Immune Checkpoint Blockade in Advanced Cutaneous Squamous Cell Carcinoma: What Do We Currently Know in 2020?
Abstract
:1. Introduction
2. cSCC vs. CM: Genetic Differences and Implications for Prognosis
3. ICB in cSCC: What Is the Current Evidence?
3.1. Anti-CTLA-4 Antibody: Ipilimumab
3.2. Anti-PD-1-Blocking Antibodies
3.2.1. Nivolumab
3.2.2. Pembrolizumab
3.2.3. Cemiplimab
3.3. Combined CTLA-4 and PD-1 Blockade
4. ICB in cSCC: The New Standard of Care?
5. ICB for Special cSCC Subgroups: Organ Transplant Recipients, Patients with Hematologic Malignancies, Xeroderma Pigmentosum, AK with Field Cancerization
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
α-MSH | alpha-melanocyte-stimulating hormone |
ACTH | adrenocorticotropic hormone |
Ad-MAGEA3 | adenovirus vaccine expressing melanoma-associated antigen 3 |
AEs | adverse events |
AK | actinic keratoses |
allo-HCT | allogeneic hematopoietic stem cell transplantation |
ASIP | agouti signaling protein |
BCC | basal cell carcinoma |
BID | twice daily |
CI | confidence interval |
CM | cutaneous melanoma |
CR | complete response |
cSCC | cutaneous squamous cell carcinoma |
CTCL | cutaneous T cell lymphoma |
CTL | cytotoxic T lymphocyte |
DCR | disease control rate |
DoR | duration of response |
EAP | expanded access program |
EGFR | epidermal growth factor receptor |
EMA | European Medicines Agency |
FDA | U.S. Food and Drug Administration |
FGF | fibroblast growth factor |
GVHD | graft-versus-host disease |
Gy | Gray |
HGF | hepatocyte growth factor |
HNSCC | head and neck squamous cell carcinoma |
i.m. | intramuscular |
i.t. | intratumoral |
i.v. | intravenous |
ICB | immune checkpoint blockade |
laSCC | locally advanced cSCC |
MC1R | melanocortin 1 receptor |
MG1-MAGEA3 | MG1 Maraba oncolytic virus expressing melanoma-associated antigen 3 |
mSCC | metastatic cSCC |
NER | nucleotide excision repair |
NMSC | non-melanoma skin cancer |
NSCLC | non-small cell lung cancer |
ORR | objective response rate |
OS | overall survival |
OTR | organ transplant recipient |
PD | progressive disease |
PFS | progression-free survival |
PR | partial response |
POMC | proopiomelanocortin |
PYs | person-years |
Q2W | every 2 weeks |
Q3W | every 3 weeks |
Q4W | every 4 weeks |
Q6W | every 6 weeks |
QD | daily |
QoL | quality of life |
QW | every week |
RCT | randomized-controlled trial |
RFS | recurrence free survival |
rhIL-7-hyFc | recombinant human interleukin-7 and hybrid Fc fusion protein |
RP1 | genetically modified herpes simplex virus 1 |
RR | response rate |
SCF | stem cell factor |
SD | stable disease |
T-VEC | talimogene laherparepvec |
XP | xeroderma pigmentosum |
References
- Lomas, A.; Leonardi-Bee, J.; Bath-Hextall, F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br. J. Dermatol. 2012, 166, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Danes, A.; Blanpain, C. Deciphering the cells of origin of squamous cell carcinomas. Nat. Rev. Cancer 2018, 18, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Criscione, V.D.; Weinstock, M.A.; Naylor, M.F.; Luque, C.; Eide, M.J.; Bingham, S.F.; Department of Veteran Affairs Topical Tretinoin Chemoprevention Trial Group. Actinic keratoses: Natural history and risk of malignant transformation in the Veterans Affairs Topical Tretinoin Chemoprevention Trial. Cancer 2009, 115, 2523–2530. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.N.; Sammain, A.; Erdmann, R.; Hartmann, V.; Stockfleth, E.; Nast, A. The natural history of actinic keratosis: A systematic review. Br. J. Dermatol. 2013, 169, 502–518. [Google Scholar] [CrossRef] [PubMed]
- Cerio, R.; Dirschka, T.; Dreno, B.; Figueras Nart, I.; Lear, J.T.; Pellacani, G.; Peris, K.; de Casas, A.R. Actinic Keratosis, a Chronic, Progressive Disease: Understanding Clinical Gaps to Optimise Patient Management. Acta Derm. Venereol. 2017, 97, 997–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, A.C.; Olsen, C.M. Cutaneous squamous cell carcinoma: An epidemiological review. Br. J. Dermatol. 2017, 177, 373–381. [Google Scholar] [CrossRef]
- Muzic, J.G.; Schmitt, A.R.; Wright, A.C.; Alniemi, D.T.; Zubair, A.S.; Olazagasti Lourido, J.M.; Sosa Seda, I.M.; Weaver, A.L.; Baum, C.L. Incidence and Trends of Basal Cell Carcinoma and Cutaneous Squamous Cell Carcinoma: A Population-Based Study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin. Proc. 2017, 92, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Stang, A.; Khil, L.; Kajuter, H.; Pandeya, N.; Schmults, C.D.; Ruiz, E.S.; Karia, P.S.; Green, A.C. Incidence and mortality for cutaneous squamous cell carcinoma: Comparison across three continents. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Xiang, F.; Lucas, R.; Hales, S.; Neale, R. Incidence of nonmelanoma skin cancer in relation to ambient UV radiation in white populations, 1978–2012: Empirical relationships. JAMA Dermatol. 2014, 150, 1063–1071. [Google Scholar] [CrossRef] [Green Version]
- Leiter, U.; Garbe, C. Epidemiology of melanoma and nonmelanoma skin cancer—The role of sunlight. Adv. Exp. Med. Biol. 2008, 624, 89–103. [Google Scholar] [CrossRef]
- Subramaniam, P.; Olsen, C.M.; Thompson, B.S.; Whiteman, D.C.; Neale, R.E.; Sun, Q.S.; Health Study, I. Anatomical Distributions of Basal Cell Carcinoma and Squamous Cell Carcinoma in a Population-Based Study in Queensland, Australia. JAMA Dermatol. 2017, 153, 175–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, A.; Colegio, O.R. Skin Cancers in Organ Transplant Recipients. Am. J. Transpl. 2017, 17, 2509–2530. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, M.J.; Leyden, W.; Warton, E.M.; Quesenberry, C.P., Jr.; Engels, E.A.; Asgari, M.M. HIV infection status, immunodeficiency, and the incidence of non-melanoma skin cancer. J. Natl. Cancer Inst. 2013, 105, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Velez, N.F.; Karia, P.S.; Vartanov, A.R.; Davids, M.S.; Brown, J.R.; Schmults, C.D. Association of advanced leukemic stage and skin cancer tumor stage with poor skin cancer outcomes in patients with chronic lymphocytic leukemia. JAMA Dermatol. 2014, 150, 280–287. [Google Scholar] [CrossRef]
