trial on stage III melanoma patients showed a positive correlation between pathologic complete response and longer relapse-free survival after 18 months of follow-up [110]. However, it is likely that growing number of ICI therapies will be approved in adjuvant or neo-adjuvant setting in coming years.




5. Immune Checkpoint Inhibitor Combinations


ICI monotherapy has limited activity in advanced cancers, leaving a wide room for therapeutic improvements. A current consensus on the landscape of immune-evasive tumors emphasizes the role of immunosuppressive T cell excluded TME with distinctive features of immune cell contextures and signaling pathway expressions [111]. Overall, therapeutic approaches aiming to overcome innate and adaptive ICI resistance most likely would increase ICIs therapeutic potential. However, tumor immunology is a very complex entity with individual differences both in host and tumor, and resistance mechanisms are poorly understood (Figure 2). Therefore, selecting the right combination of therapy for the right patient is very challenging. Currently, ICIs have mainly been investigated in combination with standard-of-care therapies in existing treatment schemes without strong proof of biological rationale and patient selection. ICIs are or have been investigated, at least, in combination with other ICIs (ICI-ICI), chemotherapy (ICI-chemotherapy), targeted cancer therapies (ICI-TKI), and radiotherapy [112]. At present, clinically the most relevant therapeutic uses for anti-PD-(L)1-anti-CTLA-4 antibody combinations are in advanced melanoma [113], RCC [114], and NSCLC [115], anti-PD-(L)1 antibody -chemo in lung cancers [116,117] and triple-negative breast cancer [118], and anti-PD-(L)1 antibody -TKI in RCC [119]. It is likely that we have just seen a glimpse of the therapeutic invasion of ICI combinations and numerous new indications will be approved in the future. There is a strong need for basic tumor immunology research, preclinical modeling of combinatory treatments with tumors closely resembling human cancers, and innovative clinical trials to fully unleash the potential of ICI combinations for the benefit of patients.




6. Special Populations


Phase III clinical trials with ICIs have generally excluded special populations from the studies, and data on their management is scarce. Few prospective trials with a restricted number of individuals have shown that ICIs can bring meaningful clinical benefits to patients not fulfilling the generic inclusion criteria. According to data based on small clinical trials, the safety of anti-PD-1 therapy seems to be similar in patients with performance status ECOG ≥2 but these patients do not derive the same clinical benefit as the ones with ECOG 0–1. However, the benefit or safety of PD-1s seems to be similar regardless of the patient’s age [120,121,122].



Another patient population typically excluded from clinical trials are patients with central nervous system (CNS) metastasis. Unique features of CNS such as the protecting blood–brain barrier, in addition to different tumor inflammatory microenvironments compared to extracranial disease sites [123,124], might prevent patients with brain metastasis from gaining the same clinical benefit from ICIs, and hence, most clinical trials have had brain metastasis as an exclusion criterion. Retrospectively, it has been shown that ICIs can have clinical activity with an intracranial response in brain metastases of melanoma and NSCLC [125,126]. Two prospective clinical trials with a limited number of subjects have suggested that ICI-ICI combination can bring meaningful clinical benefit (intracranial clinical benefit rate of ~50%) to asymptomatic melanoma patients with brain metastasis [127,128]. Based on existing data, it is hard to conclude whether and which patients with brains metastasis are candidates for ICI therapies in routine clinical practice.



Clinical data on cancer patients with autoimmune disease is inadequate as well. Underlining autoimmune disorders can worsen due to ICI initiation, and limited evidence exists on the treatment of these patients. Retrospective studies have shown that about half of the patients with autoimmune disorders experience a flare of their autoimmune disease after ICI initiation and that immunosuppressive therapy at baseline is associated with poorer outcomes [129,130]. The risks and benefits should be carefully weighed when initiating ICIs on patients with autoimmune disorders, and shared decision making is emphasized in order to meet the informed consent of a patient fully.




7. Controlling Treatment-Related Side-Effects of Icis


Even though the toxicity profile of single-anti-PD-(L)1 therapy is rather benign with ~15% incidence of grade 3–4 immune-related adverse events (irAE) [2,5,6,8,9,10,20], the non-causal dependency on dosage and infusion frequency creates a unique spectrum of immune-related adverse events (irAEs). In addition, side-effects of ICIs can occur from virtually all of the organ systems and can occur very late, even months or years after treatment discontinuation. The treatment of side-effects consists of an assessment of symptom etiology, its´ NCI-CTCAE grade, and treatment of the side-effect by checkpoint inhibitor therapy discontinuation and initiation of immunosuppressive medications according to international guidelines [131,132]. Furthermore, anti-PD-(L)1-anti-CTLA-4 antibody combination therapies have a much more toxic nature of around 30–50% of patients experiencing severe side-effects [133,134], whereas with anti-PD-(L)1-chemo combination (e.g., atezolizumab and nab-paclitaxel; pembrolizumab-cisplatin/carboplatin-pemetrexed; pembrolizumab-carboplatin plus paclitaxel or nab-paclitaxel) the rate of irAEs follows the toxicity profile of anti-PD-(L)1 monotherapies excluding renal treatment-related side-effects [116,117,118]. For the optimal follow-up of patients receiving a checkpoint inhibitor, there is a need for comprehensive assessment, grading, and long-term surveillance of symptoms.



Patient-reported outcomes (PROs) consist of health-related questionnaires filled by the patients themselves, which can capture symptoms and signs and their severity. Scheduled electronic (e) PROs have many advantages compared to paper questionnaires such as reducing timely and locational limitations and offering a continuous collection of symptoms in a cost-effective manner [135,136,137]. The addition of ePRO to standard follow-up has been shown to improve survival and QoL of cancer patients treated with chemotherapy [138,139], but at present, there is only limited retrospective data on ePRO follow-up of cancer patients receiving ICIs [140], even though some prospective trials are ongoing. Taken into account the somewhat unpredictable nature of irAEs, the possibility of coupling ePROs to urgency algorithm, which sends an alert to the care unit on severe or altering symptoms enabling rapid reaction and treatment of important medical events, makes ePRO follow-up of patients receiving ICIs even more plausible.




8. Economic Sustainability


ICI therapies present a substantial economic challenge, especially considering the lack of good predictive biomarkers and undefined optimal treatment duration. Furthermore, the growing number of indications and ICIs investigated in combinations leading to longer treatment periods compared to monotherapy, will result in a high economic burden. Cost-effectiveness analysis has been carried out in numerous indications for ICIs yielding cost-effectiveness in some indications with a high willingness-to-pay (WTP) threshold [141]. With a WTP threshold of $100,000/QALY, the first line monotherapy studies have shown the cost-effectiveness of the therapy in melanoma (nivolumab/pembrolizumab vs. dacarbazine/ipilimumab [142,143,144,145]) and in NSCLC PD-L1 ≥50% (pembrolizumab vs. chemotherapy [146]). Conversely, none of the combinations tested in NSCLC (pembrolizumab+chemotherapy vs. chemotherapy [147] or atezolizumab+bevazicumab+chemotherapy vs. bevazicumab+chemotherapy [148]) or melanoma (nivolumab-ipilimumab vs. nivolumab [149]) were cost-effective with ICER of $147,366–454,092/QALY.



