The Protective Effects of the Autophagic and Lysosomal Machinery in Vascular and Valvular Calcification: A Systematic Review
Abstract
:1. Introduction
2. Objectives
3. Methods
3.1. Search Strategy
3.2. Inclusion and Exclusion Criteria
3.3. Data Extraction
4. Results
4.1. Study Selection
4.2. Study Characteristics
4.3. Autophagy in Vascular Calcification
4.3.1. The Effect of Vascular Calcification on Autophagic Activity
4.3.2. Stimulating Autophagy in Vascular Calcification through mTOR Inhibition
4.3.3. Stimulating Autophagy in Vascular Calcification by Activating AMPK
4.3.4. Stimulation of Autophagy through Unspecified Mechanisms
4.3.5. Inhibiting Autophagy in Vascular Calcification
4.4. Lysosomal Function in Vascular Calcification
4.5. Autophagy in Valvular Calcification
5. Discussion
5.1. Inhibiting mTOR Protects against Vascular Calcification
5.2. Autophagy Protects against Vascular Calcification
5.3. Intact Lysosomal Function Is Important for Controlling Vascular Calcification
5.4. Protective Autophagy Is Upregulated in Aortic Valve Calcification
5.5. Limitations
6. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yin, Z.; Pascual, C.; Klionsky, D.J. Autophagy: Machinery and regulation. Microb. Cell 2016, 3, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Parzych, K.R.; Klionsky, D.J. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid. Redox Signal. 2014, 20, 460–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol. 2010, 221, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Seranova, E.; Connolly, K.J.; Zatyka, M.; Rosenstock, T.R.; Barrett, T.; Tuxworth, R.I.; Sarkar, S. Dysregulation of autophagy as a common mechanism in lysosomal storage diseases. Essays Biochem. 2017, 61, 733–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, G.; Shravage, B.V.; Baehrecke, E.H. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb. Perspect. Biol. 2012, 4. [Google Scholar] [CrossRef] [Green Version]
- Yorimitsu, T.; Klionsky, D.J. Autophagy: Molecular machinery for self-eating. Cell Death Differ. 2005, 12, 1542–1552. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.C.; Guan, K.L. mTOR: A pharmacologic target for autophagy regulation. J. Clin. Investig. 2015, 125, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Hardie, D.G. AMPK and autophagy get connected. EMBO J. 2011, 30, 634–635. [Google Scholar] [CrossRef] [Green Version]
- Jang, M.; Park, R.; Kim, H.; Namkoong, S.; Jo, D.; Huh, Y.H.; Jang, I.S.; Lee, J.I.; Park, J. AMPK contributes to autophagosome maturation and lysosomal fusion. Sci. Rep. 2018, 8, 12637. [Google Scholar] [CrossRef] [Green Version]
- Periyasamy-Thandavan, S.; Jiang, M.; Schoenlein, P.; Dong, Z. Autophagy: Molecular machinery, regulation, and implications for renal pathophysiology. Am. J. Physiol. Ren. Physiol. 2009, 297, F244–F256. [Google Scholar] [CrossRef] [Green Version]
- De Munck, D.G.; De Meyer, G.R.; Martinet, W. Autophagy as an emerging therapeutic target for age-related vascular pathologies. Expert Opin. Targets 2020, 24, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Dikic, I.; Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lopez, N.; Athonvarangkul, D.; Singh, R. Autophagy and aging. Adv. Exp. Med. Biol. 2015, 847, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Schiattarella, G.G.; Hill, J.A. Therapeutic targeting of autophagy in cardiovascular disease. J. Mol. Cell Cardiol. 2016, 95, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdellatif, M.; Sedej, S.; Carmona-Gutierrez, D.; Madeo, F.; Kroemer, G. Autophagy in Cardiovascular Aging. Circ. Res. 2018, 123, 803–824. [Google Scholar] [CrossRef] [PubMed]
- Martinet, W.; Knaapen, M.W.; Kockx, M.M.; De Meyer, G.R. Autophagy in cardiovascular disease. Trends Mol. Med. 2007, 13, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, S.E. Ageing of the conduit arteries. J. Pathol. 2007, 211, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.C.; Shi, M.; Zhang, J.; Quiñones, H.; Griffith, C.; Kuro-o, M.; Moe, O.W. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 2011, 22, 124–136. [Google Scholar] [CrossRef]
- Neven, E.; De Schutter, T.M.; De Broe, M.E.; D’Haese, P.C. Cell biological and physicochemical aspects of arterial calcification. Kidney Int. 2011, 79, 1166–1177. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.S.; Cheng, S.L.; Sadhu, J.; Towler, D.A. Inflammation and the osteogenic regulation of vascular calcification: A review and perspective. Hypertension 2010, 55, 579–592. [Google Scholar] [CrossRef] [Green Version]
- Hofmann Bowman, M.A.; McNally, E.M. Genetic pathways of vascular calcification. Trends Cardiovasc. Med. 2012, 22, 93–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannata-Andia, J.B.; Roman-Garcia, P.; Hruska, K. The connections between vascular calcification and bone health. Nephrol. Dial. Transpl. 2011, 26, 3429–3436. [Google Scholar] [CrossRef] [PubMed]
- Jono, S.; McKee, M.D.; Murry, C.E.; Shioi, A.; Nishizawa, Y.; Mori, K.; Morii, H.; Giachelli, C.M. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res. 2000, 87, E10–E17. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, H.T.; Lansing, A.I.; Wheeler, P.A. Calcification of the Media of the Human Aorta and Its Relation to Intimal Arteriosclerosis, Ageing and Disease. Am. J. Pathol. 1944, 20, 665–687. [Google Scholar]