- Brewer, J.D.; Shanafelt, T.D.; Khezri, F.; Sosa Seda, I.M.; Zubair, A.S.; Baum, C.L.; Arpey, C.J.; Cerhan, J.R.; Call, T.G.; Roenigk, R.K.; et al. Increased incidence and recurrence rates of nonmelanoma skin cancer in patients with non-Hodgkin lymphoma: A Rochester Epidemiology Project population-based study in Minnesota. J. Am. Acad. Dermatol. 2015, 72, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Slominski, A.T.; Zmijewski, M.A.; Plonka, P.M.; Szaflarski, J.P.; Paus, R. How UV Light Touches the Brain and Endocrine System through Skin, and Why. Endocrinology 2018, 159, 1992–2007. [Google Scholar] [CrossRef] [Green Version]
- Wikonkal, N.M.; Brash, D.E. Ultraviolet radiation induced signature mutations in photocarcinogenesis. J. Investig. Dermatol. Symp. Proc. 1999, 4, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Halliday, G.M.; Bestak, R.; Yuen, K.S.; Cavanagh, L.L.; Barnetson, R.S. UVA-induced immunosuppression. Mutat. Res. 1998, 422, 139–145. [Google Scholar] [CrossRef]
- Schierbeck, J.; Vestergaard, T.; Bygum, A. Skin Cancer Associated Genodermatoses: A Literature Review. Acta Derm. Venereol. 2019, 99, 360–369. [Google Scholar] [CrossRef] [Green Version]
- Mohan, S.V.; Chang, J.; Li, S.; Henry, A.S.; Wood, D.J.; Chang, A.L. Increased Risk of Cutaneous Squamous Cell Carcinoma after Vismodegib Therapy for Basal Cell Carcinoma. JAMA Dermatol. 2016, 152, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Wang, Y.; Hong, Y.; Ye, X.; Shi, P.; Zhang, J.; Zhao, Q. Incidence and relative risk of cutaneous squamous cell carcinoma with single-agent BRAF inhibitor and dual BRAF/MEK inhibitors in cancer patients: A meta-analysis. Oncotarget 2017, 8, 83280–83291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicines Agency (EMA). EMA Review of Picato Concludes Medicine’s Risks Outweigh Its Benefits. 2020. Available online: https://www.ema.europa.eu/en/news/ema-review-picato-concludes-medicines-risks-outweigh-its-benefits (accessed on 19 October 2020).
- Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM). Rote-Hand-Brief zu Picato® (Ingenolmebutat): Vorsicht bei der Behandlung von Patienten mit Hautkrebsanamnese. Available online: https://www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/RHB/2019/rhb-picato.pdf?__blob=publicationFile&v=7 (accessed on 26 October 2020).
- Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM). Rote-Hand-Brief zu Picato® (Ingenolmebutat)—Ruhen der Zulassungen aufgrund des Risikos von malignen Hautveränderungen. Available online: https://www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/RHB/2020/rhb-picato.pdf;jsessionid=767355ADF2B76F472CEC011BA27627F5.1_cid319?__blob=publicationFile&v=1 (accessed on 26 October 2020).
- Que, S.K.T.; Zwald, F.O.; Schmults, C.D. Cutaneous squamous cell carcinoma: Management of advanced and high-stage tumors. J. Am. Acad. Dermatol. 2018, 78, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.J.; Hirsch, R.M.; Broadwater, J.R.; Netscher, D.T.; Ames, F.C. Squamous cell carcinoma arising in previously burned or irradiated skin. Arch. Surg. 1989, 124, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Kauvar, A.N.; Arpey, C.J.; Hruza, G.; Olbricht, S.M.; Bennett, R.; Mahmoud, B.H. Consensus for Nonmelanoma Skin Cancer Treatment, Part II: Squamous Cell Carcinoma, Including a Cost Analysis of Treatment Methods. Dermatol. Surg. 2015, 41, 1214–1240. [Google Scholar] [CrossRef]
- Gellrich, F.F.; Huning, S.; Beissert, S.; Eigentler, T.; Stockfleth, E.; Gutzmer, R.; Meier, F. Medical treatment of advanced cutaneous squamous-cell carcinoma. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Brunner, M.; Veness, M.J.; Ch’ng, S.; Elliott, M.; Clark, J.R. Distant metastases from cutaneous squamous cell carcinoma—Analysis of AJCC stage IV. Head Neck 2013, 35, 72–75. [Google Scholar] [CrossRef]
- Chapalain, M.; Baroudjian, B.; Dupont, A.; Lhote, R.; Lambert, J.; Bagot, M.; Lebbe, C.; Basset-Seguin, N. Stage IV cutaneous squamous cell carcinoma (cSCC): Treatment outcomes in a series of 42 patients. J. Eur. Acad. Dermatol. Venereol. 2019, 34, 1202–1209. [Google Scholar] [CrossRef]
- Pasquali, S.; Hadjinicolaou, A.V.; Chiarion Sileni, V.; Rossi, C.R.; Mocellin, S. Systemic treatments for metastatic cutaneous melanoma. Cochrane Database Syst. Rev. 2018, 2, CD011123. [Google Scholar] [CrossRef]
- Giroux Leprieur, E.; Dumenil, C.; Julie, C.; Giraud, V.; Dumoulin, J.; Labrune, S.; Chinet, T. Immunotherapy revolutionises non-small-cell lung cancer therapy: Results, perspectives and new challenges. Eur. J. Cancer 2017, 78, 16–23. [Google Scholar] [CrossRef]
- Cramer, J.D.; Burtness, B.; Ferris, R.L. Immunotherapy for head and neck cancer: Recent advances and future directions. Oral Oncol. 2019, 99, 104460. [Google Scholar] [CrossRef]
- Eckhart, L.; Lippens, S.; Tschachler, E.; Declercq, W. Cell death by cornification. Biochim. Biophys. Acta 2013, 1833, 3471–3480. [Google Scholar] [CrossRef] [PubMed]
- Shain, A.H.; Bastian, B.C. From melanocytes to melanomas. Nat. Rev. Cancer 2016, 16, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Jimbow, K.; Roth, S.I.; Fitzpatrick, T.B.; Szabo, G. Mitotic activity in non-neoplastic melanocytes in vivo as determined by histochemical, autoradiographic, and electron microscope studies. J. Cell Biol. 1975, 66, 663–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, J.D.; Peles, D.; Wakamatsu, K.; Ito, S. Current challenges in understanding melanogenesis: Bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Res. 2009, 22, 563–579. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, S.A.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef] [Green Version]