The cost-effectiveness of ICIs could be improved by better patient selection, determination of the optimal treatment length, or decreasing direct drug costs by lowering the prices or by risk-sharing price models. Thus far, clinical trials have rather suboptimally defined the patient population most likely to benefit from ICI therapy. Furthermore, most of the clinical trials have not questioned shorter than disease progression approaches. Currently, only one clinical trial has investigated discontinuing anti-PD-1 therapy at a 1-year fixed time compared to continuous treatment. The results of the study showed that PFS was inferior for patients whose therapy was discontinued but OS was similar [150]. In addition, data from retrospective studies have shown that discontinuing anti-PD-1 therapy in response does not lead to rapid disease progression [151,152,153]. However, there is a strong need for high-quality evidence to define early stopping rules. Hence, two prospective trials, STOP-GAP (NCT02821013) and DANTE (ISRCTN15837212), are recruiting metastatic melanoma patients to evaluate the optimal treatment duration and the role of re-challenge of anti-PD-1 therapy in order to define whether we are over-treating with checkpoint inhibitors.




9. Discussion


In a short period of time, ICI therapies have changed how we treat numerous cancers, but we are, however, far from optimal ICI therapeutic use. In most indications, the majority of patients fail to respond, good predictive markers are lacking, and ICI therapies generate a marked economic burden. These hurdles demand new solutions to improve the clinical efficiency of ICIs. The clinical efficiency of ICIs could be improved by means such as better patient selection and side effect management, earlier disease settings, combinatory therapeutic approaches, and addressing treatment length for better economic sustainability.







Author Contributions


S.I. and J.P.K. contributed to the design and formulation of the manuscript. Both authors read and approved the final version of the manuscript. All authors have read and agreed to the published version of the manuscript.




Funding


This research received no external funding.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed]

	



Brahmer, J.; Reckamp, K.L.; Baas, P.; Crino, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [PubMed]

	



Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [PubMed]

	



Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef] [PubMed]

	



Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef] [PubMed]

	



Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef] [PubMed]

	



Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef]

	



Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef]

	



Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Perez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]

	



Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]

	



Reck, M.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csoszi, T.; Fulop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]

	



Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef] [PubMed]

	



Schachter, J.; Ribas, A.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus ipilimumab for advanced melanoma: Final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet 2017, 390, 1853–1862. [Google Scholar] [CrossRef]

	



Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef]

	



Eggermont, A.M.M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.; Dalle, S.; Haydon, A.; Lichinitser, M.; Khattak, A.; Carlino, M.S.; et al. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma. N. Engl. J. Med. 2018, 378, 1789–1801. [Google Scholar] [CrossRef]

	



Weber, J.; Mandala, M.; del Vecchio, M.; Gogas, H.J.; Arance, A.M.; Cowey, C.L.; Dalle, S.; Schenker, M.; Chiarion-Sileni, V.; Marquez-Rodas, I.; et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. N. Engl. J. Med. 2017, 377, 1824–1835. [Google Scholar] [CrossRef]

	



Robert, C.; Ribas, A.; Hamid, O.; Daud, A.; Wolchok, J.D.; Joshua, A.M.; Hwu, W.J.; Weber, J.S.; Gangadhar, T.C.; Joseph, R.W.; et al. Durable Complete Response After Discontinuation of Pembrolizumab in Patients With Metastatic Melanoma. J. Clin. Oncol. 2018, 36, 1668–1674. [Google Scholar] [CrossRef]

	



Tachihara, M.; Negoro, S.; Inoue, T.; Tamiya, M.; Akazawa, Y.; Uenami, T.; Urata, Y.; Hattori, Y.; Hata, A.; Katakami, N.; et al. Efficacy of anti-PD-1/PD-L1 antibodies after discontinuation due to adverse events in non-small cell lung cancer patients (HANSHIN 0316). BMC Cancer 2018, 18, 946. [Google Scholar] [CrossRef]

	



Fan, Z.; Liang, Y.; Yang, X.; Li, B.; Cui, L.; Luo, L.; Jia, Y.; Wang, Y.; Niu, H. A meta-analysis of the efficacy and safety of PD-1/PD-L1 immune checkpoint inhibitors as treatments for metastatic bladder cancer. Onco Targets Ther. 2019, 12, 1791–1801. [Google Scholar] [CrossRef]

	



Weber, J.S.; Hodi, F.S.; Wolchok, J.D.; Topalian, S.L.; Schadendorf, D.; Larkin, J.; Sznol, M.; Long, G.V.; Li, H.; Waxman, I.M.; et al. Safety Profile of Nivolumab Monotherapy: A Pooled Analysis of Patients With Advanced Melanoma. J Clin. Oncol. 2017, 35, 785–792. [Google Scholar] [CrossRef]

	



Li, H.; Ma, W.; Yoneda, K.Y.; Moore, E.H.; Zhang, Y.; Pu, L.L.; Frampton, G.M.; Molmen, M.; Stephens, P.J.; Li, T. Severe nivolumab-induced pneumonitis preceding durable clinical remission in a patient with refractory, metastatic lung squamous cell cancer: A case report. J. Hematol. Oncol. 2017, 10, 64. [Google Scholar] [CrossRef] [PubMed]

	



Topalian, S.L.; Sznol, M.; McDermott, D.F.; Kluger, H.M.; Carvajal, R.D.; Sharfman, W.H.; Brahmer, J.R.; Lawrence, D.P.; Atkins, M.B.; Powderly, J.D.; et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J. Clin. Oncol. 2014, 32, 1020–1030. [Google Scholar] [CrossRef] [PubMed]

	



Wang, D.Y.; Salem, J.E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; et al. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 1721–1728. [Google Scholar] [CrossRef] [PubMed]

	



Ascierto, P.A.; Melero, I.; Bhatia, S.; Bono, P.; Sanborn, R.E.; Lipson, E.J.; Callahan, M.K.; Gajewski, T.; Gomez-Roca, C.; Hodi, F.S.; et al. Initial efficacy of anti-lymphocyte activation gene-3 (anti–LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti–PD-1/PD-L1 therapy. JCO 2017, 35, 9520. [Google Scholar] [CrossRef]

	