- Evrard, S.; Delanaye, P.; Kamel, S.; Cristol, J.P.; Cavalier, E. Vascular calcification: From pathophysiology to biomarkers. Clin. Chim. Acta 2015, 438, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Giachelli, C.M. Vascular calcification mechanisms. J. Am. Soc. Nephrol. 2004, 15, 2959–2964. [Google Scholar] [CrossRef] [Green Version]
- Moe, S.M.; Duan, D.; Doehle, B.P.; O’Neill, K.D.; Chen, N.X. Uremia induces the osteoblast differentiation factor Cbfa1 in human blood vessels. Kidney Int. 2003, 63, 1003–1011. [Google Scholar] [CrossRef] [Green Version]
- Leopold, J.A. Vascular calcification: Mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc. Med. 2015, 25, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Steitz, S.A.; Speer, M.Y.; Curinga, G.; Yang, H.Y.; Haynes, P.; Aebersold, R.; Schinke, T.; Karsenty, G.; Giachelli, C.M. Smooth muscle cell phenotypic transition associated with calcification: Upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ. Res. 2001, 89, 1147–1154. [Google Scholar] [CrossRef]
- Kapustin, A.N.; Shanahan, C.M. Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation. J. Physiol. 2016, 594, 2905–2914. [Google Scholar] [CrossRef]
- Mizobuchi, M.; Towler, D.; Slatopolsky, E. Vascular calcification: The killer of patients with chronic kidney disease. J. Am. Soc. Nephrol. 2009, 20, 1453–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giachelli, C.M.; Bae, N.; Almeida, M.; Denhardt, D.T.; Alpers, C.E.; Schwartz, S.M. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J. Clin. Investig. 1993, 92, 1686–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, R.J.; Schoen, F.J.; Levy, J.T.; Nelson, A.C.; Howard, S.L.; Oshry, L.J. Biologic determinants of dystrophic calcification and osteocalcin deposition in glutaraldehyde-preserved porcine aortic valve leaflets implanted subcutaneously in rats. Am. J. Pathol. 1983, 113, 143–155. [Google Scholar] [PubMed]
- Reynolds, J.L.; Joannides, A.J.; Skepper, J.N.; McNair, R.; Schurgers, L.J.; Proudfoot, D.; Jahnen-Dechent, W.; Weissberg, P.L.; Shanahan, C.M. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: A potential mechanism for accelerated vascular calcification in ESRD. J. Am. Soc. Nephrol. 2004, 15, 2857–2867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacolley, P.; Regnault, V.; Segers, P.; Laurent, S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol. Rev. 2017, 97, 1555–1617. [Google Scholar] [CrossRef]
- Bragdon, B.; Moseychuk, O.; Saldanha, S.; King, D.; Julian, J.; Nohe, A. Bone morphogenetic proteins: A critical review. Cell Signal 2011, 23, 609–620. [Google Scholar] [CrossRef]
- Chen, G.; Deng, C.; Li, Y.P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 2012, 8, 272–288. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Pardali, E.; Sánchez-Duffhues, G.; ten Dijke, P. BMP signaling in vascular diseases. FEBS Lett. 2012, 586, 1993–2002. [Google Scholar] [CrossRef]
- Asahina, I.; Sampath, T.K.; Nishimura, I.; Hauschka, P.V. Human osteogenic protein-1 induces both chondroblastic and osteoblastic differentiation of osteoprogenitor cells derived from newborn rat calvaria. J. Cell Biol. 1993, 123, 921–933. [Google Scholar] [CrossRef]
- Kang, Q.; Sun, M.H.; Cheng, H.; Peng, Y.; Montag, A.G.; Deyrup, A.T.; Jiang, W.; Luu, H.H.; Luo, J.; Szatkowski, J.P.; et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene 2004, 11, 1312–1320. [Google Scholar] [CrossRef] [Green Version]
- Hruska, K.A.; Mathew, S.; Saab, G. Bone morphogenetic proteins in vascular calcification. Circ. Res. 2005, 97, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, F.; Wang, H.; Ren, W.Y.; Ma, Y.; Liao, Y.P.; Zhu, J.H.; Cui, J.; Deng, Z.L.; Su, Y.X.; Gan, H.; et al. BMP9/COX-2 axial mediates high phosphate-induced calcification in vascular smooth muscle cells via Wnt/β-catenin pathway. J. Cell Biochem. 2018, 119, 2851–2863. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, H.Y.; Giachelli, C.M. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis 2008, 199, 271–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davenport, C.; Harper, E.; Forde, H.; Rochfort, K.D.; Murphy, R.P.; Smith, D.; Cummins, P.M. RANKL promotes osteoblastic activity in vascular smooth muscle cells by upregulating endothelial BMP-2 release. Int. J. Biochem. Cell Biol. 2016, 77, 171–180. [Google Scholar] [CrossRef]
- Lee, K.M.; Kang, H.A.; Park, M.; Lee, H.Y.; Choi, H.R.; Yun, C.H.; Oh, J.W.; Kang, H.S. Interleukin-24 attenuates β-glycerophosphate-induced calcification of vascular smooth muscle cells by inhibiting apoptosis, the expression of calcification and osteoblastic markers, and the Wnt/β-catenin pathway. Biochem. Biophys. Res. Commun. 2012, 428, 50–55. [Google Scholar] [CrossRef]
- Rong, S.; Zhao, X.; Jin, X.; Zhang, Z.; Chen, L.; Zhu, Y.; Yuan, W. Vascular calcification in chronic kidney disease is induced by bone morphogenetic protein-2 via a mechanism involving the Wnt/β-catenin pathway. Cell Physiol. Biochem. 2014, 34, 2049–2060. [Google Scholar] [CrossRef]
- Phadwal, K.; Feng, D.; Zhu, D.; MacRae, V.E. Autophagy as a novel therapeutic target in vascular calcification. Pharmacol. Ther. 2020, 206, 107430. [Google Scholar] [CrossRef]
- Pescatore, L.A.; Gamarra, L.F.; Liberman, M. Multifaceted Mechanisms of Vascular Calcification in Aging. Arter. Thromb. Vasc. Biol. 2019, 39, 1307–1316. [Google Scholar] [CrossRef]