- Haass, N.K.; Herlyn, M. Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J. Investig. Dermatol. Symp. Proc. 2005, 10, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.Y.; Fisher, D.E. Melanocyte biology and skin pigmentation. Nature 2007, 445, 843–850. [Google Scholar] [CrossRef]
- Slominski, A.; Tobin, D.J.; Shibahara, S.; Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 2004, 84, 1155–1228. [Google Scholar] [CrossRef]
- Videira, I.F.; Moura, D.F.; Magina, S. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 2013, 88, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Scherer, D.; Kumar, R. Genetics of pigmentation in skin cancer—A review. Mutat. Res. 2010, 705, 141–153. [Google Scholar] [CrossRef]
- Slominski, A.T.; Zmijewski, M.A.; Zbytek, B.; Tobin, D.J.; Theoharides, T.C.; Rivier, J. Key role of CRF in the skin stress response system. Endocr. Rev. 2013, 34, 827–884. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Wortsman, J.; Luger, T.; Paus, R.; Solomon, S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol. Rev. 2000, 80, 979–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slominski, A.; Wortsman, J. Neuroendocrinology of the skin. Endocr. Rev. 2000, 21, 457–487. [Google Scholar] [CrossRef] [PubMed]
- Nasti, T.H.; Timares, L. MC1R, eumelanin and pheomelanin: Their role in determining the susceptibility to skin cancer. Photochem. Photobiol. 2015, 91, 188–200. [Google Scholar] [CrossRef] [Green Version]
- Wong, R.C.; Ellis, C.N. Physiologic skin changes in pregnancy. J. Am. Acad. Dermatol. 1984, 10, 929–940. [Google Scholar] [CrossRef]
- Hu, M.S.; Borrelli, M.R.; Hong, W.X.; Malhotra, S.; Cheung, A.T.M.; Ransom, R.C.; Rennert, R.C.; Morrison, S.D.; Lorenz, H.P.; Longaker, M.T. Embryonic skin development and repair. Organogenesis 2018, 14, 46–63. [Google Scholar] [CrossRef] [Green Version]
- Aiello, N.M.; Stanger, B.Z. Echoes of the embryo: Using the developmental biology toolkit to study cancer. Dis. Model Mech. 2016, 9, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Hohenauer, T.; Berking, C.; Schmidt, A.; Haferkamp, S.; Senft, D.; Kammerbauer, C.; Fraschka, S.; Graf, S.A.; Irmler, M.; Beckers, J.; et al. The neural crest transcription factor Brn3a is expressed in melanoma and required for cell cycle progression and survival. EMBO Mol. Med. 2013, 5, 919–934. [Google Scholar] [CrossRef]
- Heppt, M.V.; Wang, J.X.; Hristova, D.M.; Wei, Z.; Li, L.; Evans, B.; Beqiri, M.; Zaman, S.; Zhang, J.; Irmler, M.; et al. MSX1-Induced Neural Crest-Like Reprogramming Promotes Melanoma Progression. J. Investig. Dermatol. 2018, 138, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Leiter, U.; Eigentler, T.; Garbe, C. Epidemiology of skin cancer. Adv. Exp. Med. Biol. 2014, 810, 120–140. [Google Scholar] [CrossRef]
- Schadendorf, D.; van Akkooi, A.C.J.; Berking, C.; Griewank, K.G.; Gutzmer, R.; Hauschild, A.; Stang, A.; Roesch, A.; Ugurel, S. Melanoma. Lancet 2018, 392, 971–984. [Google Scholar] [CrossRef]
- Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N. Engl. J. Med. 2017, 377, 2500–2501. [Google Scholar] [CrossRef] [PubMed]
- Day, F.; Kumar, M.; Fenton, L.; Gedye, C. Durable Response of Metastatic Squamous Cell Carcinoma of the Skin to Ipilimumab Immunotherapy. J. Immunother. 2017, 40, 36–38. [Google Scholar] [CrossRef] [PubMed]
- Borradori, L.; Sutton, B.; Shayesteh, P.; Daniels, G.A. Rescue therapy with anti-programmed cell death protein 1 inhibitors of advanced cutaneous squamous cell carcinoma and basosquamous carcinoma: Preliminary experience in five cases. Br. J. Dermatol. 2016, 175, 1382–1386. [Google Scholar] [CrossRef]
- Goldman, J.W.; Abdalla, B.; Mendenhall, M.A.; Sisk, A.; Hunt, J.; Danovitch, G.M.; Lum, E.L. PD 1 checkpoint inhibition in solid organ transplants: 2 sides of a coin—Case report. BMC Nephrol. 2018, 19, 210. [Google Scholar] [CrossRef]
- Oliveira, L.J.C.; Gongora, A.B.L.; Barbosa, F.G.; Dos Anjos, C.H.; Munhoz, R.R. Atypical response with bone pseudoprogression in a patient receiving nivolumab for advanced cutaneous squamous cell carcinoma. J. Immunother. Cancer 2018, 6, 130. [Google Scholar] [CrossRef]
- Fujimura, T.; Kambayashi, Y.; Tono, H.; Lyu, C.; Ohuchi, K.; Hashimoto, A.; Aiba, S. Successful treatment of unresectable recurrent cutaneous squamous cell carcinoma of the scalp with meningeal invasion with nivolumab monotherapy. Dermatol. Ther. 2020, e13672. [Google Scholar] [CrossRef]
- Oro-Ayude, M.; Suh-Oh, H.J.; Sacristan-Santos, V.; Vazquez-Bartolome, P.; Florez, A. Nivolumab for Metastatic Cutaneous Squamous Cell Carcinoma. Case Rep. Dermatol. 2020, 12, 37–41. [Google Scholar] [CrossRef]
- Beasley, G.M.; Kurtz, J.; Vandeusen, J.; Howard, J.H.; Terando, A.; Agnese, D.; Liebner, D.; Jeter, J.; Olencki, T. Immune Checkpoint Inhibitor Therapy as a Novel and Effective Therapy for Aggressive Cutaneous Squamous-cell Carcinoma. Clin. Skin Cancer 2017, 05. [Google Scholar] [CrossRef]
- Blum, V.; Muller, B.; Hofer, S.; Pardo, E.; Zeidler, K.; Diebold, J.; Strobel, K.; Brand, C.; Aebi, S.; Gautschi, O. Nivolumab for recurrent cutaneous squamous cell carcinoma: Three cases. Eur. J. Dermatol. 2018, 28, 78–81. [Google Scholar] [CrossRef]
- Ferrarotto, R.; Glisson, B.; Blumenschein, G.; Hong, D.; Piha-Paul, S.; Jain, D.; Alshawa, A.; Painter, J.; Hess, K.; Colen, R.; et al. Efficacy of pembrolizumab in patients with cutaneous aquamous cell carcinoma. J. Immunother. Cancer 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Grob, J.J.; Gonzalez, R.; Basset-Seguin, N.; Vornicova, O.; Schachter, J.; Joshi, A.; Meyer, N.; Grange, F.; Piulats, J.M.; Bauman, J.R.; et al. Pembrolizumab Monotherapy for Recurrent or Metastatic Cutaneous Squamous Cell Carcinoma: A Single-Arm Phase II Trial (KEYNOTE-629). J. Clin. Oncol. 2020, 38, 2916–2925. [Google Scholar] [CrossRef] [PubMed]