Chow, L.Q.M.; Gainor, J.F.; Lakhani, N.J.; Chung, H.C.; Lee, K.; Lee, J.; LoRusso, P.; Bang, Y.; Hodi, F.S.; Fanning, P.; et al. A phase I study of ALX148, a CD47 blocker, in combination with established anticancer antibodies in patients with advanced malignancy. JCO 2019, 37, 2514. [Google Scholar] [CrossRef]

	



Disis, M.L.; Bernhard, H.; Jaffee, E.M. Use of tumour-responsive T cells as cancer treatment. Lancet 2009, 373, 673–683. [Google Scholar] [CrossRef]

	



Ossendorp, F.; Mengede, E.; Camps, M.; Filius, R.; Melief, C.J. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J. Exp. Med. 1998, 187, 693–702. [Google Scholar] [CrossRef]

	



Ellyard, J.I.; Simson, L.; Parish, C.R. Th2-mediated anti-tumour immunity: Friend or foe? Tissue Antigens 2007, 70, 1–11. [Google Scholar] [CrossRef]

	



Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 2006, 6, 295–307. [Google Scholar] [CrossRef]

	



Gajewski, T.F.; Schreiber, H.; Fu, Y.X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013, 14, 1014–1022. [Google Scholar] [CrossRef]

	



Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416. [Google Scholar] [CrossRef] [PubMed]

	



Zou, W.; Chen, L. Inhibitory B7-family molecules in the tumour microenvironment. Nat. Rev. Immunol. 2008, 8, 467–477. [Google Scholar] [CrossRef] [PubMed]

	



Greenwald, R.J.; Freeman, G.J.; Sharpe, A.H. The B7 family revisited. Annu. Rev. Immunol. 2005, 23, 515–548. [Google Scholar] [CrossRef] [PubMed]

	



Wherry, E.J. T cell exhaustion. Nat. Immunol. 2011, 12, 492–499. [Google Scholar] [CrossRef] [PubMed]

	



Antoine, P.; Olislagers, V.; Huygens, A.; Lecomte, S.; Liesnard, C.; Donner, C.; Marchant, A. Functional exhaustion of CD4+ T lymphocytes during primary cytomegalovirus infection. J. Immunol. 2012, 189, 2665–2672. [Google Scholar] [CrossRef] [PubMed]

	



Ahmadzadeh, M.; Johnson, L.A.; Heemskerk, B.; Wunderlich, J.R.; Dudley, M.E.; White, D.E.; Rosenberg, S.A. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 2009, 114, 1537–1544. [Google Scholar] [CrossRef]

	



Sfanos, K.S.; Bruno, T.C.; Meeker, A.K.; de Marzo, A.M.; Isaacs, W.B.; Drake, C.G. Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. Prostate 2009, 69, 1694–1703. [Google Scholar] [CrossRef]

	



Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pages, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006, 313, 1960–1964. [Google Scholar] [CrossRef]

	



Stanton, S.E.; Adams, S.; Disis, M.L. Variation in the Incidence and Magnitude of Tumor-Infiltrating Lymphocytes in Breast Cancer Subtypes: A Systematic Review. JAMA Oncol. 2016, 2, 1354–1360. [Google Scholar] [CrossRef]

	



Bremnes, R.M.; Busund, L.T.; Kilvaer, T.L.; Andersen, S.; Richardsen, E.; Paulsen, E.E.; Hald, S.; Khanehkenari, M.R.; Cooper, W.A.; Kao, S.C.; et al. The Role of Tumor-Infiltrating Lymphocytes in Development, Progression, and Prognosis of Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2016, 11, 789–800. [Google Scholar] [CrossRef]

	



Baitsch, L.; Baumgaertner, P.; Devevre, E.; Raghav, S.K.; Legat, A.; Barba, L.; Wieckowski, S.; Bouzourene, H.; Deplancke, B.; Romero, P.; et al. Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J. Clin. Invest. 2011, 121, 2350–2360. [Google Scholar] [CrossRef] [PubMed]

	



Ribas, A. Adaptive Immune Resistance: How Cancer Protects from Immune Attack. Cancer Discov. 2015, 5, 915–919. [Google Scholar] [CrossRef]

	



Parsa, A.T.; Waldron, J.S.; Panner, A.; Crane, C.A.; Parney, I.F.; Barry, J.J.; Cachola, K.E.; Murray, J.C.; Tihan, T.; Jensen, M.C.; et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med. 2007, 13, 84–88. [Google Scholar] [CrossRef] [PubMed]

	



Loke, P.; Allison, J.P. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc. Natl. Acad. Sci. USA 2003, 100, 5336–5341. [Google Scholar] [CrossRef] [PubMed]

	



Akbay, E.A.; Koyama, S.; Carretero, J.; Altabef, A.; Tchaicha, J.H.; Christensen, C.L.; Mikse, O.R.; Cherniack, A.D.; Beauchamp, E.M.; Pugh, T.J.; et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013, 3, 1355–1363. [Google Scholar] [CrossRef] [PubMed]

	



Atefi, M.; Avramis, E.; Lassen, A.; Wong, D.J.; Robert, L.; Foulad, D.; Cerniglia, M.; Titz, B.; Chodon, T.; Graeber, T.G.; et al. Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin. Cancer Res. 2014, 20, 3446–3457. [Google Scholar] [CrossRef]

	



Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 2000, 192, 1027–1034. [Google Scholar] [CrossRef]

	



Chemnitz, J.M.; Parry, R.V.; Nichols, K.E.; June, C.H.; Riley, J.L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 2004, 173, 945–954. [Google Scholar] [CrossRef]

	



Fife, B.T.; Pauken, K.E.; Eagar, T.N.; Obu, T.; Wu, J.; Tang, Q.; Azuma, M.; Krummel, M.F.; Bluestone, J.A. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol. 2009, 10, 1185–1192. [Google Scholar] [CrossRef]

	



Scholer, A.; Hugues, S.; Boissonnas, A.; Fetler, L.; Amigorena, S. Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity 2008, 28, 258–270. [Google Scholar] [CrossRef]

	



Hurez, V.; Saparov, A.; Tousson, A.; Fuller, M.J.; Kubo, T.; Oliver, J.; Weaver, B.T.; Weaver, C.T. Restricted clonal expression of IL-2 by naive T cells reflects differential dynamic interactions with dendritic cells. J. Exp. Med. 2003, 198, 123–132. [Google Scholar] [CrossRef] [PubMed]

	



Terme, M.; Ullrich, E.; Aymeric, L.; Meinhardt, K.; Desbois, M.; Delahaye, N.; Viaud, S.; Ryffel, B.; Yagita, H.; Kaplanski, G.; et al. IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res. 2011, 71, 5393–5399. [Google Scholar] [CrossRef] [PubMed]

	