- Shanahan, C.M. Autophagy and matrix vesicles: New partners in vascular calcification. Kidney Int. 2013, 83, 984–986. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Dai, X.-Y.; Zhao, M.-M.; Cai, Y.; Guan, Q.-C.; Zhao, Y.; Guan, Y.; Kong, W.; Zhu, W.-G.; Xu, M.-J.; Wang, X. Phosphate-induced autophagy counteracts vascular calcification by reducing matrix vesicle release. Kidney Int. 2013, 83, 1042–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Zhou, H.; Liu, C.; Huang, L.; Lu, D.; Gao, C. HDAC1-mediated deacetylation of LSD1 regulates vascular calcification by promoting autophagy in chronic renal failure. J. Cell. Mol. Med. 2020, 24, 8636–8649. [Google Scholar] [CrossRef] [PubMed]
- Frauscher, B.; Kirsch, A.H.; Schabhuttl, C.; Schweighofer, K.; Ketszeri, M.; Pollheimer, M.; Dragun, D.; Schroder, K.; Rosenkranz, A.R.; Eller, K.; et al. Autophagy Protects From Uremic Vascular Media Calcification. Front. Immunol. 2018, 9, 1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, J.K.; Wang, Y.J.; Wang, Y.; Wang, S.; Tan, P.; Huang, W.; Liu, Y.S. The mammalian target of rapamycin signalling pathway is involved in osteoblastic differentiation of vascular smooth muscle cells. Can. J. Cardiol. 2014, 30, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Huang, L.H.; Sun, X.Y.; Ouyang, J.M. High-phosphorus environment promotes calcification of A7R5 cells induced by hydroxyapatite nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 107, 110228. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, M.-M.; Cai, Y.; Zheng, M.-F.; Sun, W.-L.; Zhang, S.-Y.; Kong, W.; Gu, J.; Wang, X.; Xu, M.-J. Mammalian target of rapamycin signaling inhibition ameliorates vascular calcification via Klotho upregulation. Kidney Int. 2015, 88, 711–721. [Google Scholar] [CrossRef] [Green Version]
- He, H.-Q.; Law, B.Y.K.; Zhang, N.; Qiu, C.-L.; Qu, Y.-Q.; Wu, A.-G.; Han, Y.; Song, Q.; Zheng, W.-L.; Liu, Y.; et al. Bavachin Protects Human Aortic Smooth Muscle Cells Against beta-Glycerophosphate-Mediated Vascular Calcification and Apoptosis via Activation of mTOR-Dependent Autophagy and Suppression of beta-Catenin Signaling. Front. Pharm. 2019, 10, 1427. [Google Scholar] [CrossRef]
- Chen, W.R.; Yang, J.Q.; Liu, F.; Shen, X.Q.; Zhou, Y.J. Melatonin attenuates vascular calcification by activating autophagy via an AMPK/mTOR/ULK1 signaling pathway. Exp. Cell Res. 2020, 389, 111883. [Google Scholar] [CrossRef]
- Ma, W.-Q.; Sun, X.-J.; Wang, Y.; Zhu, Y.; Han, X.-Q.; Liu, N.-F. Restoring mitochondrial biogenesis with metformin attenuates beta-GP-induced phenotypic transformation of VSMCs into an osteogenic phenotype via inhibition of PDK4/oxidative stress-mediated apoptosis. Mol. Cell. Endocrinol. 2019, 479, 39–53. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.S.; Ren, J.L.; Zhang, Y.R.; Wu, N.; Jia, M.Z.; Yu, Y.R.; Ning, Z.P.; Tang, C.S.; Qi, Y.F. Intermedin(1–53) attenuates aging-associated vascular calcification in rats by upregulating sirtuin 1. Aging 2020, 12, 5651–5674. [Google Scholar] [CrossRef]
- Xu, M.; Liu, L.; Song, C.; Chen, W.; Gui, S. Ghrelin improves vascular autophagy in rats with vascular calcification. Life Sci. 2017, 179, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Gan, L.; Liu, Z.; Liu, L.; Chang, J.R.; Yin, D.C.; Cao, H.L.; Su, X.L.; Smith, W.W. Mitochondrial-Derived Peptide MOTS-c Attenuates Vascular Calcification and Secondary Myocardial Remodeling via Adenosine Monophosphate-Activated Protein Kinase Signaling Pathway. Cardiorenal. Med. 2020, 10, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Ciceri, P.; Elli, F.; Cappelletti, L.; Tosi, D.; Braidotti, P.; Bulfamante, G.; Cozzolino, M. A new in vitro model to delay high phosphate-induced vascular calcification progression. Mol. Cell Biochem. 2015, 410, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Zhuang, X.; Li, W.; Su, Q.; Zhao, J.; Liu, Y. Polysaccharide from Fuzi protects against OxLDLinduced calcification of human vascular smooth muscle cells by increasing autophagic activity. Mol. Med. Rep. 2018, 17, 5109–5115. [Google Scholar] [CrossRef]
- Yao, L.; Wang, J.; Tian, B.-Y.; Xu, T.-H.; Sheng, Z.-T. Activation of the Nrf2-ARE Signaling Pathway Prevents Hyperphosphatemia-Induced Vascular Calcification by Inducing Autophagy in Renal Vascular Smooth Muscle Cells. J. Cell. Biochem. 2017, 118, 4708–4715. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.-Q.; Xiong, D.; Lin, X.; Cui, R.-R.; Xu, F.; Zhong, J.-Y.; Zhu, T.; Wu, F.; Mao, M.-Z.; Liao, X.-B.; et al. Oestrogen Inhibits Arterial Calcification by Promoting Autophagy. Sci. Rep-UK 2017, 7, 3549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Cui, W.; Liu, B.; Hu, H.; Liu, J.; Xie, R.; Yang, X.; Gu, G.; Zhang, J.; Zheng, H. Atorvastatin protects vascular smooth muscle cells from TGF-beta1-stimulated calcification by inducing autophagy via suppression of the beta-catenin pathway. Cell. Physiol. Biochem. 2014, 33, 129–141. [Google Scholar] [CrossRef]
- Xu, T.-H.; Qiu, X.-B.; Sheng, Z.-T.; Han, Y.-R.; Wang, J.; Tian, B.-Y.; Yao, L. Restoration of microRNA-30b expression alleviates vascular calcification through the mTOR signaling pathway and autophagy. J. Cell. Physiol. 2019, 234, 14306–14318. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Meng, Q.; Li, D.; Hu, F.-Z.; Zhu, Y.-Q.; Huang, Y.-Y.; Liu, Y.-N.; Sun, L.; Liang, Q.-H. The protective effects of long non-coding RNA-ANCR on arterial calcification. J. Bone Min. Metab. 2020, 38, 421–431. [Google Scholar] [CrossRef]