- Yushak, M.L.; Lawson, D.H.; Goings, M.; Mckellar, M.; Maynard, N.; Woodruff, K.S.; Gorgoglione, C.; McBrien, S.; Delman, K.A.; Lowe, M.C.; et al. Phase II trial of pembrolizumab (MK-3475) in metastatic cutaneous squamous cell carcinoma: An updated analysis. J. Clin. Oncol. 2019, 37, e21015. [Google Scholar] [CrossRef]
- Maubec, E.; Boubaya, M.; Petrow, P.; Beylot-Barry, M.; Basset-Seguin, N.; Deschamps, L.; Grob, J.J.; Dreno, B.; Scheer-Senyarich, I.; Bloch-Queyrat, C.; et al. Phase II Study of Pembrolizumab As First-Line, Single-Drug Therapy for Patients With Unresectable Cutaneous Squamous Cell Carcinomas. J. Clin. Oncol. 2020, 38, 3051–3061. [Google Scholar] [CrossRef] [PubMed]
- Hermel, D.J.; Ragab, O.M.; Higgins, S.; Wysong, A.; Kim In, G. PD-1 inhibition in cutaneous squamous cell carcinoma (cSCC). J. Clin. Oncol. 2018, 36, e15100. [Google Scholar] [CrossRef]
- Lavaud, J.; Blom, A.; Longvert, C.; Fort, M.; Funck-Brentano, E.; Saiag, P. Pembrolizumab and concurrent hypo-fractionated radiotherapy for advanced non-resectable cutaneous squamous cell carcinoma. Eur. J. Dermatol. 2019, 29, 636–640. [Google Scholar] [CrossRef] [Green Version]
- Lipson, E.J.; Bagnasco, S.M.; Moore, J., Jr.; Jang, S.; Patel, M.J.; Zachary, A.A.; Pardoll, D.M.; Taube, J.M.; Drake, C.G. Tumor Regression and Allograft Rejection after Administration of Anti-PD-1. N. Engl. J. Med. 2016, 374, 896–898. [Google Scholar] [CrossRef] [Green Version]
- Lipson, E.J.; Naqvi, F.F.; Loss, M.J.; Schollenberger, M.D.; Pardoll, D.M.; Moore, J., Jr.; Brennan, D.C. Kidney retransplantation after anti-programmed cell death-1 (PD-1)-related allograft rejection. Am. J. Transpl. 2020, 20, 2264–2268. [Google Scholar] [CrossRef]
- Assam, J.H.; Powell, S.; Spanos, W.C. Unresectable cutaneous squamous cell carcinoma of the forehead with MLH1 mutation showing dramatic response to Programmed Cell Death Protein 1 Inhibitor Therapy. Clin. Skin. Cancer 2016, 1, 26–29. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.L.; Kim, J.; Luciano, R.; Sullivan-Chang, L.; Colevas, A.D. A Case Report of Unresectable Cutaneous Squamous Cell Carcinoma Responsive to Pembrolizumab, a Programmed Cell Death Protein 1 Inhibitor. JAMA Dermatol. 2016, 152, 106–108. [Google Scholar] [CrossRef] [Green Version]
- Tran, D.C.; Colevas, A.D.; Chang, A.L.S. Follow-up on programmed cell death 1 inhibitor for cutaneous squamous cell carcinoma. JAMA Dermatol. 2017, 153, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Deinlein, T.; Lax, S.F.; Schwarz, T.; Giuffrida, R.; Schmid-Zalaudek, K.; Zalaudek, I. Rapid response of metastatic cutaneous squamous cell carcinoma to pembrolizumab in a patient with xeroderma pigmentosum: Case report and review of the literature. Eur. J. Cancer 2017, 83, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, M.L.; Wang, C.Q.F.; Abikhair, M.; Roudiani, N.; Felsen, D.; Krueger, J.G.; Pavlick, A.C.; Carucci, J.A. Expression of programmed cell death ligand in cutaneous squamous cell carcinoma and treatment of locally advanced disease with pembrolizumab. JAMA Dermatol. 2017, 153, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Degache, E.; Crochet, J.; Simon, N.; Tardieu, M.; Trabelsi, S.; Moncourier, M.; Templier, I.; Foroni, L.; Lemoigne, A.; Pinel, N.; et al. Major response to pembrolizumab in two patients with locally advanced cutaneous squamous cell carcinoma. J. Eur. Acad. Dermatol. Venereol. 2018, 32, e257–e258. [Google Scholar] [CrossRef] [PubMed]
- Steineck, A.; Krumm, N.; Sarthy, J.F.; Pritchard, C.C.; Chapman, T.; Stacey, A.W.; Vitanza, N.A.; Cole, B. Response to Pembrolizumab in a Patient with Xeroderma Pigmentosum and Advanced Squamous Cell Carcinoma. JCO Precis. Oncol. 2019, 3. [Google Scholar] [CrossRef]
- Ma, W.L.; Chou, C.H.; Chen, J.P.; Kuo, S.H. Efficacy of a programmed death-1 checkpoint inhibitor in a case of cutaneous squamous cell carcinoma harboring mutations of TP53 and BRCA2. Dermatol. Ther. 2020, e14035. [Google Scholar] [CrossRef]
- Cristancho, C.; Riano, I.; Guareras-Paredes, D.; Park, R.; Seetharaman, K. Complete Resolution of a Large, Locally-advanced Cutaneous Squamous Cell Carcinoma with the Immune-modulating PD-1 Inhibitor Pembrolizumab. Cureus 2020, 12, e8072. [Google Scholar] [CrossRef]
- Delaitre, L.; Martins-Hericher, J.; Truchot, E.; Denis, D.; Prophette, B.; Maillard, H.; Beneton-Benhard, N. Regression of cutaneous basal cell and squamous cell carcinoma under pembrolizumab. Ann. Dermatol. Venereol. 2020, 147, 279–284. [Google Scholar] [CrossRef]
- Khaddour, K.; Musiek, A.; Cornelius, L.A.; Dehdashti, F.; Westervelt, P.; Fields, R.; Ansstas, G. Rapid and sustained response to immune checkpoint inhibition in cutaneous squamous cell carcinoma after allogenic hematopoietic cell transplant for sezary syndrome. J. Immunother. Cancer 2019, 7, 338. [Google Scholar] [CrossRef]
- Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; et al. PD-1 Blockade with Cemiplimab in Advanced Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2018, 379, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Migden, M.R.; Khushalani, N.I.; Chang, A.L.S.; Lewis, K.D.; Schmults, C.D.; Hernandez-Aya, L.; Meier, F.; Schadendorf, D.; Guminski, A.; Hauschild, A.; et al. Cemiplimab in locally advanced cutaneous squamous cell carcinoma: Results from an open-label, phase 2, single-arm trial. Lancet Oncol. 2020, 21, 294–305. [Google Scholar] [CrossRef]