Fanoni, D.; Tavecchio, S.; Recalcati, S.; Balice, Y.; Venegoni, L.; Fiorani, R.; Crosti, C.; Berti, E. New monoclonal antibodies against B-cell antigens: Possible new strategies for diagnosis of primary cutaneous B-cell lymphomas. Immunol. Lett. 2011, 134, 157–160. [Google Scholar] [CrossRef] [PubMed]

	



Taube, J.M.; Klein, A.; Brahmer, J.R.; Xu, H.; Pan, X.; Kim, J.H.; Chen, L.; Pardoll, D.M.; Topalian, S.L.; Anders, R.A. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 2014, 20, 5064–5074. [Google Scholar] [CrossRef] [PubMed]

	



Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef] [PubMed]

	



Vilain, R.E.; Menzies, A.M.; Wilmott, J.S.; Kakavand, H.; Madore, J.; Guminski, A.; Liniker, E.; Kong, B.Y.; Cooper, A.J.; Howle, J.R.; et al. Dynamic Changes in PD-L1 Expression and Immune Infiltrates Early During Treatment Predict Response to PD-1 Blockade in Melanoma. Clin. Cancer Res. 2017, 23, 5024–5033. [Google Scholar] [CrossRef]

	



Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568–571. [Google Scholar] [CrossRef]

	



Chen, P.L.; Roh, W.; Reuben, A.; Cooper, Z.A.; Spencer, C.N.; Prieto, P.A.; Miller, J.P.; Bassett, R.L.; Gopalakrishnan, V.; Wani, K.; et al. Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discov. 2016, 6, 827–837. [Google Scholar] [CrossRef]

	



Hamid, O.; Schmidt, H.; Nissan, A.; Ridolfi, L.; Aamdal, S.; Hansson, J.; Guida, M.; Hyams, D.M.; Gomez, H.; Bastholt, L.; et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J. Transl. Med. 2011, 9, 204. [Google Scholar] [CrossRef]

	



Taube, J.M.; Anders, R.A.; Young, G.D.; Xu, H.; Sharma, R.; McMiller, T.L.; Chen, S.; Klein, A.P.; Pardoll, D.M.; Topalian, S.L.; et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 2012, 4, 127. [Google Scholar] [CrossRef]

	



Teng, M.W.; Ngiow, S.F.; Ribas, A.; Smyth, M.J. Classifying Cancers Based on T-cell Infiltration and PD-L1. Cancer Res. 2015, 75, 2139–2145. [Google Scholar] [CrossRef] [PubMed]

	



Gajewski, T.F. The Next Hurdle in Cancer Immunotherapy: Overcoming the Non-T-Cell-Inflamed Tumor Microenvironment. Semin. Oncol. 2015, 42, 663–671. [Google Scholar] [CrossRef] [PubMed]

	



Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [PubMed]

	



Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [PubMed]

	



Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Borresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef]

	



Samstein, R.M.; Lee, C.H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef]

	



Paz-Ares, L.; Langer, C.J.; Novello, S.; Halmos, B.; Cheng, Y.; Gadgeel, S.M.; Hui, R.; Sugawara, S.; Borghaei, H.; Cristescu, R.; et al. LBA80Pembrolizumab (pembro) plus platinum-based chemotherapy (chemo) for metastatic NSCLC: Tissue TMB (tTMB) and outcomes in KEYNOTE-021, 189, and 407. Ann. Oncol. 2019, 30, mdz394.078. [Google Scholar] [CrossRef]

	



Georgiadis, A.; Durham, J.N.; Keefer, L.A.; Bartlett, B.R.; Zielonka, M.; Murphy, D.; White, J.R.; Lu, S.; Verner, E.L.; Ruan, F.; et al. Noninvasive Detection of Microsatellite Instability and High Tumor Mutation Burden in Cancer Patients Treated with PD-1 Blockade. Clin. Cancer Res. 2019. [Google Scholar] [CrossRef]

	



Guldberg, P.; Straten, P.T.; Ahrenkiel, V.; Seremet, T.; Kirkin, A.F.; Zeuthen, J. Somatic mutation of the Peutz-Jeghers syndrome gene, LKB1/STK11, in malignant melanoma. Oncogene 1999, 18, 1777–1780. [Google Scholar] [CrossRef]

	



Sanchez-Cespedes, M.; Parrella, P.; Esteller, M.; Nomoto, S.; Trink, B.; Engles, J.M.; Westra, W.H.; Herman, J.G.; Sidransky, D. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 2002, 62, 3659–3662. [Google Scholar]

	



Mansuet-Lupo, A.; Alifano, M.; Pecuchet, N.; Biton, J.; Becht, E.; Goc, J.; Germain, C.; Ouakrim, H.; Regnard, J.F.; Cremer, I.; et al. Intratumoral Immune Cell Densities Are Associated with Lung Adenocarcinoma Gene Alterations. Am. J. Respir. Crit. Care Med. 2016, 194, 1403–1412. [Google Scholar] [CrossRef] [PubMed]

	



Pecuchet, N.; Laurent-Puig, P.; Mansuet-Lupo, A.; Legras, A.; Alifano, M.; Pallier, K.; Didelot, A.; Gibault, L.; Danel, C.; Just, P.A.; et al. Different prognostic impact of STK11 mutations in non-squamous non-small-cell lung cancer. Oncotarget 2017, 8, 23831–23840. [Google Scholar] [CrossRef] [PubMed]

	



Koyama, S.; Akbay, E.A.; Li, Y.Y.; Aref, A.R.; Skoulidis, F.; Herter-Sprie, G.S.; Buczkowski, K.A.; Liu, Y.; Awad, M.M.; Denning, W.L.; et al. STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment. Cancer Res. 2016, 76, 999–1008. [Google Scholar] [CrossRef] [PubMed]

	



Skoulidis, F.; Goldberg, M.E.; Greenawalt, D.M.; Hellmann, M.D.; Awad, M.M.; Gainor, J.F.; Schrock, A.B.; Hartmaier, R.J.; Trabucco, S.E.; Gay, L.; et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018, 8, 822–835. [Google Scholar] [CrossRef] [PubMed]

	



Arbour, K.; Shen, R.; Plodkowski, A.; Rizvi, H.; Ni, A.; Long, N.; Halpenny, D.; Sanchez-Vega, F.; Rudin, C.; Riely, G.; et al. MA19.09 Concurrent Mutations in STK11 and KEAP1 is Associated with Resistance to PD-(L)1 Blockade in Patients with NSCLC Despite High TMB. J. Thorac. Oncol. 2018, 13, S424. [Google Scholar] [CrossRef]

	