- Shi, M.; Maique, J.; Shaffer, J.; Davidson, T.; Sebti, S.; Fernández, Á.F.; Zou, Z.; Yan, S.; Levine, B.; Moe, O.W.; et al. The tripartite interaction of phosphate, autophagy, and αKlotho in health maintenance. FASEB J. 2020, 34, 3129–3150. [Google Scholar] [CrossRef]
- Ciceri, P.; Falleni, M.; Tosi, D.; Martinelli, C.; Cannizzo, S.; Marchetti, G.; D’Arminio Monforte, A.; Bulfamante, G.; Block, G.A.; Messa, P.; et al. Therapeutic Effect of Iron Citrate in Blocking Calcium Deposition in High Pi-Calcified VSMC: Role of Autophagy and Apoptosis. Int. J. Mol. Sci. 2019, 20, 5925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.; Zhu, Y.; Wang, Y.; Ma, W.; Han, X.; Wang, X.; Liu, N. HIF-1alpha/PDK4/autophagy pathway protects against advanced glycation end-products induced vascular smooth muscle cell calcification. Biochem. Biophys. Res. Commun. 2019, 517, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.; Han, Y.; Chen, Y.; Liu, L.; Lang, J.; Yang, C.; Luo, H.; Ning, J. Advanced glycation end-products suppress autophagy by AMPK/mTOR signaling pathway to promote vascular calcification. Mol. Cell. Biochem. 2020, 471, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Xu, Y.; Zhong, W.; Li, B.; Yang, P.; Wang, Z.Q.; Shao, C.; Wang, C.P.; Yan, J.C. Activation of CD137 Signaling Enhances Vascular Calcification through c-Jun N-Terminal Kinase-Dependent Disruption of Autophagic Flux. Mediat. Inflamm. 2018, 2018, 8407137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.H.; Sheng, Z.; Li, Y.; Qiu, X.; Tian, B.; Yao, L. OGT knockdown counteracts high phosphate-induced vascular calcification in chronic kidney disease through autophagy activation by downregulating YAP. Life Sci. 2020, 261, 118121. [Google Scholar] [CrossRef]
- Shiozaki, Y.; Miyazaki-Anzai, S.; Okamura, K.; Keenan, A.L.; Masuda, M.; Miyazaki, M. GPAT4-Generated Saturated LPAs Induce Lipotoxicity through Inhibition of Autophagy by Abnormal Formation of Omegasomes. iScience 2020, 23, 101105. [Google Scholar] [CrossRef]
- Zhu, Y.; Han, X.-Q.; Sun, X.-J.; Yang, R.; Ma, W.-Q.; Liu, N.-F. Lactate accelerates vascular calcification through NR4A1-regulated mitochondrial fission and BNIP3-related mitophagy. Apoptosis Int. J. Program. Cell Death 2020, 25, 321–340. [Google Scholar] [CrossRef]
- Zhu, Y.; Ji, J.-J.; Yang, R.; Han, X.-Q.; Sun, X.-J.; Ma, W.-Q.; Liu, N.-F. Lactate accelerates calcification in VSMCs through suppression of BNIP3-mediated mitophagy. Cell. Signal. 2019, 58, 53–64. [Google Scholar] [CrossRef]
- Bhat, O.M.; Yuan, X.; Camus, S.; Salloum, F.N.; Li, P.L. Abnormal Lysosomal Positioning and Small Extracellular Vesicle Secretion in Arterial Stiffening and Calcification of Mice Lacking Mucolipin 1 Gene. Int. J. Mol. Sci. 2020, 21, 1713. [Google Scholar] [CrossRef] [Green Version]
- Bhat, O.M.; Li, G.; Yuan, X.; Huang, D.; Gulbins, E.; Kukreja, R.C.; Li, P.L. Arterial Medial Calcification through Enhanced small Extracellular Vesicle Release in Smooth Muscle-Specific Asah1 Gene Knockout Mice. Sci. Rep. 2020, 10, 1645. [Google Scholar] [CrossRef]
- Bhat, O.M.; Yuan, X.; Cain, C.; Salloum, F.N.; Li, P.L. Medial calcification in the arterial wall of smooth muscle cell-specific Smpd1 transgenic mice: A ceramide-mediated vasculopathy. J. Cell. Mol. Med. 2020, 24, 539–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudo, R.; Sato, F.; Azechi, T.; Wachi, H. 7-Ketocholesterol-induced lysosomal dysfunction exacerbates vascular smooth muscle cell calcification via oxidative stress. Genes Cells 2015, 20, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Zhang, M.; Ge, A.; Ge, X.; Gu, R.; Zhang, C.; Fu, Y.; Gao, J.; Wang, X.; Liu, Y.; et al. Granzyme B deficiency promotes osteoblastic differentiation and calcification of vascular smooth muscle cells in hypoxic pulmonary hypertension. Cell Death Dis. 2018, 9, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carracedo, M.; Persson, O.; Saliba-Gustafsson, P.; Artiach, G.; Ehrenborg, E.; Eriksson, P.; Franco-Cereceda, A.; Back, M. Upregulated Autophagy in Calcific Aortic Valve Stenosis Confers Protection of Valvular Interstitial Cells. Int. J. Mol. Sci. 2019, 20, 1486. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.-S.; Meng, X.; Venardos, N.; Song, R.; Yamanaka, K.; Fullerton, D.; Jaggers, J. Autophagy negatively regulates pro-osteogenic activity in human aortic valve interstitial cells. J. Surg. Res. 2017, 218, 285–291. [Google Scholar] [CrossRef]
- Somers, P.; Knaapen, M.; Kockx, M.; van Cauwelaert, P.; Bortier, H.; Mistiaen, W. Histological evaluation of autophagic cell death in calcified aortic valve stenosis. J. Heart Valve Dis. 2006, 15, 43–47; discussion 48. [Google Scholar]
- Bonetti, A.; Della Mora, A.; Contin, M.; Gregoraci, G.; Tubaro, F.; Marchini, M.; Ortolani, F. Survival-Related Autophagic Activity Versus Procalcific Death in Cultured Aortic Valve Interstitial Cells Treated With Critical Normophosphatemic-Like Phosphate Concentrations. J. Histochem. Cytochem. 2017, 65, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Ambrosio, S.; Saccà, C.D.; Amente, S.; Paladino, S.; Lania, L.; Majello, B. Lysine-specific demethylase LSD1 regulates autophagy in neuroblastoma through SESN2-dependent pathway. Oncogene 2017, 36, 6701–6711. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Mao, H.; Chen, C.; Wu, L.; Wang, N.; Zhao, X.; Qian, J.; Xing, C. The Role and Mechanism of α-Klotho in the Calcification of Rat Aortic Vascular Smooth Muscle Cells. Biomed. Res. Int. 2015, 2015, 194362. [Google Scholar] [CrossRef] [Green Version]