- Rischin, D.; Migden, M.R.; Lim, A.M.; Schmults, C.D.; Khushalani, N.I.; Hughes, B.G.M.; Schadendorf, D.; Dunn, L.A.; Hernandez-Aya, L.; Chang, A.L.S.; et al. Phase 2 study of cemiplimab in patients with metastatic cutaneous squamous cell carcinoma: Primary analysis of fixed-dosing, long-term outcome of weight-based dosing. J. Immunother. Cancer 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Escobar, G.F.; Granel-Brocard, F.; Schmutz, J.L.; Cervantes, P.; Ben Mahmoud, S.; Bursztejn, A.C. Simultaneous response of cutaneous and lung squamous cell carcinoma with cemiplimab. Dermatol. Ther. 2020, e13951. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [Green Version]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Postow, M.A.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.; McDermott, D.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 2015, 372, 2006–2017. [Google Scholar] [CrossRef] [Green Version]
- Hassel, J.C.; Heinzerling, L.; Aberle, J.; Bahr, O.; Eigentler, T.K.; Grimm, M.O.; Grunwald, V.; Leipe, J.; Reinmuth, N.; Tietze, J.K.; et al. Combined immune checkpoint blockade (anti-PD-1/anti-CTLA-4): Evaluation and management of adverse drug reactions. Cancer Treat. Rev. 2017, 57, 36–49. [Google Scholar] [CrossRef]
- Miller, D.M.; Faulkner-Jones, B.E.; Stone, J.R.; Drews, R.E. Complete pathologic response of metastatic cutaneous squamous cell carcinoma and allograft rejection after treatment with combination immune checkpoint blockade. JAAD Case Rep. 2017, 3, 412–415. [Google Scholar] [CrossRef] [Green Version]
- Trager, M.H.; Coley, S.M.; Dube, G.; Khan, S.; Ingham, M.; Samie, F.H.; Geskin, L.J.; McDonnell, D.; Brouder, D.; Saenger, Y.; et al. Combination checkpoint blockade for metastatic cutaneous malignancies in kidney transplant recipients. J. Immunother. Cancer 2020, 8, e000908. [Google Scholar] [CrossRef]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science 2015, 348, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickering, C.R.; Zhou, J.H.; Lee, J.J.; Drummond, J.A.; Peng, S.A.; Saade, R.E.; Tsai, K.Y.; Curry, J.L.; Tetzlaff, M.T.; Lai, S.Y.; et al. Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin. Cancer Res. 2014, 20, 6582–6592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Taube, J.M.; Anders, R.A.; Pardoll, D.M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 2016, 16, 275–287. [Google Scholar] [CrossRef]
- Meng, X.; Huang, Z.; Teng, F.; Xing, L.; Yu, J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat. Rev. 2015, 41, 868–876. [Google Scholar] [CrossRef]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crino, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef]
- Varki, V.; Ioffe, O.B.; Bentzen, S.M.; Heath, J.; Cellini, A.; Feliciano, J.; Zandberg, D.P. PD-L1, B7-H3, and PD-1 expression in immunocompetent vs. immunosuppressed patients with cutaneous squamous cell carcinoma. Cancer Immunol. Immunother. 2018, 67, 805–814. [Google Scholar] [CrossRef]
- Slater, N.A.; Googe, P.B. PD-L1 expression in cutaneous squamous cell carcinoma correlates with risk of metastasis. J. Cutan. Pathol. 2016, 43, 663–670. [Google Scholar] [CrossRef]
- Garcia-Diez, I.; Hernandez-Ruiz, E.; Andrades, E.; Gimeno, J.; Ferrandiz-Pulido, C.; Yebenes, M.; Garcia-Patos, V.; Pujol, R.M.; Hernandez-Munoz, I.; Toll, A. PD-L1 Expression is Increased in Metastasizing Squamous Cell Carcinomas and Their Metastases. Am. J. Dermatopathol. 2018, 40, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Slater, N.A.; Sayed, C.J.; Googe, P.B. PD-L1 and LAG-3 expression in advanced cutaneous squamous cell carcinomas. J. Cutan Pathol. 2020, 47, 882–887. [Google Scholar] [CrossRef] [PubMed]
- Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, T.F.; Corrales, L.; Williams, J.; Horton, B.; Sivan, A.; Spranger, S. Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment. Adv. Exp. Med. Biol. 2017, 1036, 19–31. [Google Scholar] [CrossRef]
- Markham, A.; Duggan, S. Cemiplimab: First Global Approval. Drugs 2018, 78, 1841–1846. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FDA Approves Pembrolizumab for Cutaneous Squamous Cell Carcinoma; 2020. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-cutaneous-squamous-cell-carcinoma (accessed on 22 October 2020).
- European Medicines Agency (EMA). Libtayo (Cemiplimab). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/libtayo (accessed on 28 October 2020).
- Heppt, M.V.; Steeb, T.; Berking, C.; Nast, A. Comparison of guidelines for the management of patients with high-risk and advanced cutaneous squamous cell carcinoma—A systematic review. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Global Observatory on Donation and Transplantation. Summary—Total Number of Organ Transplant Recipients in Germany and Global. 2018. Available online: http://www.transplant-observatory.org/summary/ (accessed on 9 June 2020).
- Madeleine, M.M.; Patel, N.S.; Plasmeijer, E.I.; Engels, E.A.; Bouwes Bavinck, J.N.; Toland, A.E.; Green, A.C.; The Keratinocyte Carcinoma Consortium Immunosuppression Working Group. Epidemiology of keratinocyte carcinomas after organ transplantation. Br. J. Dermatol. 2017, 177, 1208–1216. [Google Scholar] [CrossRef] [Green Version]
- Harwood, C.A.; Toland, A.E.; Proby, C.M.; Euvrard, S.; Hofbauer, G.F.L.; Tommasino, M.; Bouwes Bavinck, J.N.; KeraCon, C. The pathogenesis of cutaneous squamous cell carcinoma in organ transplant recipients. Br. J. Dermatol. 2017, 177, 1217–1224. [Google Scholar] [CrossRef] [Green Version]
- Leitlinienprogramm Onkologie; Deutsche Krebsgesellschaft; Deutsche Krebshilfe; AWMF. S3-Leitlinie Aktinische Keratose und Plattenepithelkarzinom der Haut, Langversion 1.1. Available online: https://www.leitlinienprogrammonkologie.de/leitlinien/aktinische-keratosen-und-plattenepithelkarzinom-der-haut/ (accessed on 5 June 2020).