Murray, S.; Dahabreh, I.J.; Linardou, H.; Manoloukos, M.; Bafaloukos, D.; Kosmidis, P. Somatic mutations of the tyrosine kinase domain of epidermal growth factor receptor and tyrosine kinase inhibitor response to TKIs in non-small cell lung cancer: An analytical database. J. Thorac. Oncol. 2008, 3, 832–839. [Google Scholar] [CrossRef] [PubMed]

	



Iivanainen, S.; Ahvonen, J.; Knuuttila, A.; Tiainen, S.; Koivunen, J.P. Elevated CRP levels indicate poor progression-free and overall survival on cancer patients treated with PD-1 inhibitors. ESMO Open 2019, 4, e000531. [Google Scholar] [CrossRef]

	



Hopkins, A.M.; Rowland, A.; Kichenadasse, G.; Wiese, M.D.; Gurney, H.; McKinnon, R.A.; Karapetis, C.S.; Sorich, M.J. Predicting response and toxicity to immune checkpoint inhibitors using routinely available blood and clinical markers. Br. J. Cancer 2017, 117, 913–920. [Google Scholar] [CrossRef]

	



Naqash, A.R.; Stroud, C.R.G.; Butt, M.U.; Dy, G.K.; Hegde, A.; Muzaffar, M.; Yang, L.V.; Hafiz, M.; Cherry, C.R.; Walker, P.R. Co-relation of overall survival with peripheral blood-based inflammatory biomarkers in advanced stage non-small cell lung cancer treated with anti-programmed cell death-1 therapy: Results from a single institutional database. Acta Oncol. 2018, 57, 867–872. [Google Scholar] [CrossRef]

	



Simeone, E.; Gentilcore, G.; Giannarelli, D.; Grimaldi, A.M.; Caracò, C.; Curvietto, M.; Esposito, A.; Paone, M.; Palla, M.; Cavalcanti, E.; et al. Immunological and biological changes during ipilimumab treatment and their potential correlation with clinical response and survival in patients with advanced melanoma. Cancer Immunol. Immunother. 2014, 63, 675–683. [Google Scholar] [CrossRef]

	



Bagley, S.J.; Kothari, S.; Aggarwal, C.; Bauml, J.M.; Alley, E.W.; Evans, T.L.; Kosteva, J.A.; Ciunci, C.A.; Gabriel, P.E.; Thompson, J.C.; et al. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer 2017, 106, 1–7. [Google Scholar] [CrossRef] [PubMed]

	



Soyano, A.E.; Dholaria, B.; Marin-Acevedo, J.A.; Diehl, N.; Hodge, D.; Luo, Y.; Manochakian, R.; Chumsri, S.; Adjei, A.; Knutson, K.L.; et al. Peripheral blood biomarkers correlate with outcomes in advanced non-small cell lung Cancer patients treated with anti-PD-1 antibodies. J. Immunother. Cancer 2018, 6, 129. [Google Scholar] [CrossRef] [PubMed]

	



Gibney, G.T.; Weiner, L.M.; Atkins, M.B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016, 17, e542–e551. [Google Scholar] [CrossRef]

	



Diem, S.; Kasenda, B.; Spain, L.; Martin-Liberal, J.; Marconcini, R.; Gore, M.; Larkin, J. Serum lactate dehydrogenase as an early marker for outcome in patients treated with anti-PD-1 therapy in metastatic melanoma. Br. J. Cancer 2016, 114, 256–261. [Google Scholar] [CrossRef] [PubMed]

	



Zaragoza, J.; Caille, A.; Beneton, N.; Bens, G.; Christiann, F.; Maillard, H.; Machet, L. High neutrophil to lymphocyte ratio measured before starting ipilimumab treatment is associated with reduced overall survival in patients with melanoma. Br. J. Dermatol. 2016, 174, 146–151. [Google Scholar] [CrossRef] [PubMed]

	



Diem, S.; Kasenda, B.; Martin-Liberal, J.; Lee, A.; Chauhan, D.; Gore, M.; Larkin, J. Prognostic score for patients with advanced melanoma treated with ipilimumab. Eur. J. Cancer 2015, 51, 2785–2791. [Google Scholar] [CrossRef]

	



Martens, A.; Wistuba-Hamprecht, K.; Foppen, M.G.; Yuan, J.; Postow, M.A.; Wong, P.; Romano, E.; Khammari, A.; Dreno, B.; Capone, M.; et al. Baseline Peripheral Blood Biomarkers Associated with Clinical Outcome of Advanced Melanoma Patients Treated with Ipilimumab. Clin. Cancer Res. 2016, 22, 2908–2918. [Google Scholar] [CrossRef]

	



Mezquita, L.; Auclin, E.; Ferrara, R.; Charrier, M.; Remon, J.; Planchard, D.; Ponce, S.; Ares, L.P.; Leroy, L.; Audigier-Valette, C.; et al. Association of the Lung Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients With Advanced Non-Small Cell Lung Cancer. JAMA Oncol. 2018, 4, 351–357. [Google Scholar] [CrossRef]

	



Postow, M.A.; Manuel, M.; Wong, P.; Yuan, J.; Dong, Z.; Liu, C.; Perez, S.; Tanneau, I.; Noël, M.; Courtier, A.; et al. Peripheral T cell receptor diversity is associated with clinical outcomes following ipilimumab treatment in metastatic melanoma. J. Immunother. Cancer 2015, 3, 23–24. [Google Scholar] [CrossRef]

	



Snyder, A.; Nathanson, T.; Funt, S.A.; Ahuja, A.; Novik, J.B.; Hellmann, M.D.; Chang, E.; Aksoy, B.A.; Al-Ahmadie, H.; Yusko, E.; et al. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: An exploratory multi-omic analysis. PLoS Med. 2017, 14, e1002309. [Google Scholar] [CrossRef]

	



Kitano, S.; Postow, M.A.; Ziegler, C.G.; Kuk, D.; Panageas, K.S.; Cortez, C.; Rasalan, T.; Adamow, M.; Yuan, J.; Wong, P.; et al. Computational algorithm-driven evaluation of monocytic myeloid-derived suppressor cell frequency for prediction of clinical outcomes. Cancer Immunol. Res. 2014, 2, 812–821. [Google Scholar] [CrossRef] [PubMed]

	



Weber, J.; Gibney, G.; Kudchadkar, R.; Yu, B.; Cheng, P.; Martinez, A.J.; Kroeger, J.; Richards, A.; McCormick, L.; Moberg, V.; et al. Phase I/II Study of Metastatic Melanoma Patients Treated with Nivolumab Who Had Progressed after Ipilimumab. Cancer Immunol. Res. 2016, 4, 345–353. [Google Scholar] [CrossRef] [PubMed]

	