- Dai, Q.; Xu, Z.; Ma, X.; Niu, N.; Zhou, S.; Xie, F.; Jiang, L.; Wang, J.; Zou, W. mTOR/Raptor signaling is critical for skeletogenesis in mice through the regulation of Runx2 expression. Cell Death Differ. 2017, 24, 1886–1899. [Google Scholar] [CrossRef]
- Fitter, S.; Matthews, M.P.; Martin, S.K.; Xie, J.; Ooi, S.S.; Walkley, C.R.; Codrington, J.D.; Ruegg, M.A.; Hall, M.N.; Proud, C.G.; et al. mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Mol. Cell. Biol. 2017, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatini, D.M. Twenty-five years of mTOR: Uncovering the link from nutrients to growth. Proc. Natl. Acad. Sci. USA 2017, 114, 11818–11825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Kim, H.J.; Lee, K.; Kim, J.M.; Kim, H.S.; Kim, J.R.; Ha, C.M.; Choi, Y.K.; Lee, S.J.; Kim, J.Y.; et al. α-Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway. J. Cell. Mol. Med. 2012, 16, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.; Duvezin-Caubet, S.; Koob, S.; Occhipinti, A.; Jagasia, R.; Petcherski, A.; Ruonala, M.O.; Priault, M.; Salin, B.; Reichert, A.S. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim. Biophys. Acta 2012, 1823, 2297–2310. [Google Scholar] [CrossRef]
- Klionsky, D.J.; Abdelmohsen, K.; Abe, A.; Abedin, M.J.; Abeliovich, H.; Acevedo Arozena, A.; Adachi, H.; Adams, C.M.; Adams, P.D.; Adeli, K.; et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016, 12, 1–222. [Google Scholar] [CrossRef] [Green Version]
- Scotto Rosato, A.; Montefusco, S.; Soldati, C.; Di Paola, S.; Capuozzo, A.; Monfregola, J.; Polishchuk, E.; Amabile, A.; Grimm, C.; Lombardo, A.; et al. TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway. Nat. Commun. 2019, 10, 5630. [Google Scholar] [CrossRef] [Green Version]
- Bakhshian Nik, A.; Hutcheson, J.D.; Aikawa, E. Extracellular Vesicles As Mediators of Cardiovascular Calcification. Front. Cardiovasc. Med. 2017, 4, 78. [Google Scholar] [CrossRef] [Green Version]
- Zazzeroni, L.; Faggioli, G.; Pasquinelli, G. Mechanisms of Arterial Calcification: The Role of Matrix Vesicles. Eur. J. Vasc. Endovasc. Surg. 2018, 55, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Schurgers, L.J.; Akbulut, A.C.; Kaczor, D.M.; Halder, M.; Koenen, R.R.; Kramann, R. Initiation and Propagation of Vascular Calcification Is Regulated by a Concert of Platelet- and Smooth Muscle Cell-Derived Extracellular Vesicles. Front. Cardiovasc. Med. 2018, 5, 36. [Google Scholar] [CrossRef]
- Eitan, E.; Suire, C.; Zhang, S.; Mattson, M.P. Impact of lysosome status on extracellular vesicle content and release. Ageing Res. Rev. 2016, 32, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Huang, D.; Hong, J.; Bhat, O.M.; Yuan, X.; Li, P.L. Control of lysosomal TRPML1 channel activity and exosome release by acid ceramidase in mouse podocytes. Am. J. Physiol. Cell Physiol. 2019, 317, C481–C491. [Google Scholar] [CrossRef] [PubMed]
- Teichgräber, V.; Ulrich, M.; Endlich, N.; Riethmüller, J.; Wilker, B.; De Oliveira-Munding, C.C.; van Heeckeren, A.M.; Barr, M.L.; von Kürthy, G.; Schmid, K.W.; et al. Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat. Med. 2008, 14, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Cuervo, A.M.; Wong, E. Chaperone-mediated autophagy: Roles in disease and aging. Cell Res. 2014, 24, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Leopold, J.A. Cellular mechanisms of aortic valve calcification. Circ. Cardiovasc. Interv. 2012, 5, 605–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer-Schwesinger, C. The ubiquitin-proteasome system in kidney physiology and disease. Nat. Rev. Nephrol. 2019, 15, 393–411. [Google Scholar] [CrossRef]
Authors | Type of Intervention/Modulation | Methods/Matrix | Molecular Outcome | Study Conclusion |
---|---|---|---|---|
Modulation of the autophagic machinery in vascular calcification | ||||
[51] (Dai et al., 2013b) | Non-pharmacological: Adenine diet-fed rats (CRF rats) Pharmacological: Autophagy inducers/inhibitors | In vivo Wistar rats—CRF rat model
Primary rat VSMCs and BASMCs Rat aortic ring calcification
| CRF/high Pi: ↑Autophagic flux; ↑LC3-II, ↑VSMC calcification; ↑MV release 3-MA: ↑↑VSMC calcification; ↑↑MV release Atg5 siRNA (in vitro): ↑↑VSMC calcification Valproic acid: ↓VSMC calcification | Autophagy is upregulated in VCN and counteracts its progression, while autophagy inhibition has pro-calcification properties |
[52] (Zhou et al., 2020) | Genetic: Histone deacetylase HDAC1 overexpression | In vivo Sprague-Dawley rats
Primary rat aortic VSMCs
| CRF rats/High Pi: ↑Calcification, ↓HDAC1, ↑LC3-II, ↓p62, ↑LSD1 HDAC1 overexpression: ↓Calcification, ↓Runx2, ↑α –SMA, ↑LC3-II, ↓p62, ↓LSD1 LSD1 silencing: ↓Calcification, ↓(p-p70S6K/p70S6K, p-rpS6/rpS6), ↑SESN2, ↑LC3-II, ↓p62 3-MA: ↑Calcification, ↑Runx2, ↓α –SMA Valproic acid: ↓Calcification, ↓Runx2, ↑α –SMA | HDAC1 overexpression attenuates VCN by inhibiting LSD1 via SESN2-dependent mTOR signalling |
[53] (Frauscher et al., 2018) | Pharmacological: Rapamycin | In vivo DBA/2NCrl mice
MOVAS cell line