- Marteijn, J.A.; Lans, H.; Vermeulen, W.; Hoeijmakers, J.H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 2014, 15, 465–481. [Google Scholar] [CrossRef]
- Lehmann, J.; Seebode, C.; Martens, M.C.; Emmert, S. Xeroderma Pigmentosum—Facts and Perspectives. Anticancer Res. 2018, 38, 1159–1164. [Google Scholar] [CrossRef]
- Hauschild, A.; Eichstaedt, J.; Mobus, L.; Kahler, K.; Weichenthal, M.; Schwarz, T.; Weidinger, S. Regression of melanoma metastases and multiple non-melanoma skin cancers in xeroderma pigmentosum by the PD1-antibody pembrolizumab. Eur. J. Cancer 2017, 77, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Salomon, G.; Maza, A.; Boulinguez, S.; Paul, C.; Lamant, L.; Tournier, E.; Mazereeuw-Hautier, J.; Meyer, N. Efficacy of anti-programmed cell death-1 immunotherapy for skin carcinomas and melanoma metastases in a patient with xeroderma pigmentosum. Br. J. Dermatol. 2018, 178, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
- Chambon, F.; Osdoit, S.; Bagny, K.; Moro, A.; Nguyen, J.; Reguerre, Y. Dramatic response to nivolumab in xeroderma pigmentosum skin tumor. Pediatr. Blood Cancer 2018, 65. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, K.H.; Tamura, D.; Khan, S.G. Pembrolizumab treatment of a patient with xeroderma pigmentosum with disseminated melanoma and multiple nonmelanoma skin cancers. Br. J. Dermatol. 2018, 178, 1009. [Google Scholar] [CrossRef] [PubMed]
- Cantisani, C.; Paolino, G.; Melis, M.; Faina, V.; Romaniello, F.; Didona, D.; Cardone, M.; Calvieri, S. Actinic Keratosis Pathogenesis Update and New Patents. Recent Pat. Inflamm. Allergy Drug Discov. 2016, 10, 40–48. [Google Scholar] [CrossRef]
- Orloff, M.M.; Dasgeb, B.; Mastrangelo, M.J.; Koblenzer, P.; Kemp, D.; Weight, R.M.; Javed, A.; Sharpe-Mills, E.; Sato, T. Resolution of pre-cancerous and non-melanoma skin cancers after immune checkpoint inhibitor treatments. J. Clin. Oncol. 2016, 34, e14540. [Google Scholar] [CrossRef]
- Leiter, U.; Loquai, C.; Reinhardt, L.; Rafei-Shamsabadi, D.; Gutzmer, R.; Kaehler, K.; Heinzerling, L.; Hassel, J.C.; Glutsch, V.; Sirokay, J.; et al. Immune checkpoint inhibition therapy for advanced skin cancer in patients with concomitant hematological malignancy: A retrospective multicenter DeCOG study of 84 patients. J. Immunother. Cancer 2020, 8, e000897. [Google Scholar] [CrossRef]
Author, Year [Reference] | Design | n | Intervention | ORR | PR | CR | PFS (Months) | OS (Months) | 1-Year OS | AEs ≥Grade 3 |
---|---|---|---|---|---|---|---|---|---|---|
Day 2017 [56] | Case report | 1 | Ipi * | 1/1 | 1/1 | 0/1 | ≥8 | - | - | 0 |
Borradori 2016 [57] | Case series | 2 | Pem 2 mg/kg | 1/2 | 1/2 | 0/2 | ≥4, ≥7 | - | - | 0 |
3 | Nivo 3 mg/kg | 1/2 | 1/2 | 0/2 | 6 to ≥7 | - | - | 0 | ||
Beasley 2017 [62] | Case series | 17 | Nivo 3 mg/kg | 14/18 | 10/18 | 4/18 | - | - | - | 3/18 (fatigue, haemolytic anemia, colitis) |
1 | Pem 2 mg/kg | |||||||||
Blum 2018 [63] | Case series | 2 | Nivo 3 mg/kg | 3/3 | 3/3 | 0/3 | - | - | - | 0 |
1 | Nivo 200 mg fix | |||||||||
Goldman 2018 [58] | Case report | 1 (OTR) | Nivo 3 mg/kg | 1/1 | 1/1 | 0/1 | ≥18 | - | - | allograft rejection |
Fujimura 2020 [60] | Case report | 1 | Nivo 240 mg fix | 1/1 | 0/1 | 1/1 | - | - | - | - |
Oliveira 2018 [59] | Case report | 1 | Nivo 3 mg/kg | 1/1 | 1/1 | 0/1 | ≥12 | - | - | 0 |
Oro-Ayude 2020 [61] | Case report | 1 | Nivo 3 mg/kg | 1/1 | 0/1 | 1/1 | - | - | - | 0 |
Assam 2016 [72] | Case report | 1 | Pem 2 mg/kg | 1/1 | 0/1 | 1/1 | - | - | - | 0 |
Chang 2016 [73] | Case report | 1 | Pem 2 mg/kg | 1/1 | 0/1 | 1/1 | - | - | - | unclear |
Cristancho 2020 [80] | Case report | 1 | Pem 200 mg fix | 1/1 | 0/1 | 1/1 | - | - | - | 0 |
Degache 2018 [77] | Case series | 2 | Pem 2 mg/kg | 2/2 | 2/2 | 0/2 | - | - | - | 0 |
Deinlein 2017 [75] | Case report | 1 (XP patient) | Pem 2 mg/kg | 1/1 | 1/1 | 0/1 | - | - | - | 0 |
Delaitre 2020 [81] | Case report | 1 | Pem 2 mg/kg | 1/1 | 0/1 | 1/1 | - | - | - | 0 |
Ferrarotto 2017 [64] NCT02721732 | Phase II | 11 | Pem 200 mg fix | 4/11 | 4/11 | 0/11 | - | - | - | 0 |
Grob 2020 [65] KEYNOTE-629 NCT03284424 | Phase II | 105 | Pem 200 mg fix | 36/105 | 32/105 | 4/105 | 6.9 | n.r. | 60.3% | 6 (5.7%, grade 3–5) |
Hermel 2018 [68] | EAP | 8 | Pem 2 mg/kg | 4/8 | 4/8 | 0/8 | - | - | - | 0 |
Khaddour 2019 [82] | Case report | 1 (allo-HCT) | Pem 200 mg fix | 1/1 | 0/1 | 1/1 | ≥ 24 | - | - | 0 |
Lavaud 2019 [69] | Retrospective analysis/case series | 4 | Pem 2 mg/kg | 2/4 | 0/4 | 2/4 | 14.4 | 15.6 | - | 0 |
Lipson 2016/2020 [70,71] | Case report | 1 (OTR) | Pem 2 mg/kg | 1/1 | 0/1 | 1/1 | - | - | - | allograft rejection |
Maubec 2020 [67] CARSKIN trial NCT02883556 | Phase II | 39 (primary cohort) | Pem 200 mg fix | 16/39 | 13/39 | 3/39 | 6.7 | 25.3 | 75.5% | 4 (7%) |
18 (expansion cohort) | Pem 200 mg fix | 8/18 | 7/18 | 1/18 | - | - | - | - | ||
Ma 2020 [79] | Case report | 1 | Pem 2 mg/kg | 1/1 | 0/1 | 1/1 | ≥17 | - | - | 0 |
Steineck 2019 [78] | Case report | 1 (XP patient) | Pem | 1/1 | 1/1 | 0/1 | ≥18 | - | - | - |
Stevenson 2017 [76] | Case report | 1 | Pem 2 mg/kg | 1/1 | 0/1 | 1/1 | - | - | - | 0 |
Tran 2017 [74] | Case series | 4 | Pem 2 mg/kg | 3/4 | 2/4 | 1/4 | 3 to 10.5 | - | - | 0 |
1 | Nivo 3 mg/m2 | 1/1 | 1/1 | 0/1 | 12 | - | - | 0 | ||
Yushak 2019 [66] NCT02964559 | Phase II | 11 | Pem 200 mg fix | 6/11 | 4/11 | 2/11 | ≥6 | - | - | 3 AEs reported |
Escobar 2020 [86] | Case report | 1 | Cem 3 mg/kg Q2W | 1/1 | 1/1 | 0/1 | ≥8 | - | - | unclear |
Migden 2018/2020, Rischin 2020 [83,84,85] NCT02383212 (phase I) NCT02760498 (phase II) | Phase I (la) | 26 | Cem 3 mg/kg | 13/26 | 13/26 | 0/26 | - | - | - | 6/26 |
Phase II (m) | 59 | 28/59 | 24/59 | 4/59 | n.r. | n.r. | 81% | 17/59 | ||
Phase II (la) | 78 | 34/78 | 24/78 | 10/78 | n.r. | n.r. | 93% | 8/78 | ||