Huang, A.C.; Postow, M.A.; Orlowski, R.J.; Mick, R.; Bengsch, B.; Manne, S.; Xu, W.; Harmon, S.; Giles, J.R.; Wenz, B.; et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 2017, 545, 60–65. [Google Scholar] [CrossRef] [PubMed]

	



Gao, G.; Li, J.; Zhou, F.; Li, W.; Xiong, A.; Chen, X.; Ren, S.; Zhou, C. P2.04-57 Predictive and Prognostic Value of CTC Monitoring in Advanced NSCLC Patients Treated with Immune Checkpoint Inhibitors. J. Thorac. Oncol. 2019, 14, S730. [Google Scholar] [CrossRef]

	



Kloten, V.; Lampignano, R.; Krahn, T.; Schlange, T. Circulating Tumor Cell PD-L1 Expression as Biomarker for Therapeutic Efficacy of Immune Checkpoint Inhibition in NSCLC. Cells 2019, 8, 809. [Google Scholar] [CrossRef] [PubMed]

	



Zhou, J.; Mahoney, K.M.; Giobbie-Hurder, A.; Zhao, F.; Lee, S.; Liao, X.; Rodig, S.; Li, J.; Wu, X.; Butterfield, L.H.; et al. Soluble PD-L1 as a Biomarker in Malignant Melanoma Treated with Checkpoint Blockade. Cancer Immunol. Res. 2017, 5, 480–492. [Google Scholar] [CrossRef]

	



Costantini, A.; Julié, C.; Dumenil, C.; Hélias-Rodzewicz, Z.; Tisserand, J.; Dumoulin, J.; Giraud, V.; Labrune, S.; Chinet, T.; Emile, J.-F.; et al. Predictive role of plasmatic biomarkers in advanced non-small cell lung cancer treated by nivolumab. Oncoimmunology 2018, 7, e1452581. [Google Scholar] [CrossRef]

	



Kruger, S.; Legenstein, M.-L.; Rösgen, V.; Haas, M.; Modest, D.P.; Westphalen, C.B.; Ormanns, S.; Kirchner, T.; Heinemann, V.; Holdenrieder, S.; et al. Serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death ligand 1 (sPD-L1) in advanced pancreatic cancer. Oncoimmunology 2017, 6, e1310358. [Google Scholar] [CrossRef]

	



Sethi, V.; Kurtom, S.; Tarique, M.; Lavania, S.; Malchiodi, Z.; Hellmund, L.; Zhang, L.; Sharma, U.; Giri, B.; Garg, B.; et al. Gut Microbiota Promotes Tumor Growth in Mice by Modulating Immune Response. Gastroenterology 2018, 155, 33–37. [Google Scholar] [CrossRef]

	



Shepherd, E.S.; DeLoache, W.C.; Pruss, K.M.; Whitaker, W.R.; Sonnenburg, J.L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 2018, 557, 434–438. [Google Scholar] [CrossRef]

	



Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.; Alegre, M.-L.; et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015, 350, 1084–1089. [Google Scholar] [CrossRef] [PubMed]

	



Routy, B.; le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillere, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef] [PubMed]

	



Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef] [PubMed]

	



Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.-L.; Luke, J.J.; Gajewski, T.F. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018, 359, 104–108. [Google Scholar] [CrossRef] [PubMed]

	



Chaput, N.; Lepage, P.; Coutzac, C.; Soularue, E.; Le Roux, K.; Monot, C.; Boselli, L.; Routier, E.; Cassard, L.; Collins, M.; et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 2017, 28, 1368–1379. [Google Scholar] [CrossRef] [PubMed]

	



Brandi, G.; Frega, G. Microbiota: Overview and Implication in Immunotherapy-Based Cancer Treatments. Int. J. Mol. Sci. 2019, 20, 2699. [Google Scholar] [CrossRef]

	



Forde, P.M.; Chaft, J.E.; Pardoll, D.M. Neoadjuvant PD-1 Blockade in Resectable Lung Cancer. N. Engl. J. Med. 2018, 379, e14. [Google Scholar] [CrossRef]

	



Amaria, R.N.; Reddy, S.M.; Tawbi, H.A.; Davies, M.A.; Ross, M.I.; Glitza, I.C.; Cormier, J.N.; Lewis, C.; Hwu, W.J.; Hanna, E.; et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med. 2018, 24, 1649–1654. [Google Scholar] [CrossRef]

	



Chalabi, M.; Fanchi, L.F.; van den Berg, G.J.; Beets, G.L.; Lopez-Yurda, M.; Aalbers, A.G.; Grootscholten, C.; Snaebjornsson, P.; Maas, M.; Mertz, M.; et al. LBA37_PRNeoadjuvant ipilimumab plus nivolumab in early stage colon cancer. Ann. Oncol. 2018, 29, mdy424.047. [Google Scholar] [CrossRef]

	



Rozeman, E.A.; Menzies, A.M.; Krijgsman, O.; Hoefsmit, E.P.; van de Wiel, A.B.; Sikorska, K.; Van, T.M.; Eriksson, H.; Bierman, C.; Gonzalez, M.; et al. LBA7518-months relapse-free survival (RFS) and biomarker analyses of OpACIN-neo: A study to identify the optimal dosing schedule of neoadjuvant (neoadj) ipilimumab (IPI) + nivolumab (NIVO) in stage III melanoma. Ann. Oncol. 2019, 30, mdz394.072. [Google Scholar] [CrossRef]

	



Spranger, S.; Gajewski, T.F. Mechanisms of Tumor Cell–Intrinsic Immune Evasion. Annu. Rev. Cancer Biol. 2018, 2, 213–228. [Google Scholar] [CrossRef]

	



Tang, J.; Shalabi, A.; Hubbard-Lucey, V.M. Comprehensive analysis of the clinical immuno-oncology landscape. Ann. Oncol. 2018, 29, 84–91. [Google Scholar] [CrossRef] [PubMed]

	



Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [PubMed]

	



Motzer, R.J.; Rini, B.I.; McDermott, D.F.; Frontera, O.A.; Hammers, H.J.; Carducci, M.A.; Salman, P.; Escudier, B.; Beuselinck, B.; Amin, A.; et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: Extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 2019, 20, 1370–1385. [Google Scholar] [CrossRef]

	



Hellmann, M.D.; Paz-Ares, L.; Caro, R.B.; Zurawski, B.; Kim, S.W.; Costa, E.C.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef]

	



Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gumus, M.; Mazieres, J.; Hermes, B.; Senler, F.C.; Csoszi, T.; Fulop, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]

	



Gandhi, L.; Rodriguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; de Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]

	



Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Dieras, V.; Hegg, R.; Im, S.A.; Wright, G.S.; et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef]

	



Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulieres, D.; Melichar, B.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]

	