| HPD/β-GP: ↑(Trp53in, Igfbp3, Hmox1, Adrb2, Atg16l1, LC3-II), ↑Vascular calcification Rapamycin: ↑↑LC3-II, ↓VSMC calcification, ↓Runx2 3-MA: ↑↑VSMC calcification | Uremic media calcification increases autophagy, which acts as a protective mechanism. Enhancing autophagy with rapamycin, attenuates VCN |
[54] (Zhan et al., 2014) | Genetic and pharmacological: mTOR | In vitro Primary mouse aortic VSMCs
| β-GP: ↑mTOR mTOR-siRNA: ↓(ALP, OC), ↓Calcification Rapamycin: ↓(mTOR, p70S6k, p-mTORSer2448, p-p70S6kThr389), ↓ALP, ↓Calcification Adiponectin: ↓mTOR, ↓ALP, ↓Calcification | mTOR is involved in the signal transduction of VCN, whilst inhibiting its activity attenuates VSMC mineralization and osteoblastic differentiation |
[56] (Zhao et al., 2015b) | Pharmacological: Rapamycin Genetic: Klotho | In vivo Wistar rats
In vitro Aortic rings (Kl−/− and WT mice) T/G HASMCs and BASMCs
| High Pi: ↑(p-mTOR, p-S6K), ↓Klotho mTOR overexpression: ↑Calcification, ↓Klotho Kinase-dead mTOR: ↓Calcification Rapamycin: ↓Calcification, ↓(Msx2, Cbfα-1, aggrecan, Sox9), ↑(Mgp, Opn), ↑Klotho 3-MA: partially abrogates effects of rapamycin Klotho overexpression: ↓Calcification Klotho-siRNA: Abrogates effects of rapamycin | Rapamycin attenuates VCN by upregulating Klotho via mTOR inhibition |
[57] (He et al., 2019b) | Pharmacological: Bavachin | In vitro Primary HASMCs
| Bavachin: ↑(LC3-II, Beclin1), ↓p-mTOR, ↓(Runx2, BMP2, OPN, OPG), ↓(Wnt3A, β-catenin) Wortmannin: Abrogates the effect of bavachin Atg7 siRNA (in vitro): Abrogates the effect of bavachin | Bavachin suppresses HASMC calcification by acting on Atg7/mTOR-mediated autophagy signalling |
[58] (Chen et al., 2020a) | Pharmacological: Melatonin | In vitro Primary rat VSMCs
| Melatonin: ↓(VCN, Runx2, ALP activity); ↑(LC3-II, Beclin1, p-AMPK, p-ULK1), ↓p-mTOR Compound C & MHY1485: Abrogated the effect of melatonin, ↑VCN | Melatonin attenuates VSMC calcification in vitro by acting on the AMPK/mTOR pathway |
[59] (Ma et al., 2019b) | Pharmacological: Metformin | In vitro Primary rat aortic VSMCs
| Metformin: ↓VSMC calcification, ↓(Runx2, BMP2), ↑p-AMPK, ↓PDK4, ↑LC3-II/LC3-I, ↓p62, ↑(TFAM, NRF1, PGC-1a) Compound C: Abrogates protective effects of metformin Atg5 siRNA (in vitro): Abrogates protective effects of metformin | Metformin-mediated AMPK activation attenuates Pi-induced calcification and restores disrupted mitochondrial biogenesisMitophagy regulates metformin-induced mitochondrial biogenesis |
[60] (Chen et al., 2020b) | Pharmacological: Intermedin1-53 | In vivo Young and old SD rats
Primary rat VSMCs Mouse IMDSMC−/− VSMCs Human VSMC CRL1999 cells
| IMD1-53: ↓VCN, ↓(Runx2, BMP2), ↑MGP, ↑(Sirt1, p-AMPK, p-AKT, p-PKA), ↑Klotho IMDSMC−/−:↑VCN, ↑Runx2, ↓Sirt1 | IMD1-53 plays a protective role in VCN by upregulating Sirt1 |
[61] (Xu et al., 2017) | Pharmacological: Ghrelin | In vivo Sprague-Dawley rats
Primary rat (SD) VSMCs
| Ghrelin: ↓VCN, ↓ALP activity, ↑(LC3-II, Beclin1), ↑p-AMPK 3-MA: Abrogates protective effect of Ghrelin Compound C: Abrogates the effect of Ghrelin on VCN and autophagy | Ghrelin attenuates VCN by inducing autophagy through AMPK activation |
[62] (Wei et al., 2020) | Pharmacological: Mitochondrial-derived peptide MOTS-c | In vivo Sprague-Dawley rats
| MOTS-c: ↓VCN, ↓(Aortic calcium content, ALP activity), ↑p-AMPK, ↓(AT-1 receptor, ET-B receptor) | MOTS-c attenuates VCN by activating the AMPK pathway |
[63] (Ciceri et al., 2015) | Non-pharmacological: intermittent suspension (IS) of Pi Pharmacological: Valproic acid (IS) | In vitro Primary rat VSMCs
| IS Pi: ↓VCN, ↓(Runx2), ↑(LC3-II), ↑Autophagic flux IS valproic acid: = VCN | Intermittent Pi increases autophagic flux and ameliorates VSMC calcification, intermittent valproic acid treatment, however, does not attenuate VCN |
[64] (Liao et al., 2018a) | Pharmacological: Polysaccharide from Fuzi (FPS) | In vitro Primary human VSMCs, from femoral arteries
| Ox-LDL: ↑VSMC calcification, ↑CBFA1, ↓SM22a, ↓LC3-II/LC3-I, ↑p62 FPS: ↓VSMC calcification, ↓CBFA1, ↑SM22a, ↑LC3-II/LC3-I, ↓p62 3-MA: Abrogates protective effect of FPS on Ox-LDL induced calcification | FPS protects human VSMCs from Ox-LDL induced calcification, by activating autophagy |
[65] (Yao et al., 2017b) | Genetic: Nrf2 | In vitro Primary rat (SD) aortic VSMCs
| Nrf2-siRNA: ↑Calcification, ↑(BMP2, Runx2), ↓Autophagosomes, ↓LC3-II/LC3-I Nrf2 overexpression: ↓Calcification, ↓(BMP2, Runx2), ↑Autophagosomes, ↑LC3-II/LC3-I | Activation of the Nrf2-ARE pathway alleviates hyperphosphatemia-induced calcification, possibly by inducing autophagy |
[66] (Peng et al., 2017b) | Pharmacological: Oestrogen | In vivo C57BL/6 OVX mice
Primary mouse VSMCs
| Oestrogen: ↓Calcification, ↓(Runx2, ALP activity), ↑(Atg5, LC3-I, LC3-II) 3-MA: Counteracted effects of oestrogen ERα-antagonist/knockdown: ↑(Runx2, ALP activity), ↓(LC3-I, LC3-II) | Oestrogen-induced autophagy inhibits arterial calcification through the ERα pathway |
[67] (Liu et al., 2014) | Pharmacological: Atorvastatin | In vitro Primary rat (SD) VSMCs
| Atorvastatin: ↓Calcification; ↓(ALP, BMP2, Osteocalcin), ↓Nuclear β-catenin expression, ↑Autophagy; ↑(Beclin1, Atg5, LC3-II/LC3-I ratio) Autophagy inhibitors (3-MA, Chloroquine, NH4Cl, bafilomycin A1): Suppresses effect of atorvastatin on autophagy and calcification β-catenin overexpression: Abrogates effect of atorvastatin β-catenin inhibitor JW74: ↑Effect of atorvastatin | Atorvastatin suppresses TGF-β1-induced VCN by inducing autophagy via downregulation of the β-catenin pathway |