Phase II (m) | 56 | Cem 350 mg fix | 23/56 | 20/56 | 3/56 | n.r. | n.r. | 76.1% | 7/56 | |
Miller 2017 [91] | Case report | 1 (OTR) | Ipi and nivo * | 1/1 | 1/1 | 0/1 | - | - | - | allograft rejection |
Trager 2020 [92] | Case report | 1 (OTR) | Ipi 3 mg/kg and nivo 1 mg/kg | 1/1 | 1/1 | 0/1 | ≥9 | - | - | unclear |
Study ID | Study Design | Start | End * | Sample Size [n] | Intervention | Primary Outcomes | Secondary Outcomes | Funding |
---|---|---|---|---|---|---|---|---|
NCT03901573 | Multicenter, open-label, phase Ib | Dec 2019 | May 2024 | 24 | Atezolizumab i.v.+ efineptakin alfa (hIL-7-hyFc) i.m. Dose escalation | Safety and tolerability | ORR, DCR, DOR, PFS, OS | NeoImmuneTech Immune Oncology Network |
Multicenter, open-label, two armed, phase IIa | 60 (A = 24, B = 36) | Atezolizumab i.v.+ efineptakin alfa (rhIL-7-hyFc) i.m. A: ICB-refractory cSCC B: ICB-naïve cSCC Dose expansion | ||||||
NCT03108131 | Single-center, single-arm, open-label, phase II | Apr 2017 | Jul 2020 | 60 | Atezolizumab i.v. Q2W + cobimetinib p.o. QD on days 1–12, 1 cycle = 28 days, until disease progression or unacceptable toxicity | ORR | PFS | M.D. Anderson Cancer Center National Cancer Institute (NCI) |
NCT03944941 | Multicenter, open-label, randomized, two-armed, phase II | May 2019 | Dec 2023 | 59 | A: Avelumab i.v. on days 1 and 15, up to 24 cycles (1 cycle = 28 days), until disease progression or unacceptable toxicity; patients with avelumab failure will crossover to arm B B: Avelumab + cetuximab: and avelumab i.v. on days 1 and 15 + cetuximab i.v. on days 1, 8, 15, and 22, up to 24 cycles until disease progression or unacceptable toxicity | PFS | ORR, clinical benefit rate, OS, AEs | Alliance for Clinical Trials in Oncology National Cancer Institute (NCI) |
AliCe Trial EudraCT: 2018-001708-12 | Multicenter, open-label, single-arm, phase II | un-clear | un-clear | 52 | Avelumab i.v. + cetuximab i.v., intervals and dosage not reported | ORR | PFS, DOR, OS, AEs, QoL | Alcedis GmbH |
UNSCARRed trial NCT03737721 | Single-center, single-arm, open-label, phase II | Apr 2019 | Jun 2023 | 20 | Avelumab i.v. Q2W, first dose 14 days prior to radiotherapy, then 63–66 Gy radiation over 30 daily fractions + avelumab i.v. Q2W for 4 cycles | ORR | PFS, clinical and pathological response rate, AEs | AHS Cancer Control Alberta EMD Serono Alberta Cancer Foundation |
NCT03889912 | Multicenter, single-arm, open-label, phase I | Apr 2019 | Feb 2022 | 36 | Cemiplimab i.t. QW for 12 weeks neoadjuvant, then surgical excision | AEs | ORR, CR rate, pathological response rate, drug concentration over time, anti-drug antibodies | Regeneron Pharmaceuticals Sanofi |
NCT04154943 | Multicenter, single-arm, open-label, phase II | Mar 2020 | Dec 2024 | 76 | Cemiplimab i.v. Q3W | Pathologic CR rate | Major pathologic response, ORR, event-free survival, DFS, OS, AEs, incidence of deaths | Regeneron Pharmaceuticals Sanofi |
NCT03969004 (EudraCT: 2019-000566-38) | Randomized, multicenter, two-armed, double-blind, phase III | Jun 2019 | Feb 2026 | 412 | Surgery and radiation therapy followed by A: Cemiplimab i.v. B: Placebo i.v. Intervals and dosage not reported | DFS | OS, freedom from locoregional and distant recurrence, cumulative occurance of second primary cSCC, AEs, incidence of deaths | Regeneron Pharmaceuticals Sanofi |
NCT04242173 | Single-center, single-arm, open-label, phase II | Jan 2020 | Jan 2023 | 27 | Cemiplimab i.v., intervals and dosage not reported | ORR | PFS, OS | Regeneron Pharmaceuticals Sanofi |
CERPASS trial NCT04050436 | Randomized, multicenter, two-armed, open-label, phase II | Oct 2019 | Mar 2024 | 240 | A: Cemiplimab i.v. Q3W B: Cemiplimab i.v. Q3W+ RP1 i.t. Q3W | ORR | DOR, PFS, CR rate, OS, AEs, response injected vs. non-injected lesions | Replimune Inc. Regeneron Pharmaceuticals |
CONTRAC trial NCT04339062 | Non-randomized, single-center, open-label, phase I | Jul 2020 | Jul 2022 | 12 A: allo-HCT B: kidney trans-plant reci-pients | A: Cemiplimab i.v. Q3W B: Cemiplimab i.v. Q3W + everolimus/sirolimus 7–10 days prior to cemiplimab start, then QD + prednisone 40 mg p.o. 1 day prior to cemiplimab start, then QD at tapering doses | Dose-limiting toxicity (A: GVHD, B: allograft rejection) | PFS, OS, ORR, therapeutic response rate, secondary infection rate, | Dana-Farber Cancer Institute Regeneron Pharmaceuticals |
NCT02760498 (EudraCT: 2016-000105-36) | Multicenter, open-label, phase II | Apr 2016 | Dec 2025 | 433 | Cemiplimab i.v. A: mSCC, Q2W B: laSCC, Q2W C: mSCC, Q3W D: mSCC or laSCC, Q4W E: mSCC or laSCC, Q3W | ORR | DoR, PFS, OS, CR rate, QoL, AEs, pharmacokinetics, correlation PD-L1 expression and ORR/DoR/PFS | Regeneron Pharmaceuticals |
NCT04428671 | Single-center, open-label, phase I | May 2020 | Oct 2030 | 20 | Cemiplimab i.v. Q3W neoadjuvant for up to 3 cycles prior to surgery, then cemiplimab i.v. Q3W adjuvant, starting within 2–6 weeks after surgery or radiation therapy, up to 18 cycles | Pathologic RR | Time to local and systemic recurrence, OS, RFS | Emory University |
NCT04315701 | Multicenter, open-label, phase II | Jun 2020 | Jan 2023 | 34 | Cemiplimab i.v. Q3W up to 3 cycles neoadjuvant, then surgery within 6 weeks after last dose | Pathologic PR | Pathologic CR rate, ORR, PFS, AEs | M.D. Anderson Cancer Center National Cancer Institute (NCI) |
NCT03684785 | Multicenter, open-label, phase Ib | Dec 2018 | Jun 2023 | 130 | Cavrotolimod i.t. twice (dosage and intervals not reported), then with pembrolizumab 2 mg/kg i.v. Q3W Dose escalation | AEs | Finding recommended dose of cavrotolimod for phase II trial ORR, biomarkers | Exicure, Inc. |
Phase II | Cemiplimab 350 mg i.v. Q3W + cavrotolimod i.t. Dose expansion | |||||||