Spigel, D.R.; McCleod, M.; Jotte, R.M.; Einhorn, L.; Horn, L.; Waterhouse, D.M.; Creelan, B.; Babu, S.; Leighl, N.B.; Chandler, J.C.; et al. Safety, Efficacy, and Patient-Reported Health-Related Quality of Life and Symptom Burden with Nivolumab in Patients with Advanced Non-Small Cell Lung Cancer, Including Patients Aged 70 Years or Older or with Poor Performance Status (CheckMate 153). J. Thorac. Oncol. 2019, 14, 1628–1639. [Google Scholar] [CrossRef]

	



Felip, E.; Van Meerbeeck, J.; Wolf, J.; Ardizzoni, A.; Li, A.; Srinivasan, S.; Popat, S. 193TiP: CheckMate 171: A multicenter phase 2 trial of nivolumab (nivo) in patients (pts) with stage IIIB/IV squamous cell (SQ) NSCLC who have received ≥1 prior systemic treatment. J. Thorac. Oncol. 2016, 11, S141. [Google Scholar] [CrossRef]

	



Nathan, P.; Ascierto, P.A.; Haanen, J.; Espinosa, E.; Demidov, L.; Garbe, C.; Guida, M.; Lorigan, P.; Chiarion-Sileni, V.; Gogas, H.; et al. Safety and efficacy of nivolumab in patients with rare melanoma subtypes who progressed on or after ipilimumab treatment: A single-arm, open-label, phase II study (CheckMate 172). Eur. J. Cancer 2019, 119, 168–178. [Google Scholar] [CrossRef] [PubMed]

	



Kudo, Y.; Haymaker, C.; Zhang, J.; Reuben, A.; Duose, D.; Fujimoto, J.; Roy-Chowdhuri, S.; Soto, L.S.; Dejima, H.; Parra, E.; et al. Suppressed immune microenvironment and repertoire in brain metastases from patients with resected non-small-cell lung cancer. Ann. Oncol. 2019, 30, 1521–1530. [Google Scholar] [CrossRef] [PubMed]

	



Berghoff, A.S.; Venur, V.A.; Preusser, M.; Ahluwalia, M.S. Immune Checkpoint Inhibitors in Brain Metastases: From Biology to Treatment. Am. Soc. Clin. Oncol. Educ. Book 2016, 35, e116–e122. [Google Scholar] [CrossRef]

	



Rauschenberg, R.; Bruns, J.; Brütting, J.; Daubner, D.; Lohaus, F.; Zimmer, L.; Forschner, A.; Zips, D.; Hassel, J.C.; Berking, C.; et al. Impact of radiation, systemic therapy and treatment sequencing on survival of patients with melanoma brain metastases. Eur. J. Cancer 2019, 110, 11–20. [Google Scholar] [CrossRef] [PubMed]

	



Hendriks, L.E.; Henon, C.; Auclin, E.; Mezquita, L.; Ferrara, R.; Audigier-Valette, C.; Mazieres, J.; Lefebvre, C.; Rabeau, A.; Le Moulec, S.; et al. Outcome of Patients with Non–Small Cell Lung Cancer and Brain Metastases Treated with Checkpoint Inhibitors. J. Thorac. Oncol. 2019, 14, 1244–1254. [Google Scholar] [CrossRef] [PubMed]

	



Tawbi, H.A.; Forsyth, P.A.J.; Algazi, A.P.; Hamid, O.; Hodi, F.S.; Moschos, S.J.; Khushalani, N.I.; Gonzalez, R.; Lao, C.D.; Postow, M.A.; et al. Efficacy and safety of nivolumab (NIVO) plus ipilimumab (IPI) in patients with melanoma (MEL) metastatic to the brain: Results of the phase II study CheckMate 204. JCO 2017, 35, 9507. [Google Scholar] [CrossRef]

	



Long, G.V.; Atkinson, V.; Lo, S.; Sandhu, S.; Guminski, A.D.; Brown, M.P.; Wilmott, J.S.; Edwards, J.; Gonzalez, M.; Scolyer, R.A.; et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: A multicentre randomised phase 2 study. Lancet Oncol. 2018, 19, 672–681. [Google Scholar] [CrossRef]

	



Tison, A.; Quere, G.; Misery, L.; Funck-Brentano, E.; Danlos, F.X.; Routier, E.; Robert, C.; Loriot, Y.; Lambotte, O.; Bonniaud, B.; et al. Safety and Efficacy of Immune Checkpoint Inhibitors in Patients With Cancer and Preexisting Autoimmune Disease: A Nationwide, Multicenter Cohort Study. Arthritis Rheumatol. 2019, 71, 2100–2111. [Google Scholar] [CrossRef]

	



Chen, L.; Walker, M.S.; Zhi, J.; Komatsoulis, G.A.; Jun, M.; Stepanski, E.; Fukushima, R.; Lau, D.; Roberts, J.; Hyde, B.; et al. Real-world prevalence of autoimmune disease (AD) among patients (pts) receiving immune checkpoint inhibitors (ICI) in ASCO’s CancerLinQ database. JCO 2019, 37, 6583. [Google Scholar] [CrossRef]

	



Haanen, J.B.A.G.; Carbonnel, F.; Robert, C.; Kerr, K.M.; Peters, S.; Larkin, J.; Jordan, K.; ESMO Guidelines Committee. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv119–iv142. [Google Scholar] [CrossRef]

	



Puzanov, I.; Diab, A.; Abdallah, K.; Bingham, C.O.; Brogdon, C.; Dadu, R.; Hamad, L.; Kim, S.; Lacouture, M.E.; LeBoeuf, N.R.; et al. Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. Immunother. Cancer 2017, 5, 95. [Google Scholar] [CrossRef] [PubMed]

	



Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [PubMed]

	



Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Frontera, O.A.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthelemy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef] [PubMed]

	



Holch, P.; Warrington, L.; Bamforth, L.C.A.; Keding, A.; Ziegler, L.E.; Absolom, K.; Hector, C.; Harley, C.; Johnson, O.; Hall, G.; et al. Development of an integrated electronic platform for patient self-report and management of adverse events during cancer treatment. Ann. Oncol. 2017, 28, 2305–2311. [Google Scholar] [CrossRef]

	



Kotronoulas, G.; Kearney, N.; Maguire, R.; Harrow, A.; Di Domenico, D.; Croy, S.; MacGillivray, S. What is the value of the routine use of patient-reported outcome measures toward improvement of patient outcomes, processes of care, and health service outcomes in cancer care? A systematic review of controlled trials. J. Clin. Oncol. 2014, 32, 1480–1501. [Google Scholar] [CrossRef]

	