[68] (Xu et al., 2019b) | Pharmacological: miRNA-30b | In vivo Sprague-Dawley rats
VSMCs
| miR-30b mimic: ↓VCN, ↓(SOX9, Msx2, Runx2) ↑(LC3-II/LC3-I, Beclin1), ↑Mitochondrial membrane potential (MMP) miR-30b inhibitor + Rapamycin: no mTOR inhibition | miRNA-30b protects against VCN by promoting MMP and autophagy, via targeted inhibition of SOX9 or negatively regulating the mTOR pathway |
[69] (Zhang et al., 2020b) | Genetic: Anti-differentiation non-coding RNA (ANCR) | In vivo C57BL/6 mice
Primary mouse aortic VSMCs
| ANCR overexpression: ↓Calcification, ↓(BMP2, Runx2), ↑(Atg5, LC3-II, LC3-I) | ANCR attenuates VCN and VSMC osteochondrogenic differentiation by activating autophagy |
[70] (Shi et al., 2020) | Genetic: Klotho knockout Beclin1 overexpression | In vivo Becn1F121A knock-in mice (129 S1/SVlmJ) (BK) αKlotho homozygous knockout mice (129 S1/SVlmJ) (kl/kl) BK/BK; kl/kl mice
| αKlotho homozygous knockout (kl/kl): ↑Calcification Beclin1 homozygous overexpression: Attenuates calcification in αKlotho knockout mice | Beclin1 overexpression alleviates kl/kl-induced vascular calcification |
[71] (Ciceri et al., 2019) | Non-pharmacological: Iron citrate | In vitro Primary rat aortic VSMCs
| Iron citrate: ↓Calcification, ↑Autophagosomes, ↑Autophagic flux, ↑LC3-Iiβ | Iron citrate blocks the progression of calcification by inducing autophagy |
[72] (Yang et al., 2019) | Pharmacological: Advanced glycation end-products (AGEs) | In vitro Primary VSMCs
| AGEs: ↑HIF-1α, ↑PDK4, ↑LC3-II, ↓p62, ↑(Autophagosomes, autolysosomes),↑LC3-II & LAMP1 colocalization Dichloroacetic acid (PDK inhibitor) + AGEs: ↓LC3-II, ↑p62 Attenuates effect of AGEs Rapamycin: ↓Calcification, ↓Runx2 3-MA: ↑↑Calcification | AGEs induce autophagy through HIF-1α/PDK4 signalling, which has protective effects against AGEs-induced VCN |
[73] (Liu et al., 2020b) | Pharmacological: Advanced glycation end-products (AGEs) | In vitro A7R5 cells Wild-type rat aortic segments | AGEs: ↑VCN, ↑(BMP2, RUNX2), ↓(BECN, LC3-II, p-AMPK↓), ↑p-mTOR | AGEs induce VSMC calcification by suppressing autophagy through action on the AMPK/mTOR signalling pathway |
[74] (Chen et al., 2018) | Pharmacological: Agonist-CD137, SP600125 | In vivo ApoE−/− mice
Primary VSMCs from C57BL/6J mice
| Agonist-CD137: ↑AMC and osteogenic VSMC phenotype transition; ↑(Beclin1, p62, LC3B), autophagosome accumulation SP600125 (JNK-inhibition): Attenuated the effect of agonist-CD137 | CD137 activation disrupts autophagic flux and accelerates calcification through the action of the JNK phosphorylation |
[75] (Xu et al., 2020) | Genetic: O-GlcNAc transferase (OGT) | In vivo Sprague-Dawley rats
Rat VSMCs
| shOGT: ↓VCN OGT overexpression: ↑(YAP glycosylation, YAP protein expression & nuclear translocation), ↓YAP phosphorylation, ↓(Autophagosomes, LC3-II/LC3-I), ↑p62, ↑Calcification, ↑Runx2, ↓α –SMA Rapamycin or YAP silencing: ameliorates the effects of OGT overexpression YAP overexpression: ↓(Autophagosomes, LC3-II/LC3-I), ↑p62, ↑Calcification, ↑Runx2, ↓α -SMA | Upregulated OGT in high Pi diet-fed CKD rats, promotes glycosylation of YAP to inhibit autophagy, facilitating VCN |
[76] (Shiozaki et al., 2020) | Non-pharmacological: (Un)saturated fatty acids (SFA/UFA) | In vivo SMMHC-CreER(T2); Atg5(lox/lox) mice SMC Scd1/2 KO; Gpat4 triple KO mice SMC-Scd1/2 KO In vitro Human and mouse VSMCs, MOVAS-1 cell line GFP-LC3-RFP-LC3 G probe Gpat4 siRNA
| Atg5 KO (in vivo/in vitro): ↑VCN, ↑p62, ↓LC3-II SFAs: ↓Autophagic flux (↑GFP/RFP), Accumulation of isolation membranes Gpat4 KO: Attenuates autophagy inhibition by SFAs Unsaturated LPAs: ↓SFA-induced LC3-II accumulation, ↓Calcification SMC-Scd1/2 KO: ↑Saturated LPAs, ↑↑Calcification, ↑(p62, Fam134b2) SMC-Scd1/2 KO; Gpat4 triple KO: Blocks SCD deficiency-induced VCN and autophagic flux inhibition | Excess saturated LPAs cause omegasome formation, which in turn produces and accumulates isolation membranes, blocks autophagic flux and causes VCNGpat4 converts SFAs to saturated LPAs, which makes Gpat4 an interesting target in VCN |
[77] (Zhu et al., 2020b) | Non-pharmacological: Lactate | In vivo Wistar rats Vitamin D (300,000 IU/kg) + nicotin (25 mg/kg) induced VCN In vitro Rat aortic rings Primary rat (SD) aortic VSMCs
| Lactate: ↑Calcification; ↑(BMP2, Runx2), ↓α –SMA, ↓Autophagy/Mitophagy;↓(LC3-II, BNIP3), ↑p62, ↑Mitochondrial fission; ↑mito-Drp1, ↓OPA1, ↑NR4A1 NR4A1 silencing/knockdown: Abrogates effects of Lactate, ↑Mitochondrial clearance/Mitophagy; ↑BNIP3, ↓(TOMM20, TOMM40), ↑Mitochondrial respiration, ↓mitochondrial swelling, ↑Autophagosome-mitochondria fusion | Lactate inhibits BNIP3-mediated mitophagy via the NR4A1/DNA-PKcs/p53 pathway, enhancing mitochondrial fission and therefore accelerating VCN |
[78] (Zhu et al., 2019b) | Non-pharmacological: Lactate | In vitro Primary rat (SD) aortic VSMCs
| Lactate: ↑Calcification; ↑(BMP2, Runx2, ALP activity), ↓Mitochondrial function & biogenesis, ↓Autophagic flux; ↓Autolysosomes, ↓LC3-II, ↑p62, ↓Mitochondrial clearance/Mitophagy; ↑TOMM20, ↓BNIP3 BNIP3 overexpression: ↓Calcification; ↓(BMP2, Runx2) | Lactate accelerates VCN by facilitating mitochondrial dysfunction and inhibiting BNIP3-mediated mitophagy |