NCT04305795 | Open-label, phase I/II | Sep 2020 | Jun 2024 | 54 | Cemiplimab 350 mg i.v., up to 24 months + ASP-1929 (EGFR antibody-dye conjugate for photoimmunotherapy light treatment) | AEs, ORR | OS, PFS, DOR | Rakuten Medical, Inc. |
NCT03816332 | Multicenter, single-arm, open-label, phase I | Feb 2019 | May 2021 | 16 kidney trans-plant reci-pients | Tacrolimus p.o. BID + prednisone p.o. QD, within 28 days: Nivolumab i.v. Q4W, up to 24 cycles until disease progression or unacceptable toxicity. Patients with PD at 16 weeks: Nivolumab i.v. + ipilimumab i.v. Q3W + tacrolimus p.o. BID + prednisone p.o. QD, up to 4 cycles until disease progression or unacceptable toxicity. Starting 6 weeks later, patients receive nivolumab i.v. Q4W, up to 21 cycles until disease progression or unacceptable toxicity. | CR, PR and SD rate, patients without allograft loss | ORR, allograft rejection rate, DOR (CR and PR), PFS, OS | National Cancer Institute (NCI) |
CA209-9JC trial NCT03834233 | Single-center, open-label, phase II | Sep 2019 | Dec 2022 | 24 | Nivolumab 3 mg/kg i.v. Q2W until disease progression or up to 12 months | ORR | AEs, PFS | Instituto do Cancer do Estado de São Paulo |
NCT04204837 | Multicenter, open-label, phase II | Mar 2017 | Dec 2023 | 31 | Nivolumab 240 mg i.v. Q2W until disease progression, unacceptable toxicity or up to 2 years | ORR | DCR, DOR, PFS, OS | Salzburger Landeskliniken Bristol-Myers Squibb |
NCT02978625 | Multicenter, open-label, phase II | Sep 2017 | Jun 2021 | 68 | T-VEC i.t. on day 1, if no response: Nivolumab i.v. Q3W (first cycle), then Q2W until disease progression, unacceptable toxicity or up to 1 year | RR to T-VEC alone, ORR to T-VEC + nivolumab | Durable RR, RR of injected and non-injected lesions, PFS, OS, AEs | National Cancer Institute (NCI) |
Pelican trial NCT03773744 | Open-label, phase I | Jan 2020 | Dec 2021 | 40 | A: Cyclophosphamide 300mg/m2 3 days prior to Ad-MAGEA3 fixed dose i.m. (day 1), then one of 3 dose levels of MG1-MAGEA3 i.v. (day 15 and 18) + pembrolizumab 200 mg i.v., starting in week 6 or on day 1 (depending on cohort; intervals not reported) B: Ad-MAGEA3 fixed dose i.m. followed by pembrolizumab i.v. (day 1), then MG1-MAGEA3 i.v. (day 15) and i.t. on day 22, 29, and 36; MG1-MAGEA3 booster injections i.t. Q3W beginning at day 43 (=week 6) | AEs, maximum tolerated and feasible dose of Ad/MG-MAGEA3 | ORR, DCR, PFS, DOR | Turnstone Biologics, Corp. |
KEYNOTE-629 NCT03284424 (EudraCT: 2017-000594-37) | Multicenter, two-armed, open-label, phase II | Oct 2017 | Jun 2022 | 150 | Pembrolizumab 200 mg i.v. Q3W up to 2 years A: recurrent or mSCC B: laSCC | ORR | DOR, DCR, PFS, OS, AEs, discontinuations due to AEs | Merck Sharp & Dohme Corp. |
KEYNOTE-630 NCT03833167 (EudraCT: 2018-001974-76) | Randomized, multicenter, blinded, controlled, phase III | Apr 2019 | Sep 2027 | 570 | Adjuvant setting A: Pembrolizumab 400 mg i.v. Q6W, up to 9 cycles; if 9 cycles completed: Up to 18 additional cycles in open-label design B: Placebo i.v. Q6W, up to 9 cycles; if disease recurrence: Up to 18 cycles of pembrolizumab in open-label design | RFS | OS, QoL, AEs, discontinuations due to AEs | Merck Sharp & Dohme Corp. |
NCT02964559 | Single-center, open-label, phase II | Jan 2017 | Feb 2022 | 11 | Pembrolizumab i.v. Q3W until disease progression or unacceptable toxicity | RR | OS, PFS | Emory University Merck Sharp & Dohme Corp. |
CARSKIN trial NCT02883556 (EudraCT: 2016-002076-28) | Single-center, open-label, phase II | Mar 2017 | Oct 2021 | 57 | Pembrolizumab 200 mg i.v. Q3W until disease progression or unacceptable toxicity, or up to 24 months | RR | AEs, RR in PD-L1 positive patients, DCR, OS, PFS, DOR, duration of control, time to progression | Assistance Publique - Hôpitaux de Paris |
NCT02721732 | Single-center, open-label, phase II | Aug 2016 | Aug 2020 | 225 | Pembrolizumab i.v. Q3W until disease progression or unacceptable toxicity, or up to 24 months; responding patients may continue up to 12 additional months | Non-progression rate, AEs | ORR, clinical benefit (CR, PR or SD), DOR, PFS, OS, ECOG performance status, temperature, pulse, body weight, respiratory rate, blood pressure | M.D. Anderson Cancer Center National Cancer Institute (NCI) |
NCT04234113 | Multicenter, open-label, phase I | Jun 2019 | Mar 2022 | 96 | A: SO-C101 (IL-15 agonist) B: SO-C101 + Pembrolizumab i.v. unclear dosing and intervals | Dose-limiting toxicity, AEs, laboratory test abnormalities, ECOG performance status | ORR, best overall response, DOR, clinical benefit rate, PFS, anti-drug antibodies to SO-C101 | Sotio a.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wessely, A.; Steeb, T.; Leiter, U.; Garbe, C.; Berking, C.; Heppt, M.V. Immune Checkpoint Blockade in Advanced Cutaneous Squamous Cell Carcinoma: What Do We Currently Know in 2020? Int. J. Mol. Sci. 2020, 21, 9300. https://doi.org/10.3390/ijms21239300
Wessely A, Steeb T, Leiter U, Garbe C, Berking C, Heppt MV. Immune Checkpoint Blockade in Advanced Cutaneous Squamous Cell Carcinoma: What Do We Currently Know in 2020? International Journal of Molecular Sciences. 2020; 21(23):9300. https://doi.org/10.3390/ijms21239300
Chicago/Turabian StyleWessely, Anja, Theresa Steeb, Ulrike Leiter, Claus Garbe, Carola Berking, and Markus Vincent Heppt. 2020. "Immune Checkpoint Blockade in Advanced Cutaneous Squamous Cell Carcinoma: What Do We Currently Know in 2020?" International Journal of Molecular Sciences 21, no. 23: 9300. https://doi.org/10.3390/ijms21239300
APA StyleWessely, A., Steeb, T., Leiter, U., Garbe, C., Berking, C., & Heppt, M. V. (2020). Immune Checkpoint Blockade in Advanced Cutaneous Squamous Cell Carcinoma: What Do We Currently Know in 2020? International Journal of Molecular Sciences, 21(23), 9300. https://doi.org/10.3390/ijms21239300