Lizée, T.; Basch, E.; Trémolières, P.; Voog, E.; Domont, J.; Peyraga, G.; Urban, T.; Bennouna, J.; Septans, A.-L.; Balavoine, M.; et al. Cost-Effectiveness of Web-Based Patient-Reported Outcome Surveillance in Patients With Lung Cancer. J. Thorac. Oncol. 2019, 14, 1012–1020. [Google Scholar] [CrossRef]

	



Denis, F.; Yossi, S.; Charron, A.; Voog, E.; Ganem, G.; Pointreau, Y.; Septans, A.-L.; Dupuis, O.; Letellier, C. Improving Survival in Patients Treated for a Lung Cancer Using Self-Evaluated Symptoms Reported Through a Web Application. Am. J. Clin. Oncol. 2017, 40, 464–469. [Google Scholar] [CrossRef]

	



Basch, E.; Deal, A.M.; Dueck, A.C.; Scher, H.I.; Kris, M.G.; Hudis, C.; Schrag, D. Overall Survival Results of a Trial Assessing Patient-Reported Outcomes for Symptom Monitoring During Routine Cancer Treatment. JAMA 2017, 318, 197–198. [Google Scholar] [CrossRef]

	



Iivanainen, S.; Alanko, T.; Peltola, K.; Konkola, T.; Ekström, J.; Virtanen, H.; Koivunen, J.P. ePROs in the follow-up of cancer patients treated with immune checkpoint inhibitors: A retrospective study. J. Cancer Res. Clin. Oncol. 2019, 145, 765–774. [Google Scholar] [CrossRef]

	



Verma, V.; Sprave, T.; Haque, W.; Simone, C.B.; Chang, J.Y.; Welsh, J.W.; Thomas, C.R. A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors. J. Immunother. Cancer 2018, 6, 128. [Google Scholar] [CrossRef] [PubMed]

	



Meng, Y.; Hertel, N.; Ellis, J.; Morais, E.; Johnson, H.; Philips, Z.; Roskell, N.; Walker, A.; Lee, D. The cost-effectiveness of nivolumab monotherapy for the treatment of advanced melanoma patients in England. Eur. J. Health Econ. 2018, 19, 1163–1172. [Google Scholar] [CrossRef] [PubMed]

	



Kohn, C.G.; Zeichner, S.B.; Chen, Q.; Montero, A.J.; Goldstein, D.A.; Flowers, C.R. Cost-Effectiveness of Immune Checkpoint Inhibition in BRAF Wild-Type Advanced Melanoma. J. Clin. Oncol. 2017, 35, 1194–1202. [Google Scholar] [CrossRef] [PubMed]

	



Miguel, L.S.; Lopes, F.V.; Pinheiro, B.; Wang, J.; Xu, R.; Pellissier, J.; Laires, P.A. Cost Effectiveness of Pembrolizumab for Advanced Melanoma Treatment in Portugal. Value Health 2017, 20, 1065–1073. [Google Scholar] [CrossRef] [PubMed]

	



Wang, J.; Chmielowski, B.; Pellissier, J.; Xu, R.; Stevinson, K.; Liu, F.X. Cost-Effectiveness of Pembrolizumab Versus Ipilimumab in Ipilimumab-Naive Patients with Advanced Melanoma in the United States. J. Manag. Care Spec. Pharm. 2017, 23, 184–194. [Google Scholar] [CrossRef] [PubMed]

	



Huang, M.; Lou, Y.; Pellissier, J.; Burke, T.; Liu, F.X.; Xu, R.; Velcheti, V. Cost Effectiveness of Pembrolizumab vs. Standard-of-Care Chemotherapy as First-Line Treatment for Metastatic NSCLC that Expresses High Levels of PD-L1 in the United States. Pharmacoeconomics 2017, 35, 831–844. [Google Scholar] [CrossRef]

	



Insinga, R.P.; Vanness, D.J.; Feliciano, J.L.; Vandormael, K.; Traore, S.; Burke, T. Cost-effectiveness of pembrolizumab in combination with chemotherapy in the 1st line treatment of non-squamous NSCLC in the US. J. Med Econ. 2018, 21, 1191–1205. [Google Scholar] [CrossRef]

	



Criss, S.D.; Mooradian, M.J.; Watson, T.R.; Gainor, J.F.; Reynolds, K.L.; Kong, C.Y. Cost-effectiveness of Atezolizumab Combination Therapy for First-Line Treatment of Metastatic Nonsquamous Non-Small Cell Lung Cancer in the United States. JAMA Netw. Open 2019, 2, e1911952. [Google Scholar] [CrossRef]

	



Oh, A.; Tran, D.M.; McDowell, L.C.; Keyvani, D.; Barcelon, J.A.; Merino, O.; Wilson, L. Cost-Effectiveness of Nivolumab-Ipilimumab Combination Therapy Compared with Monotherapy for First-Line Treatment of Metastatic Melanoma in the United States. J. Manag. Care Spec. Pharm. 2017, 23, 653–664. [Google Scholar] [CrossRef]

	



Spigel, D.R.; McLeod, M.; Hussein, M.A.; Waterhouse, D.M.; Einhorn, L.; Horn, L.; Creelan, B.; Babu, S.; Leighl, N.B.; Couture, F.; et al. 1297ORandomized results of fixed-duration (1-yr) vs continuous nivolumab in patients (pts) with advanced non-small cell lung cancer (NSCLC). Ann. Oncol. 2017, 28. [Google Scholar] [CrossRef]

	



Iivanainen, S.; Koivunen, J.P. Early PD-1 Therapy Discontinuation in Responding Metastatic Cancer Patients. Oncology 2019, 96, 125–131. [Google Scholar] [CrossRef] [PubMed]

	



Jansen, Y.; Rozeman, E.; Mason, R.; Goldinger, S.; Foppen, M.G.; Hoejberg, L.; Schmidt, H.; Van Thienen, J.; Haanen, J.; Tiainen, L.; et al. Discontinuation of anti-PD-1 antibody therapy in the absence of disease progression or treatment limiting toxicity: Clinical outcomes in advanced melanoma. Ann. Oncol. 2019, 30, 1154–1161. [Google Scholar] [CrossRef] [PubMed]

	



Tan, A.; Emmett, L.; Lo, S.; Liu, V.; Kapoor, R.; Carlino, M.; Guminski, A.; Long, G.; Menzies, A. FDG-PET response and outcome from anti-PD-1 therapy in metastatic melanoma. Ann. Oncol. 2018, 29, 2115–2120. [Google Scholar] [CrossRef] [PubMed]








[image: Ijms 21 00556 g001 550] 





Figure 1. Mechanism of immune checkpoint blockade through CTLA-4 and PD-L1/PD-1 pathways. 
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Figure 2. Therapeutic rationale of combinatory treatments based on hallmarks of cancer. 
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