Modulation of lysosomal function in vascular calcification | ||||
[55] (Liu et al., 2020a) | Non-pharmacological: Hydroxyapatite (HAP) | In vitro A7R5 cells
| Pi + HAP: ↑Calcification, ↑(Runx2, BMP2), ↓Lysosome integrity | Adhesion of HAP causes cell injury, which leads cell damage and decreased lysosomal integrity, therefore contributing to the development of VCN |
[79] (Bhat et al., 2020c) | Genetic: Mcoln1−/− Pharmacological: MLSA-1, Verapamil | In vivo Male Mcoln1−/− mice (C57BL/6J) & controls
Primary WT VSMCs
| Mcoln1−/−: ↑AMC and SMC osteogenic phenotype transition (in vivo), ↓Lysosomal trafficking/MVB colocalization, ↑sEV secretion Effect on lysosomal trafficking: Verapamil: ↓ MLSA-1: ↑ | Mcoln1/TRPML1 deletion impairs normal lysosomal trafficking, leading to enhanced sEV secretion, contributing to the development of AMC |
[80] (Bhat et al., 2020a) | Genetic: Asah1−/− | In vivo Asah1fl/fl/SMCre (C57BL/6J) mice & controls
Primary Asah1fl/fl/SMCre CASMCs & controls
| Asah1−/−: ↑AMC and SMC osteogenic phenotype transition, ↓Lysosomal trafficking/MVB colocalization, ↑sEV secretion, ↓in vitro TRPML1 channel activity | Asah1 gene deletion impairs TRPML1 channel activation which causes impaired lysosomal trafficking, thereby enhancing AMC |
[81] (Bhat et al., 2020b) | Genetic: sphingomyelin phosphodiesterase 1 (Smpd1) overexpression | In vivo Smpd1 trg/SMcre mice (C57BL/6J)
Primary mouse CASMCs
| Smpd1 trg/SMcre mice: ↑Calcification; ↑(OSP, Runx2), ↓SM22-α, ↓Lysosomal trafficking/MVB colocalization, ↑sEV secretion, ↑Arterial stiffness; disorganized elastic lamellae Amitriptyline: Abrogates effects of Smpd1 overexpression | Lysosomal overexpression of Smpd1 enhances the secretion of sEVs and facilitates osteogenic phenotype switch of SMCs, initiating arterial medial calcification |
[82] (Sudo et al., 2015) | Pharmacological: 7-ketocholesterol (7-KC) | In vitro Human aortic SMCs
| 7-KC: ↑Calcium deposition/calcification, Autophagosome accumulation, ↑(p62, LC3-II), ↓Mature cathepsin B and D Atg5 siRNA: = Calcium deposition ( vs. 7-KC) Lysosomal protease inhibitors: ↑↑Calcium deposition (vs. 7-KC) | 7-KC induces oxidative stress through lysosomal dysfunction, aggravating HASMCs calcification |
[83] (Mao et al., 2018) | Non-pharmacological and genetic: Granzyme B (GZMB) | In vivo Sprague-Dawley Rats C57BL/6 with GZMB overexpression (SM22a-GZMB Tg)
Primary PASMCs
| Hypoxia: ↑VCN, ↑(Runx2, BMP2, MSX2, SOX9), ↓GZMB, ↑Chaperone-mediated autophagy, ↑(HSPA8, LAMP2A) GZMB overexpression: ↓VCN | Chaperone-mediated autophagy degrades GZMB, which promotes pulmonary VCN |
Authors | Type of Intervention/Modulation | Methods/Matrix | Molecular Outcome | Study Conclusion |
---|---|---|---|---|
[84] (Carracedo et al., 2019) | Observational: Calcific Aortic Valve Stenosis (CAVS) | ex vivo Aortic valves from patients with CAVS In vitro Primary aortic valvular interstitial cells (VICs) | CAVS: ↓(ULK1, MAP1LC3A), ↑(BECN1, ATG3, ATG5, ATG7, ATG12), ↓(LAMP1, CTSD), ↑(CTSB, CTSV, CTSL), =TFEB VICs from CAVS patients: ↑Autophagic flux | Autophagy is upregulated in the aortic valves from CAVS patients as a pro-survival mechanism |
[85] (Deng et al., 2017b) | Observational: Calcific Aortic Valve Stenosis (CAVS) | In vitro Primary human aortic VICs | VICs from CAVS patients: ↓LC3-II 3-MA, bafilomycin A1, ATG7 knockdown: ↑Calcification; ↑(BMP2, ALP) Rapamycin, ATG7 overexpression: ↓Calcification; ↓(BMP2, ALP) | Autophagy attenuates osteochondrogenic response in human AVICs |
[86] (Somers et al., 2006) | Observational: Calcific Aortic Valve Stenosis (CAVS) | Ex vivo Aortic valves from patients with CAVS | CAVS: ↑Ubiquitin | Large amount of ubiquitinated cells are present in calcified aortic valve tissue, indicating possible higher autophagic activity |
[87] (Bonetti et al., 2017) | Non-pharmacological: LPS | In vitro Bovine aortic VICs
| LPS + CM: ↑Calcification, ↓Autophagic vacuoles, ↓RER hypertrophy, ↓MAP1LC3 | High Pi concentrations lead to pro-calcific cell death, while low/middle Pi activate RER-dependent autophagic activity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neutel, C.H.G.; Hendrickx, J.O.; Martinet, W.; De Meyer, G.R.Y.; Guns, P.-J. The Protective Effects of the Autophagic and Lysosomal Machinery in Vascular and Valvular Calcification: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 8933. https://doi.org/10.3390/ijms21238933
Neutel CHG, Hendrickx JO, Martinet W, De Meyer GRY, Guns P-J. The Protective Effects of the Autophagic and Lysosomal Machinery in Vascular and Valvular Calcification: A Systematic Review. International Journal of Molecular Sciences. 2020; 21(23):8933. https://doi.org/10.3390/ijms21238933
Chicago/Turabian StyleNeutel, Cédric H. G., Jhana O. Hendrickx, Wim Martinet, Guido R. Y. De Meyer, and Pieter-Jan Guns. 2020. "The Protective Effects of the Autophagic and Lysosomal Machinery in Vascular and Valvular Calcification: A Systematic Review" International Journal of Molecular Sciences 21, no. 23: 8933. https://doi.org/10.3390/ijms21238933
APA StyleNeutel, C. H. G., Hendrickx, J. O., Martinet, W., De Meyer, G. R. Y., & Guns, P. -J. (2020). The Protective Effects of the Autophagic and Lysosomal Machinery in Vascular and Valvular Calcification: A Systematic Review. International Journal of Molecular Sciences, 21(23), 8933. https://doi.org/10.3390/ijms21238933